3 research outputs found

    Unconstrained 1D range and 2D image based human detection

    Full text link

    A random finite set based detection and tracking using 3D LIDAR in dynamic environments

    No full text
    In this paper we describe a fully integrated system for detecting and tracking pedestrians in a dynamic urban environment. The system can reliably detect and track pedestrians to a range of 100 m in highly cluttered environments. The system uses a highly accurate 3D LIDAR from Velodyne to segment the scene into regions of interest or blobs, from which the pedestrians are determined. The pedestrians are then tracked using probability hypothesis density (PHD) filter which is based on random finite set theoretic framework. In contrast to classical approaches, this random finite set framework does not require any explicit data associations. The PHD filter is implemented using a Gaussian Mixture technique. Experimental results obtained in dynamic urban settings demonstrate the efficacy and tracking performance of the proposed approach.Singapore-MIT Alliance for Research and Technology. Center for Environmental Sensing and MonitoringNational Research Foundation (U.S.

    Multi-target tracking using appearance models for identity maintenance

    Get PDF
    This thesis considers perception systems for urban environments. It focuses on the task of tracking dynamic objects and in particular on methods that can maintain the identities of targets through periods of ambiguity. Examples of such ambiguous situations occur when targets interact with each other, or when they are occluded by other objects or the environment. With the development of self driving cars, the push for autonomous delivery of packages, and an increasing use of technology for security, surveillance and public-safety applications, robust perception in crowded urban spaces is more important than ever before. A critical part of perception systems is the ability to understand the motion of objects in a scene. Tracking strategies that merge closely-spaced targets together into groups have been shown to offer improved robustness, but in doing so sacrifice the concept of target identity. Additionally, the primary sensor used for the tracking task may not provide the information required to reason about the identity of individual objects. There are three primary contributions in this work. The first is the development of 3D lidar tracking methods with improved ability to track closely-spaced targets and that can determine when target identities have become ambiguous. Secondly, this thesis defines appearance models suitable for the task of determining the identities of previously-observed targets, which may include the use of data from additional sensing modalities. The final contribution of this work is the combination of lidar tracking and appearance modelling, to enable the clarification of target identities in the presence of ambiguities caused by scene complexity. The algorithms presented in this work are validated on both carefully controlled and unconstrained datasets. The experiments show that in complex dynamic scenes with interacting targets, the proposed methods achieve significant improvements in tracking performance
    corecore