1,239 research outputs found

    The exp-log normal form of types

    Get PDF
    Lambda calculi with algebraic data types lie at the core of functional programming languages and proof assistants, but conceal at least two fundamental theoretical problems already in the presence of the simplest non-trivial data type, the sum type. First, we do not know of an explicit and implemented algorithm for deciding the beta-eta-equality of terms---and this in spite of the first decidability results proven two decades ago. Second, it is not clear how to decide when two types are essentially the same, i.e. isomorphic, in spite of the meta-theoretic results on decidability of the isomorphism. In this paper, we present the exp-log normal form of types---derived from the representation of exponential polynomials via the unary exponential and logarithmic functions---that any type built from arrows, products, and sums, can be isomorphically mapped to. The type normal form can be used as a simple heuristic for deciding type isomorphism, thanks to the fact that it is a systematic application of the high-school identities. We then show that the type normal form allows to reduce the standard beta-eta equational theory of the lambda calculus to a specialized version of itself, while preserving the completeness of equality on terms. We end by describing an alternative representation of normal terms of the lambda calculus with sums, together with a Coq-implemented converter into/from our new term calculus. The difference with the only other previously implemented heuristic for deciding interesting instances of eta-equality by Balat, Di Cosmo, and Fiore, is that we exploit the type information of terms substantially and this often allows us to obtain a canonical representation of terms without performing sophisticated term analyses

    A Galois connection between classical and intuitionistic logics. I: Syntax

    Full text link
    In a 1985 commentary to his collected works, Kolmogorov remarked that his 1932 paper "was written in hope that with time, the logic of solution of problems [i.e., intuitionistic logic] will become a permanent part of a [standard] course of logic. A unified logical apparatus was intended to be created, which would deal with objects of two types - propositions and problems." We construct such a formal system QHC, which is a conservative extension of both the intuitionistic predicate calculus QH and the classical predicate calculus QC. The only new connectives ? and ! of QHC induce a Galois connection (i.e., a pair of adjoint functors) between the Lindenbaum posets (i.e. the underlying posets of the Lindenbaum algebras) of QH and QC. Kolmogorov's double negation translation of propositions into problems extends to a retraction of QHC onto QH; whereas Goedel's provability translation of problems into modal propositions extends to a retraction of QHC onto its QC+(?!) fragment, identified with the modal logic QS4. The QH+(!?) fragment is an intuitionistic modal logic, whose modality !? is a strict lax modality in the sense of Aczel - and thus resembles the squash/bracket operation in intuitionistic type theories. The axioms of QHC attempt to give a fuller formalization (with respect to the axioms of intuitionistic logic) to the two best known contentual interpretations of intiuitionistic logic: Kolmogorov's problem interpretation (incorporating standard refinements by Heyting and Kreisel) and the proof interpretation by Orlov and Heyting (as clarified by G\"odel). While these two interpretations are often conflated, from the viewpoint of the axioms of QHC neither of them reduces to the other one, although they do overlap.Comment: 47 pages. The paper is rewritten in terms of a formal meta-logic (a simplified version of Isabelle's meta-logic

    Some new results on decidability for elementary algebra and geometry

    Get PDF
    We carry out a systematic study of decidability for theories of (a) real vector spaces, inner product spaces, and Hilbert spaces and (b) normed spaces, Banach spaces and metric spaces, all formalised using a 2-sorted first-order language. The theories for list (a) turn out to be decidable while the theories for list (b) are not even arithmetical: the theory of 2-dimensional Banach spaces, for example, has the same many-one degree as the set of truths of second-order arithmetic. We find that the purely universal and purely existential fragments of the theory of normed spaces are decidable, as is the AE fragment of the theory of metric spaces. These results are sharp of their type: reductions of Hilbert's 10th problem show that the EA fragments for metric and normed spaces and the AE fragment for normed spaces are all undecidable.Comment: 79 pages, 9 figures. v2: Numerous minor improvements; neater proofs of Theorems 8 and 29; v3: fixed subscripts in proof of Lemma 3

    The decision problem for a three-sorted fragment of set theory with restricted quantification and finite enumerations

    Get PDF
    We solve the satisfiability problem for a three-sorted fragment of set theory (denoted 3LQST0R3LQST_0^R), which admits a restricted form of quantification over individual and set variables and the finite enumeration operator {-,-,…,-}\{\text{-}, \text{-}, \ldots, \text{-}\} over individual variables, by showing that it enjoys a small model property, i.e., any satisfiable formula ψ\psi of 3LQST0R3LQST_0^R has a finite model whose size depends solely on the length of ψ\psi itself. Several set-theoretic constructs are expressible by 3LQST0R3LQST_0^R-formulae, such as some variants of the power set operator and the unordered Cartesian product. In particular, concerning the unordered Cartesian product, we show that when finite enumerations are used to represent the construct, the resulting formula is exponentially shorter than the one that can be constructed without resorting to such terms

    On Equivalence and Canonical Forms in the LF Type Theory

    Full text link
    Decidability of definitional equality and conversion of terms into canonical form play a central role in the meta-theory of a type-theoretic logical framework. Most studies of definitional equality are based on a confluent, strongly-normalizing notion of reduction. Coquand has considered a different approach, directly proving the correctness of a practical equivalance algorithm based on the shape of terms. Neither approach appears to scale well to richer languages with unit types or subtyping, and neither directly addresses the problem of conversion to canonical. In this paper we present a new, type-directed equivalence algorithm for the LF type theory that overcomes the weaknesses of previous approaches. The algorithm is practical, scales to richer languages, and yields a new notion of canonical form sufficient for adequate encodings of logical systems. The algorithm is proved complete by a Kripke-style logical relations argument similar to that suggested by Coquand. Crucially, both the algorithm itself and the logical relations rely only on the shapes of types, ignoring dependencies on terms.Comment: 41 page
    • …
    corecore