16 research outputs found

    The Internet of Things Security and Privacy: Current Schemes, Challenges and Future Prospects

    Get PDF
    The Internet of Things devices and users exchange massive amount of data. Some of these exchanged messages are highly sensitive as they involve organizational, military or patient personally identifiable information. Therefore, many schemes and protocols have been put forward to protect the transmitted messages. The techniques deployed in these schemes may include blockchain, public key infrastructure, elliptic curve cryptography, physically unclonable function and radio frequency identification. In this paper, a review is provided of these schemes including their strengths and weaknesses. Based on the obtained results, it is clear that majority of these protocols have numerous security, performance and privacy issues

    Compartment-based and Hierarchical Threshold Delegated Verifiable Accountable Subgroup Multi-signatures

    Get PDF
    In this paper, we study the compartment-based and hierarchical delegation of signing power of the verifiable accountable subgroup multi-signature (vASM). ASM is a multi-signature in which the participants are accountable for the resulting signature, and the number of participants is not fixed. After Micali et al.’s and Boneh et al.’s ASM schemes, the verifiable-ASM (vASM) scheme with a verifiable group setup and more efficient verification phase was proposed recently. The verifiable group setup in vASM verifies the participants at the group setup phase. In this work, we show that the vASM scheme can also be considered as a proxy signature in which an authorized user (original signer, designator) delegates her signing rights to a single (or a group of) unauthorized user(s) (proxy signer). Namely, we propose four new constructions with the properties and functionalities of an ideal proxy signature and a compartment-based/hierarchical structure. In the first construction, we apply the vASM scheme recursively; in the second one, we use Shamir’s secret sharing (SSS) scheme; in the third construction, we use SSS again but in a nested fashion. In the last one, we use the hierarchical threshold secret sharing (HTSS) scheme for delegation. Then, we show the affiliation of our constructions to proxy signatures and compare our constructions with each other in terms of efficiency and security. Finally we compare the vASM scheme with the existing pairing-based proxy signature schemes

    Data Auditing and Security in Cloud Computing: Issues, Challenges and Future Directions

    Get PDF
    Cloud computing is one of the significant development that utilizes progressive computational power and upgrades data distribution and data storing facilities. With cloud information services, it is essential for information to be saved in the cloud and also distributed across numerous customers. Cloud information repository is involved with issues of information integrity, data security and information access by unapproved users. Hence, an autonomous reviewing and auditing facility is necessary to guarantee that the information is effectively accommodated and used in the cloud. In this paper, a comprehensive survey on the state-of-art techniques in data auditing and security are discussed. Challenging problems in information repository auditing and security are presented. Finally, directions for future research in data auditing and security have been discussed

    Data auditing and security in cloud computing: issues, challenges and future directions

    Get PDF
    Cloud computing is one of the significant development that utilizes progressive computational power and upgrades data distribution and data storing facilities. With cloud information services, it is essential for information to be saved in the cloud and also distributed across numerous customers. Cloud information repository is involved with issues of information integrity, data security and information access by unapproved users. Hence, an autonomous reviewing and auditing facility is necessary to guarantee that the information is effectively accommodated and used in the cloud. In this paper, a comprehensive survey on the state-of-art techniques in data auditing and security are discussed. Challenging problems in information repository auditing and security are presented. Finally, directions for future research in data auditing and security have been discusse

    Efficient Hierarchical Identity-Based Encryption for Mobile Ad Hoc Networks

    Get PDF

    Asynchronous Distributed Private-Key Generators for Identity-Based Cryptography

    Get PDF
    An identity-based encryption (IBE) scheme can greatly reduce the complexity of sending encrypted messages over the Internet. However, an IBE scheme necessarily requires a private-key generator (PKG), which can create private keys for clients, and so can passively eavesdrop on all encrypted communications. Although a distributed PKG has been suggested as a way to mitigate this problem for Boneh and Franklin\u27s IBE scheme, the security of this distributed protocol has not been proven and the proposed solution does not work over the asynchronous Internet. Further, a distributed PKG has not been considered for any other IBE scheme. In this paper, we design distributed PKG setup and private key extraction protocols in an asynchronous communication model for three important IBE schemes; namely, Boneh and Franklin\u27s IBE, Sakai and Kasahara\u27s IBE, and Boneh and Boyen\u27s BB1-IBE. We give special attention to the applicability of our protocols to all possible types of bilinear pairings and prove their IND-ID-CCA security in the random oracle model. Finally, we also perform a comparative analysis of these protocols and present recommendations for their use

