650 research outputs found

    Conditional stability of unstable viscous shocks

    Get PDF
    Continuing a line of investigation initiated by Texier and Zumbrun on dynamics of viscous shock and detonation waves, we show that a linearly unstable Lax-type viscous shock solution of a semilinear strictly parabolic system of conservation laws possesses a translation-invariant center stable manifold within which it is nonlinearly orbitally stable with respect to small L1∩H2L^1\cap H^2 perturbatoins, converging time-asymptotically to a translate of the unperturbed wave. That is, for a shock with pp unstable eigenvalues, we establish conditional stability on a codimension-pp manifold of initial data, with sharp rates of decay in all LpL^p. For p=0p=0, we recover the result of unconditional stability obtained by Howard, Mascia, and Zumbrun

    Hyperbolic Relaxation of Reaction Diffusion Equations with Dynamic Boundary Conditions

    Full text link
    Under consideration is the hyperbolic relaxation of a semilinear reaction-diffusion equation on a bounded domain, subject to a dynamic boundary condition. We also consider the limit parabolic problem with the same dynamic boundary condition. Each problem is well-posed in a suitable phase space where the global weak solutions generate a Lipschitz continuous semiflow which admits a bounded absorbing set. We prove the existence of a family of global attractors of optimal regularity. After fitting both problems into a common framework, a proof of the upper-semicontinuity of the family of global attractors is given as the relaxation parameter goes to zero. Finally, we also establish the existence of exponential attractors.Comment: to appear in Quarterly of Applied Mathematic

    Mild solutions of semilinear elliptic equations in Hilbert spaces

    Full text link
    This paper extends the theory of regular solutions (C1C^1 in a suitable sense) for a class of semilinear elliptic equations in Hilbert spaces. The notion of regularity is based on the concept of GG-derivative, which is introduced and discussed. A result of existence and uniqueness of solutions is stated and proved under the assumption that the transition semigroup associated to the linear part of the equation has a smoothing property, that is, it maps continuous functions into GG-differentiable ones. The validity of this smoothing assumption is fully discussed for the case of the Ornstein-Uhlenbeck transition semigroup and for the case of invertible diffusion coefficient covering cases not previously addressed by the literature. It is shown that the results apply to Hamilton-Jacobi-Bellman (HJB) equations associated to infinite horizon optimal stochastic control problems in infinite dimension and that, in particular, they cover examples of optimal boundary control of the heat equation that were not treatable with the approaches developed in the literature up to now

    A unified framework for parabolic equations with mixed boundary conditions and diffusion on interfaces

    Full text link
    In this paper we consider scalar parabolic equations in a general non-smooth setting with emphasis on mixed interface and boundary conditions. In particular, we allow for dynamics and diffusion on a Lipschitz interface and on the boundary, where diffusion coefficients are only assumed to be bounded, measurable and positive semidefinite. In the bulk, we additionally take into account diffusion coefficients which may degenerate towards a Lipschitz surface. For this problem class, we introduce a unified functional analytic framework based on sesquilinear forms and show maximal regularity for the corresponding abstract Cauchy problem.Comment: 27 pages, 4 figure
    • …
    corecore