168,662 research outputs found

    Datalog± Ontology Consolidation

    Get PDF
    Knowledge bases in the form of ontologies are receiving increasing attention as they allow to clearly represent both the available knowledge, which includes the knowledge in itself and the constraints imposed to it by the domain or the users. In particular, Datalog ± ontologies are attractive because of their property of decidability and the possibility of dealing with the massive amounts of data in real world environments; however, as it is the case with many other ontological languages, their application in collaborative environments often lead to inconsistency related issues. In this paper we introduce the notion of incoherence regarding Datalog± ontologies, in terms of satisfiability of sets of constraints, and show how under specific conditions incoherence leads to inconsistent Datalog ± ontologies. The main contribution of this work is a novel approach to restore both consistency and coherence in Datalog± ontologies. The proposed approach is based on kernel contraction and restoration is performed by the application of incision functions that select formulas to delete. Nevertheless, instead of working over minimal incoherent/inconsistent sets encountered in the ontologies, our operators produce incisions over non-minimal structures called clusters. We present a construction for consolidation operators, along with the properties expected to be satisfied by them. Finally, we establish the relation between the construction and the properties by means of a representation theorem. Although this proposal is presented for Datalog± ontologies consolidation, these operators can be applied to other types of ontological languages, such as Description Logics, making them apt to be used in collaborative environments like the Semantic Web.Fil: Deagustini, Cristhian Ariel David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Falappa, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentin

    Statistical Inference and the Plethora of Probability Paradigms: A Principled Pluralism

    Get PDF
    The major competing statistical paradigms share a common remarkable but unremarked thread: in many of their inferential applications, different probability interpretations are combined. How this plays out in different theories of inference depends on the type of question asked. We distinguish four question types: confirmation, evidence, decision, and prediction. We show that Bayesian confirmation theory mixes what are intuitively “subjective” and “objective” interpretations of probability, whereas the likelihood-based account of evidence melds three conceptions of what constitutes an “objective” probability

    A canonical theory of dynamic decision-making

    Get PDF
    Decision-making behavior is studied in many very different fields, from medicine and eco- nomics to psychology and neuroscience, with major contributions from mathematics and statistics, computer science, AI, and other technical disciplines. However the conceptual- ization of what decision-making is and methods for studying it vary greatly and this has resulted in fragmentation of the field. A theory that can accommodate various perspectives may facilitate interdisciplinary working. We present such a theory in which decision-making is articulated as a set of canonical functions that are sufficiently general to accommodate diverse viewpoints, yet sufficiently precise that they can be instantiated in different ways for specific theoretical or practical purposes. The canons cover the whole decision cycle, from the framing of a decision based on the goals, beliefs, and background knowledge of the decision-maker to the formulation of decision options, establishing preferences over them, and making commitments. Commitments can lead to the initiation of new decisions and any step in the cycle can incorporate reasoning about previous decisions and the rationales for them, and lead to revising or abandoning existing commitments. The theory situates decision-making with respect to other high-level cognitive capabilities like problem solving, planning, and collaborative decision-making. The canonical approach is assessed in three domains: cognitive and neuropsychology, artificial intelligence, and decision engineering

    KR3^3: An Architecture for Knowledge Representation and Reasoning in Robotics

    Get PDF
    This paper describes an architecture that combines the complementary strengths of declarative programming and probabilistic graphical models to enable robots to represent, reason with, and learn from, qualitative and quantitative descriptions of uncertainty and knowledge. An action language is used for the low-level (LL) and high-level (HL) system descriptions in the architecture, and the definition of recorded histories in the HL is expanded to allow prioritized defaults. For any given goal, tentative plans created in the HL using default knowledge and commonsense reasoning are implemented in the LL using probabilistic algorithms, with the corresponding observations used to update the HL history. Tight coupling between the two levels enables automatic selection of relevant variables and generation of suitable action policies in the LL for each HL action, and supports reasoning with violation of defaults, noisy observations and unreliable actions in large and complex domains. The architecture is evaluated in simulation and on physical robots transporting objects in indoor domains; the benefit on robots is a reduction in task execution time of 39% compared with a purely probabilistic, but still hierarchical, approach.Comment: The paper appears in the Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014

    Application of Supercomputer Technologies for Simulation of Socio-Economic Systems

    Full text link
    To date, an extensive experience has been accumulated in investigation of problems related to quality, assessment of management systems, modeling of economic system sustainability. The studies performed have created a basis for formation of a new research area — Economics of Quality. Its tools allow to use opportunities of model simulation for construction of the mathematical models adequately reflecting the role of quality in natural, technical, social regularities of functioning of the complex socioeconomic systems. Extensive application and development of models, and also system modeling with use of supercomputer technologies, on our deep belief, will bring the conducted researches of social and economic systems to essentially new level. Moreover, the current scientific research makes a significant contribution to model simulation of multi-agent social systems and that isn’t less important, it belongs to the priority areas in development of science and technology in our country. This article is devoted to the questions of supercomputer technologies application in public sciences, first of all, — regarding technical realization of the large-scale agent-focused models (AFM). The essence of this tool is that owing to increase in power of computers it became possible to describe the behavior of many separate fragments of a difficult system, as social and economic systems represent. The article also deals with the experience of foreign scientists and practicians in launching the AFM on supercomputers, and also the example of AFM developed in CEMI RAS, stages and methods of effective calculating kernel display of multi-agent system on architecture of a modern supercomputer will be analyzed. The experiments on the basis of model simulation on forecasting the population of St. Petersburg according to three scenarios as one of the major factors influencing the development of social and economic system and quality of life of the population are presented in the conclusion
    corecore