    Distributed Key Generation and Its Applications

    Get PDF
    Numerous cryptographic applications require a trusted authority to hold a secret. With a plethora of malicious attacks over the Internet, however, it is difficult to establish and maintain such an authority in online systems. Secret-sharing schemes attempt to solve this problem by distributing the required trust to hold and use the secret over multiple servers; however, they still require a trusted {\em dealer} to choose and share the secret, and have problems related to single points of failure and key escrow. A distributed key generation (DKG) scheme overcomes these hurdles by removing the requirement of a dealer in secret sharing. A (threshold) DKG scheme achieves this using a complete distribution of the trust among a number of servers such that any subset of servers of size greater than a given threshold can reveal or use the shared secret, while any smaller subset cannot. In this thesis, we make contributions to DKG in the computational security setting and describe three applications of it. We first define a constant-size commitment scheme for univariate polynomials over finite fields and use it to reduce the size of broadcasts required for DKG protocols in the synchronous communication model by a linear factor. Further, we observe that the existing (synchronous) DKG protocols do not provide a liveness guarantee over the Internet and design the first DKG protocol for use over the Internet. Observing the necessity of long-term stability, we then present proactive security and group modification protocols for our DKG system. We also demonstrate the practicality of our DKG protocol over the Internet by testing our implementation over PlanetLab. For the applications, we use our DKG protocol to define IND-ID-CCA secure distributed private-key generators (PKGs) for three important identity-based encryption (IBE) schemes: Boneh and Franklin's BF-IBE, Sakai and Kasahara's SK-IBE, and Boneh and Boyen's BB1-IBE. These IBE schemes cover all three important IBE frameworks: full-domain-hash IBEs, exponent-inversion IBEs and commutative-blinding IBEs respectively, and our distributed PKG constructions can easily be modified for other IBE schemes in these frameworks. As the second application, we use our distributed PKG for BF-IBE to define an onion routing circuit construction mechanism in the identity-based setting, which solves the scalability problem in single-pass onion routing circuit construction without hampering forward secrecy. As the final application, we use our DKG implementation to design a threshold signature architecture for quorum-based distributed hash tables and use it to define two robust communication protocols in these peer-to-peer systems

    Secure Authentication and Privacy-Preserving Techniques in Vehicular Ad-hoc NETworks (VANETs)

    Get PDF
    In the last decade, there has been growing interest in Vehicular Ad Hoc NETworks (VANETs). Today car manufacturers have already started to equip vehicles with sophisticated sensors that can provide many assistive features such as front collision avoidance, automatic lane tracking, partial autonomous driving, suggestive lane changing, and so on. Such technological advancements are enabling the adoption of VANETs not only to provide safer and more comfortable driving experience but also provide many other useful services to the driver as well as passengers of a vehicle. However, privacy, authentication and secure message dissemination are some of the main issues that need to be thoroughly addressed and solved for the widespread adoption/deployment of VANETs. Given the importance of these issues, researchers have spent a lot of effort in these areas over the last decade. We present an overview of the following issues that arise in VANETs: privacy, authentication, and secure message dissemination. Then we present a comprehensive review of various solutions proposed in the last 10 years which address these issues. Our survey sheds light on some open issues that need to be addressed in the future

    A Level Dependent Authentication for IoT Paradigm

    Get PDF
    The Internet of Things (IoT) based services are getting a widespread expansion in all the directions and dimensions of the 21st century. The IoT based deployment involves an internet-connected sensor, mobiles, laptops, and other networking and computing de- vices. In most IoT based applications, the sensor collects the data and communicates it to the end-user via gateway device or fog device over a precarious internet channel. The attacker can use this open channel to capture the sensing device or the gateway device to collect the IoT data or control the IoT system. For a long time, numerous researchers are working towards designing the authentication mechanism for the sen- sor network to achieve reliable and computationally feasible security. For the resource constraint environment of the IoT, it is essential to design reliable, ecient, and secure authentication protocol. In this paper, we propose a novel approach of authentication in the IoT paradigm called a Level-Dependent Authentication(LDA). In the LDA protocol, we propose a security reliable and resource ecient key sharing mechanism in which users at level li can communicate with the sensor at level lj if and only if the level of user in the organizational hierarchy is lower or equal to the level of sensor deployment. We pro- vide a security analysis for the proposed LDA protocol using random oracle based games & widely accepted AVISPA tools. We prove mutual authentication for the proposed protocol using BAN logic. In this paper, we also discuss a comparative analysis of the proposed protocol with other existing IoT authentication systems based on communica- tion cost, computation cost, and security index. We provide an implementation for the proposed protocol using a globally adopted IoT protocol called MQTT protocol. Finally, we present the collected data related to the networking parameters like throughput and round trip delay

    Post-Quantum Era Privacy Protection for Intelligent Infrastructures

    Get PDF
    As we move into a new decade, the global world of Intelligent Infrastructure (II) services integrated into the Internet of Things (IoT) are at the forefront of technological advancements. With billions of connected devices spanning continents through interconnected networks, security and privacy protection techniques for the emerging II services become a paramount concern. In this paper, an up-to-date privacy method mapping and relevant use cases are surveyed for II services. Particularly, we emphasize on post-quantum cryptography techniques that may (or must when quantum computers become a reality) be used in the future through concrete products, pilots, and projects. The topics presented in this paper are of utmost importance as (1) several recent regulations such as Europe's General Data Protection Regulation (GDPR) have given privacy a significant place in digital society, and (2) the increase of IoT/II applications and digital services with growing data collection capabilities are introducing new threats and risks on citizens' privacy. This in-depth survey begins with an overview of security and privacy threats in IoT/IIs. Next, we summarize some selected Privacy-Enhancing Technologies (PETs) suitable for privacy-concerned II services, and then map recent PET schemes based on post-quantum cryptographic primitives which are capable of withstanding quantum computing attacks. This paper also overviews how PETs can be deployed in practical use cases in the scope of IoT/IIs, and maps some current projects, pilots, and products that deal with PETs. A practical case study on the Internet of Vehicles (IoV) is presented to demonstrate how PETs can be applied in reality. Finally, we discuss the main challenges with respect to current PETs and highlight some future directions for developing their post-quantum counterparts
    corecore