6,065 research outputs found

    Tripartite Graph Clustering for Dynamic Sentiment Analysis on Social Media

    Full text link
    The growing popularity of social media (e.g, Twitter) allows users to easily share information with each other and influence others by expressing their own sentiments on various subjects. In this work, we propose an unsupervised \emph{tri-clustering} framework, which analyzes both user-level and tweet-level sentiments through co-clustering of a tripartite graph. A compelling feature of the proposed framework is that the quality of sentiment clustering of tweets, users, and features can be mutually improved by joint clustering. We further investigate the evolution of user-level sentiments and latent feature vectors in an online framework and devise an efficient online algorithm to sequentially update the clustering of tweets, users and features with newly arrived data. The online framework not only provides better quality of both dynamic user-level and tweet-level sentiment analysis, but also improves the computational and storage efficiency. We verified the effectiveness and efficiency of the proposed approaches on the November 2012 California ballot Twitter data.Comment: A short version is in Proceeding of the 2014 ACM SIGMOD International Conference on Management of dat

    Comparing and Combining Sentiment Analysis Methods

    Full text link
    Several messages express opinions about events, products, and services, political views or even their author's emotional state and mood. Sentiment analysis has been used in several applications including analysis of the repercussions of events in social networks, analysis of opinions about products and services, and simply to better understand aspects of social communication in Online Social Networks (OSNs). There are multiple methods for measuring sentiments, including lexical-based approaches and supervised machine learning methods. Despite the wide use and popularity of some methods, it is unclear which method is better for identifying the polarity (i.e., positive or negative) of a message as the current literature does not provide a method of comparison among existing methods. Such a comparison is crucial for understanding the potential limitations, advantages, and disadvantages of popular methods in analyzing the content of OSNs messages. Our study aims at filling this gap by presenting comparisons of eight popular sentiment analysis methods in terms of coverage (i.e., the fraction of messages whose sentiment is identified) and agreement (i.e., the fraction of identified sentiments that are in tune with ground truth). We develop a new method that combines existing approaches, providing the best coverage results and competitive agreement. We also present a free Web service called iFeel, which provides an open API for accessing and comparing results across different sentiment methods for a given text.Comment: Proceedings of the first ACM conference on Online social networks (2013) 27-3

    Fidelity-Weighted Learning

    Full text link
    Training deep neural networks requires many training samples, but in practice training labels are expensive to obtain and may be of varying quality, as some may be from trusted expert labelers while others might be from heuristics or other sources of weak supervision such as crowd-sourcing. This creates a fundamental quality versus-quantity trade-off in the learning process. Do we learn from the small amount of high-quality data or the potentially large amount of weakly-labeled data? We argue that if the learner could somehow know and take the label-quality into account when learning the data representation, we could get the best of both worlds. To this end, we propose "fidelity-weighted learning" (FWL), a semi-supervised student-teacher approach for training deep neural networks using weakly-labeled data. FWL modulates the parameter updates to a student network (trained on the task we care about) on a per-sample basis according to the posterior confidence of its label-quality estimated by a teacher (who has access to the high-quality labels). Both student and teacher are learned from the data. We evaluate FWL on two tasks in information retrieval and natural language processing where we outperform state-of-the-art alternative semi-supervised methods, indicating that our approach makes better use of strong and weak labels, and leads to better task-dependent data representations.Comment: Published as a conference paper at ICLR 201
    corecore