89 research outputs found

    A Partial Compress-and-Forward Strategy for Relay-assisted Wireless Networks Based on Rateless Coding

    Full text link
    In this work, we propose a novel partial compress-and-forward (PCF) scheme for improving the maximum achievable transmission rate of a diamond relay network with two noisy relays. PCF combines conventional compress-and-forward (CF) and amplify-and-forward (AF) protocols, enabling one relay to operate alternately in the CF or the AF mode, while the other relay works purely in the CF mode. As the direct link from the source to the destination is unavailable, and there is no noiseless relay in the diamond network, messages received from both relays must act as side information for each other and must be decoded jointly. We propose a joint decoder to decode two Luby transform (LT) codes received from both relays corresponding to the same original message. Numerical results show that PCF can achieve significant performance improvements compared to decode-and-forward (DF) and pure CF protocols when at least the channels connected to one of the relays are of high quality

    Bilayer Low-Density Parity-Check Codes for Decode-and-Forward in Relay Channels

    Full text link
    This paper describes an efficient implementation of binning for the relay channel using low-density parity-check (LDPC) codes. We devise bilayer LDPC codes to approach the theoretically promised rate of the decode-and-forward relaying strategy by incorporating relay-generated information bits in specially designed bilayer graphical code structures. While conventional LDPC codes are sensitively tuned to operate efficiently at a certain channel parameter, the proposed bilayer LDPC codes are capable of working at two different channel parameters and two different rates: that at the relay and at the destination. To analyze the performance of bilayer LDPC codes, bilayer density evolution is devised as an extension of the standard density evolution algorithm. Based on bilayer density evolution, a design methodology is developed for the bilayer codes in which the degree distribution is iteratively improved using linear programming. Further, in order to approach the theoretical decode-and-forward rate for a wide range of channel parameters, this paper proposes two different forms bilayer codes, the bilayer-expurgated and bilayer-lengthened codes. It is demonstrated that a properly designed bilayer LDPC code can achieve an asymptotic infinite-length threshold within 0.24 dB gap to the Shannon limits of two different channels simultaneously for a wide range of channel parameters. By practical code construction, finite-length bilayer codes are shown to be able to approach within a 0.6 dB gap to the theoretical decode-and-forward rate of the relay channel at a block length of 10510^5 and a bit-error probability (BER) of 10−410^{-4}. Finally, it is demonstrated that a generalized version of the proposed bilayer code construction is applicable to relay networks with multiple relays.Comment: Submitted to IEEE Trans. Info. Theor

    Coding for Cooperative Communications

    Get PDF
    The area of cooperative communications has received tremendous research interest in recent years. This interest is not unwarranted, since cooperative communications promises the ever-so-sought after diversity and multiplexing gains typically associated with multiple-input multiple-output (MIMO) communications, without actually employing multiple antennas. In this dissertation, we consider several cooperative communication channels, and for each one of them, we develop information theoretic coding schemes and derive their corresponding performance limits. We next develop and design practical coding strategies which perform very close to the information theoretic limits. The cooperative communication channels we consider are: (a) The Gaussian relay channel, (b) the quasi-static fading relay channel, (c) cooperative multiple-access channel (MAC), and (d) the cognitive radio channel (CRC). For the Gaussian relay channel, we propose a compress-forward (CF) coding strategy based on Wyner-Ziv coding, and derive the achievable rates specifically with BPSK modulation. The CF strategy is implemented with low-density parity-check (LDPC) and irregular repeataccumulate codes and is found to operate within 0.34 dB of the theoretical limit. For the quasi-static fading relay channel, we assume that no channel state information (CSI) is available at the transmitters and propose a rateless coded protocol which uses rateless coded versions of the CF and the decode-forward (DF) strategy. We implement the protocol with carefully designed Raptor codes and show that the implementation suffers a loss of less than 10 percent from the information theoretical limit. For the MAC, we assume quasi-static fading, and consider cooperation in the low-power regime with the assumption that no CSI is available at the transmitters. We develop cooperation methods based on multiplexed coding in conjunction with rateless codes and find the achievable rates and in particular the minimum energy per bit to achieve a certain outage probability. We then develop practical coding methods using Raptor codes, which performs within 1.1 dB of the performance limit. Finally, we consider a CRC and develop a practical multi-level dirty-paper coding strategy using LDPC codes for channel coding and trellis-coded quantization for source coding. The designed scheme is found to operate within 0.78 dB of the theoretical limit. By developing practical coding strategies for several cooperative communication channels which exhibit performance close to the information theoretic limits, we show that cooperative communications not only provide great benefits in theory, but can possibly promise the same benefits when put into practice. Thus, our work can be considered a useful and necessary step towards the commercial realization of cooperative communications

    Dynamic block-cycling over a linear network in underwater acoustic channels

    Get PDF
    ABSTRACT The underwater acoustic (UWA) environment is known to have large spatial and temporal variations. In this paper, we propose a dynamic cooperative relaying protocol, termed dynamic block-cycling (DBC) protocol, for a UWA linear network. Considering large channel variations, we assume one node can hear from not only its direct but also several remote neighbors. A transmission package with multiple blocks is taken as one relay unit, where an erasure-correction code and an error-correction code are used for inter-block encoding and intra-block encoding, respectively. During the relaying process, each node in the proposed protocol starts relaying immediately after it decodes the relayed message, hence a reduced end-to-end transmission latency can be achieved. Meanwhile, to avoid the overhead for relay cooperation, the relays' transmissions are cyclically synchronized, such that in each time slot, the blocks arriving at the downstream receiving nodes from all the upstream transmitting nodes have the same block index. Numerical results show that for a one-shot transmission, the proposed protocol achieves a reduced end-to-end delay relative to existing protocols while maintaining a decent outage performance

    Random Linear Network Coding For Time Division Duplexing: When To Stop Talking And Start Listening

    Full text link
    A new random linear network coding scheme for reliable communications for time division duplexing channels is proposed. The setup assumes a packet erasure channel and that nodes cannot transmit and receive information simultaneously. The sender transmits coded data packets back-to-back before stopping to wait for the receiver to acknowledge (ACK) the number of degrees of freedom, if any, that are required to decode correctly the information. We provide an analysis of this problem to show that there is an optimal number of coded data packets, in terms of mean completion time, to be sent before stopping to listen. This number depends on the latency, probabilities of packet erasure and ACK erasure, and the number of degrees of freedom that the receiver requires to decode the data. This scheme is optimal in terms of the mean time to complete the transmission of a fixed number of data packets. We show that its performance is very close to that of a full duplex system, while transmitting a different number of coded packets can cause large degradation in performance, especially if latency is high. Also, we study the throughput performance of our scheme and compare it to existing half-duplex Go-back-N and Selective Repeat ARQ schemes. Numerical results, obtained for different latencies, show that our scheme has similar performance to the Selective Repeat in most cases and considerable performance gain when latency and packet error probability is high.Comment: 9 pages, 9 figures, Submitted to INFOCOM'0
    • …
    corecore