14,370 research outputs found

    Modeling the long term dynamics of pre-vaccination pertussis

    Full text link
    The dynamics of strongly immunizing childhood infections is still not well understood. Although reports of successful modeling of several incidence data records can be found in the literature, the key determinants of the observed temporal patterns have not been clearly identified. In particular, different models of immunity waning and degree of protection applied to disease and vaccine induced immunity have been debated in the literature on pertussis. Here we study the effect of disease acquired immunity on the long term patterns of pertussis prevalence. We compare five minimal models, all of which are stochastic, seasonally forced, well-mixed models of infection based on susceptible-infective-recovered dynamics in a closed population. These models reflect different assumptions about the immune response of naive hosts, namely total permanent immunity, immunity waning, immunity waning together with immunity boosting, reinfection of recovered, and repeat infection after partial immunity waning. The power spectra of the output prevalence time series characterize the long term dynamics of the models. For epidemiological parameters consistent with published data for pertussis, the power spectra show quantitative and even qualitative differences that can be used to test their assumptions by comparison with ensembles of several decades long pre-vaccination data records. We illustrate this strategy on two publicly available historical data sets.Comment: paper (31 pages, 11 figures, 1 table) and supplementary material (19 pages, 5 figures, 2 tables

    Persistence in epidemic metapopulations: quantifying the rescue effects for measles, mumps, rubella and whooping cough

    Get PDF
    Metapopulation rescue effects are thought to be key to the persistence of many acute immunizing infections. Yet the enhancement of persistence through spatial coupling has not been previously quantified. Here we estimate the metapopulation rescue effects for four childhood infections using global WHO reported incidence data by comparing persistence on island countries vs all other countries, while controlling for key variables such as vaccine cover, birth rates and economic development. The relative risk of extinction on islands is significantly higher, and approximately double the risk of extinction in mainland countries. Furthermore, as may be expected, infections with longer infectious periods tend to have the strongest metapopulation rescue effects. Our results quantitate the notion that demography and local community size controls disease persistence

    The impact of the demographic transition on dengue in Thailand: Insights from a statistical analysis and mathematical modeling

    Get PDF
    Background: An increase in the average age of dengue hemorrhagic fever (DHF) cases has been reported in Thailand. The cause of this increase is not known. Possible explanations include a reduction in transmission due to declining mosquito populations, declining contact between human and mosquito, and changes in reporting. We propose that a demographic shift toward lower birth and death rates has reduced dengue transmission and lengthened the interval between large epidemics. Methods and Findings: Using data from each of the 72 provinces of Thailand, we looked for associations between force of infection (a measure of hazard, defined as the rate per capita at which susceptible individuals become infected) and demographic and climactic variables. We estimated the force of infection from the age distribution of cases from 1985 to 2005. We find that the force of infection has declined by 2% each year since a peak in the late 1970s and early 1980s. Contrary to recent findings suggesting that the incidence of DHF has increased in Thailand, we find a small but statistically significant decline in DHF incidence since 1985 in a majority of provinces. The strongest predictor of the change in force of infection and the mean force of infection is the median age of the population. Using mathematical simulations of dengue transmission we show that a reduced birth rate and a shift in the population's age structure can explain the shift in the age distribution of cases, reduction of the force of infection, and increase in the periodicity of multiannual oscillations of DHF incidence in the absence of other changes. Conclusions: Lower birth and death rates decrease the flow of susceptible individuals into the population and increase the longevity of immune individuals. The increase in the proportion of the population that is immune increases the likelihood that an infectious mosquito will feed on an immune individual, reducing the force of infection. Though the force of infection has decreased by half, we find that the critical vaccination fraction has not changed significantly, declining from an average of 85% to 80%. Clinical guidelines should consider the impact of continued increases in the age of dengue cases in Thailand. Countries in the region lagging behind Thailand in the demographic transition may experience the same increase as their population ages. The impact of demographic changes on the force of infection has been hypothesized for other diseases, but, to our knowledge, this is the first observation of this phenomenon

    The dynamics of measles in sub-Saharan Africa.

    Get PDF
    Although vaccination has almost eliminated measles in parts of the world, the disease remains a major killer in some high birth rate countries of the Sahel. On the basis of measles dynamics for industrialized countries, high birth rate regions should experience regular annual epidemics. Here, however, we show that measles epidemics in Niger are highly episodic, particularly in the capital Niamey. Models demonstrate that this variability arises from powerful seasonality in transmission-generating high amplitude epidemics-within the chaotic domain of deterministic dynamics. In practice, this leads to frequent stochastic fadeouts, interspersed with irregular, large epidemics. A metapopulation model illustrates how increased vaccine coverage, but still below the local elimination threshold, could lead to increasingly variable major outbreaks in highly seasonally forced contexts. Such erratic dynamics emphasize the importance both of control strategies that address build-up of susceptible individuals and efforts to mitigate the impact of large outbreaks when they occur
    • …
    corecore