1 research outputs found

    Redesigning the in-plant supply logistics: A case study

    Full text link
    [EN] This paper addresses the redesign of an industrial assembly facility's internal logistics. To this end, it proposes a mathematical formulation that optimizes the components and parts' flow to feed the different workstations of the production lines. This flow of components starts at the reception docks where suppliers' trucks arrive. Components unloaded from trucks are moved to one or several storage areas by means of adequate handling equipment. Finally, components are transported to demand point located along the assembly line when required. Numerical results produced by the mathematical formulation for the studied plant show that savings of almost 33% in the total distribution time might be achieved by a better assignment of suppliers to reception docks and parts to storage areas, and by adequately choosing the capacity of the material handling equipment.The work described in this paper has been partially supported by the project "Hiperheuristico Lenitivo de la Variabilidad del Entorno Industrial en la Programacion de Produccion del Lote Econonimo GVA/2017/008" by the Conselleria de Educacion, Investigacion, Cultura y Deporte of the Generalitat Valenciana within the Program "Proyectos de I+D+I para grupos de investigacion emergentes". We would like to thank the two anonymous reviewers and the editor for their valuable comments and suggestions.Saez-Mas, A.; García Sabater, JP.; García Sabater, JJ.; Ruiz, A. (2020). Redesigning the in-plant supply logistics: A case study. Computers & Industrial Engineering. 143:1-10. https://doi.org/10.1016/j.cie.2020.106422S110143Alizon, F., Dallery, Y., Essafi, I., & Feillet, D. (2009). Optimising material handling costs in an assembly workshop. International Journal of Production Research, 47(14), 3853-3866. doi:10.1080/00207540701851764Alnahhal, M., & Noche, B. (2013). Efficient material flow in mixed model assembly lines. SpringerPlus, 2(1). doi:10.1186/2193-1801-2-415Alnahhal, M., & Noche, B. (2015). A genetic algorithm for supermarket location problem. Assembly Automation, 35(1), 122-127. doi:10.1108/aa-02-2014-018Alnahhal, M., & Noche, B. (2015). Dynamic material flow control in mixed model assembly lines. Computers & Industrial Engineering, 85, 110-119. doi:10.1016/j.cie.2015.03.009Arifin, R., & Egbelu, P. J. (2000). Determination of vehicle requirements in automated guided vehicle systems: A statistical approach. Production Planning & Control, 11(3), 258-270. doi:10.1080/095372800232225Bányai, T. (2018). Real-Time Decision Making in First Mile and Last Mile Logistics: How Smart Scheduling Affects Energy Efficiency of Hyperconnected Supply Chain Solutions. Energies, 11(7), 1833. doi:10.3390/en11071833Battini, D., Boysen, N., & Emde, S. (2012). Just-in-Time supermarkets for part supply in the automobile industry. Journal of Management Control, 24(2), 209-217. doi:10.1007/s00187-012-0154-yBattini, D., Gamberi, M., Persona, A., & Sgarbossa, F. (2015). Part-feeding with supermarket in assembly systems: transportation mode selection model and multi-scenario analysis. Assembly Automation, 35(1), 149-159. doi:10.1108/aa-06-2014-053Battini, D., Calzavara, M., Otto, A., & Sgarbossa, F. (2017). Preventing ergonomic risks with integrated planning on assembly line balancing and parts feeding. International Journal of Production Research, 55(24), 7452-7472. doi:10.1080/00207543.2017.1363427Battini, D., Faccio, M., Persona, A., & Sgarbossa, F. (2010). «Supermarket warehouses»: stocking policies optimization in an assembly-to-order environment. The International Journal of Advanced Manufacturing Technology, 50(5-8), 775-788. doi:10.1007/s00170-010-2555-0Boudella, M. E. A., Sahin, E., & Dallery, Y. (2018). Kitting optimisation in Just-in-Time mixed-model assembly lines: assigning parts to pickers in a hybrid robot–operator kitting system. International Journal of Production Research, 56(16), 5475-5494. doi:10.1080/00207543.2017.1418988Boysen, N., Emde, S., Hoeck, M., & Kauderer, M. (2015). Part logistics in the automotive industry: Decision problems, literature review and research agenda. European Journal of Operational Research, 242(1), 107-120. doi:10.1016/j.ejor.2014.09.065Boywitz, D., Boysen, N., & Briskorn, D. (2016). Resequencing with parallel queues to minimize the maximum number of items in the overflow area. Naval Research Logistics (NRL), 63(5), 401-415. doi:10.1002/nav.21699Caputo, A. C., Pelagagge, P. M., & Salini, P. (2017). Modeling errors in parts supply processes for assembly lines feeding. Industrial Management & Data Systems, 117(6), 1263-1294. doi:10.1108/imds-08-2016-0333Caputo, A. C., Pelagagge, P. M., & Salini, P. (2017). Modelling human errors and quality issues in kitting processes for assembly lines feeding. Computers & Industrial Engineering, 111, 492-506. doi:10.1016/j.cie.2017.04.004Carter, C. R., & Rogers, D. S. (2008). A framework of sustainable supply chain management: moving toward new theory. International Journal of Physical