141,302 research outputs found

    The one-way quantum computer - a non-network model of quantum computation

    Full text link
    A one-way quantum computer works by only performing a sequence of one-qubit measurements on a particular entangled multi-qubit state, the cluster state. No non-local operations are required in the process of computation. Any quantum logic network can be simulated on the one-way quantum computer. On the other hand, the network model of quantum computation cannot explain all ways of processing quantum information possible with the one-way quantum computer. In this paper, two examples of the non-network character of the one-way quantum computer are given. First, circuits in the Clifford group can be performed in a single time step. Second, the realisation of a particular circuit --the bit-reversal gate-- on the one-way quantum computer has no network interpretation. (Submitted to J. Mod. Opt, Gdansk ESF QIT conference issue.)Comment: 7 pages, 3 figure

    Modularization of multi-qubit controlled phase gate and its NMR implementation

    Full text link
    Quantum circuit network is a set of circuits that implements a certain computation task. Being at the center of the quantum circuit network, the multi-qubit controlled phase shift is one of the most important quantum gates. In this paper, we apply the method of modular structuring in classical computer architecture to quantum computer and give a recursive realization of the multi-qubit phase gate. This realization of the controlled phase shift gate is convenient in realizing certain quantum algorithms. We have experimentally implemented this modularized multi-qubit controlled phase gate in a three qubit nuclear magnetic resonance quantum system. The network is demonstrated experimentally using line selective pulses in nuclear magnetic resonance technique. The procedure has the advantage of being simple and easy to implement.Comment: to appear in Journal of Optics B: Quantum and Semiclassical Optic

    Applications of atomic ensembles in distributed quantum computing

    Get PDF
    Thesis chapter. The fragility of quantum information is a fundamental constraint faced by anyone trying to build a quantum computer. A truly useful and powerful quantum computer has to be a robust and scalable machine. In the case of many qubits which may interact with the environment and their neighbors, protection against decoherence becomes quite a challenging task. The scalability and decoherence issues are the main difficulties addressed by the distributed model of quantum computation. A distributed quantum computer consists of a large quantum network of distant nodes - stationary qubits which communicate via flying qubits. Quantum information can be transferred, stored, processed and retrieved in decoherence-free fashion by nodes of a quantum network realized by an atomic medium - an atomic quantum memory. Atomic quantum memories have been developed and demonstrated experimentally in recent years. With the help of linear optics and laser pulses, one is able to manipulate quantum information stored inside an atomic quantum memory by means of electromagnetically induced transparency and associated propagation phenomena. Any quantum computation or communication necessarily involves entanglement. Therefore, one must be able to entangle distant nodes of a distributed network. In this article, we focus on the probabilistic entanglement generation procedures such as well-known DLCZ protocol. We also demonstrate theoretically a scheme based on atomic ensembles and the dipole blockade mechanism for generation of inherently distributed quantum states so-called cluster states. In the protocol, atomic ensembles serve as single qubit systems. Hence, we review single-qubit operations on qubit defined as collective states of atomic ensemble. Our entangling protocol requires nearly identical single-photon sources, one ultra-cold ensemble per physical qubit, and regular photodetectors. The general entangling procedure is presented, as well as a procedure that generates in a single step Q-qubit GHZ states with success probability p(success) similar to eta(Q/2), where eta is the combined detection and source efficiency. This is signifcantly more efficient than any known robust probabilistic entangling operation. The GHZ states form the basic building block for universal cluster states, a resource for the one-way quantum computer

    Distributed quantum sensing in a continuous variable entangled network

    Full text link
    Networking plays a ubiquitous role in quantum technology. It is an integral part of quantum communication and has significant potential for upscaling quantum computer technologies that are otherwise not scalable. Recently, it was realized that sensing of multiple spatially distributed parameters may also benefit from an entangled quantum network. Here we experimentally demonstrate how sensing of an averaged phase shift among four distributed nodes benefits from an entangled quantum network. Using a four-mode entangled continuous variable (CV) state, we demonstrate deterministic quantum phase sensing with a precision beyond what is attainable with separable probes. The techniques behind this result can have direct applications in a number of primitives ranging from biological imaging to quantum networks of atomic clocks

    Complex Networks from Classical to Quantum

    Full text link
    Recent progress in applying complex network theory to problems in quantum information has resulted in a beneficial crossover. Complex network methods have successfully been applied to transport and entanglement models while information physics is setting the stage for a theory of complex systems with quantum information-inspired methods. Novel quantum induced effects have been predicted in random graphs---where edges represent entangled links---and quantum computer algorithms have been proposed to offer enhancement for several network problems. Here we review the results at the cutting edge, pinpointing the similarities and the differences found at the intersection of these two fields.Comment: 12 pages, 4 figures, REVTeX 4-1, accepted versio
    • …
    corecore