Distribution & Logistics Management, 38(5), 360-387. doi:10.1108/09600030810882816Ellis, K. P., Meller, R. D., Wilck, J. H., Parikh, P. J., & Marchand, F. (2010). Effective material flow at an assembly facility. International Journal of Production Research, 48(23), 7195-7217. doi:10.1080/00207540903186266Emde, S., & Boysen, N. (2012). Optimally locating in-house logistics areas to facilitate JIT-supply of mixed-model assembly lines. International Journal of Production Economics, 135(1), 393-402. doi:10.1016/j.ijpe.2011.07.022Emde, S., Fliedner, M., & Boysen, N. (2012). Optimally loading tow trains for just-in-time supply of mixed-model assembly lines. IIE Transactions, 44(2), 121-135. doi:10.1080/0740817x.2011.575442Enderer, F., Contardo, C., & Contreras, I. (2017). Integrating dock-door assignment and vehicle routing with cross-docking. Computers & Operations Research, 88, 30-43. doi:10.1016/j.cor.2017.06.018Cedillo-Campos, M. G., Morones Ruelas, D., Lizarraga-Lizarraga, G., Gonzalez-Feliu, J., & Garza-Reyes, J. A. (2017). Decision policy scenarios for just-in-sequence (JIS) deliveries. Journal of Industrial Engineering and Management, 10(4), 581. doi:10.3926/jiem.2090Golz, J., Gujjula, R., Günther, H.-O., Rinderer, S., & Ziegler, M. (2011). Part feeding at high-variant mixed-model assembly lines. Flexible Services and Manufacturing Journal, 24(2), 119-141. doi:10.1007/s10696-011-9116-1Hernández-Rodríguez, S., Hernández-Lira, C. A., Aguilar-Rico, A., Flores-Becerra, G., Flores-Méndez, J., & Vázquez-Cuchillo, O. (2016). A recommender system applied to the indirect materials selection process (RS-IMSP) for producing automobile spare parts. Computers in Industry, 82, 233-244. doi:10.1016/j.compind.2016.07.004Khajavi, S. H., Baumers, M., Holmström, J., Özcan, E., Atkin, J., Jackson, W., & Li, W. (2018). To kit or not to kit: Analysing the value of model-based kitting for additive manufacturing. Computers in Industry, 98, 100-117. doi:10.1016/j.compind.2018.01.022Korytkowski, P., & Karkoszka, R. (2015). Simulation-based efficiency analysis of an in-plant milk-run operator under disturbances. The International Journal of Advanced Manufacturing Technology, 82(5-8), 827-837. doi:10.1007/s00170-015-7442-2Kozan, E. (2000). An integrated material handling system for a truck assembly plant. Journal of the Operational Research Society, 51(3), 263-271. doi:10.1057/palgrave.jors.2600921Nasiri, M. M., Rahbari, A., Werner, F., & Karimi, R. (2018). Incorporating supplier selection and order allocation into the vehicle routing and multi-cross-dock scheduling problem. International Journal of Production Research, 56(19), 6527-6552. doi:10.1080/00207543.2018.1471241Nourmohammadi, A., & Eskandari, H. (2017). Assembly line design considering line balancing and part feeding. Assembly Automation, 37(1), 135-143. doi:10.1108/aa-09-2016-122Nourmohammadi, A., Eskandari, H., & Fathi, M. (2018). Design of stochastic assembly lines considering line balancing and part feeding with supermarkets. Engineering Optimization, 51(1), 63-83. doi:10.1080/0305215x.2018.1439944Saez-Mas, A., Garcia-Sabater, J. P., & Morant-Llorca, J. (2018). Using 4-Layer Architecture to Simulate Product and Information Flows in Manufacturing Systems. International Journal of Simulation Modelling, 17(1), 30-41. doi:10.2507/ijsimm17(1)408Staab, T., Klenk, E., Galka, S., & Günthner, W. A. (2016). Efficiency in in-plant milk-run systems—The influence of routing strategies on system utilization and process stability. Journal of Simulation, 10(2), 137-143. doi:10.1057/jos.2015.6Wagner, S. M., & Silveira-Camargos, V. (2011). Decision model for the application of just-in-sequence. International Journal of Production Research, 49(19), 5713-5736. doi:10.1080/00207543.2010.505216Wang, C., Guan, Z., Shao, X., & Ullah, S. (2014). Simulation-based optimisation of logistics distribution system for an assembly line with path constraints. International Journal of Production Research, 52(12), 3538-3551. doi:10.1080/00207543.2013.874602Wang, J., Chang, Q., Xiao, G., Wang, N., & Li, S. (2011). Data driven production modeling and simulation of complex automobile general assembly plant. Computers in Industry, 62(7), 765-775. doi:10.1016/j.compind.2011.05.004Wänström, C., & Medbo, L. (2008). The impact of materials feeding design on assembly process performance. Journal of Manufacturing Technology Management, 20(1), 30-51. doi:10.1108/17410380910925398Zangaro, F., Battini, D., Calzavara, M., Persona, A., & Sgarbossa, F. (2018). A Model to Optimize the Reference Storage Assignment in a Supermarket to Expedite the Part Feeding Activities. IFAC-PapersOnLine, 51(11), 1470-1475. doi:10.1016/j.ifacol.2018.08.296Zenker, M., Emde, S., & Boysen, N. (2016). Cyclic inventory routing in a line-shaped network. European Journal of Operational Research, 250(1), 164-178. doi:10.1016/j.ejor.2015.10.067Zhou, B., & Peng, T. (2017). Scheduling the in-house logistics distribution for automotive assembly lines with just-in-time principles. Assembly Automation, 37(1), 51-63. doi:10.1108/aa-04-2016-02
    corecore