4 research outputs found

    An Efficient Ranking Technique for Intuitionistic Fuzzy Numbers with Its Application in Chance Constrained Bilevel Programming

    Get PDF
    The aim of this paper is to develop a new ranking technique for intuitionistic fuzzy numbers using the method of defuzzification based on probability density function of the corresponding membership function, as well as the complement of nonmembership function. Using the proposed ranking technique a methodology for solving linear bilevel fuzzy stochastic programming problem involving normal intuitionistic fuzzy numbers is developed. In the solution process each objective is solved independently to set the individual goal value of the objectives of the decision makers and thereby constructing fuzzy membership goal of the objectives of each decision maker. Finally, a fuzzy goal programming approach is considered to achieve the highest membership degree to the extent possible of each of the membership goals of the decision makers in the decision making context. Illustrative numerical examples are provided to demonstrate the applicability of the proposed methodology and the achieved results are compared with existing techniques

    Fuzzy Set Ranking Methods and Multiple Expert Decision Making

    Get PDF
    The present report further investigates the multi-criteria decision making tool named Fuzzy Compromise Programming. Comparison of different fuzzy set ranking methods (required for processing fuzzy information) is performed. A complete sensitivity analysis concerning decision maker’s risk preferences was carried out for three water resources systems, and compromise solutions identified. Then, a weights sensitivity analysis was performed on one of the three systems to see whether the rankings would change in response to changing weights. It was found that this particular system was robust to the changes in weights. An inquiry was made into the possibility of modifying Fuzzy Compromise Programming to include participation of multiple decision makers or experts. This was accomplished by merging a technique known as Group Decision Making Under Fuzziness, with Fuzzy Compromise Programming. Modified technique provides support for the group decision making under multiple criteria in a fuzzy environment.https://ir.lib.uwo.ca/wrrr/1001/thumbnail.jp

    Computational intelligence techniques in asset risk analysis

    Get PDF
    The problem of asset risk analysis is positioned within the computational intelligence paradigm. We suggest an algorithm for reformulating asset pricing, which involves incorporating imprecise information into the pricing factors through fuzzy variables as well as a calibration procedure for their possibility distributions. Then fuzzy mathematics is used to process the imprecise factors and obtain an asset evaluation. This evaluation is further automated using neural networks with sign restrictions on their weights. While such type of networks has been only used for up to two network inputs and hypothetical data, here we apply thirty-six inputs and empirical data. To achieve successful training, we modify the Levenberg-Marquart backpropagation algorithm. The intermediate result achieved is that the fuzzy asset evaluation inherits features of the factor imprecision and provides the basis for risk analysis. Next, we formulate a risk measure and a risk robustness measure based on the fuzzy asset evaluation under different characteristics of the pricing factors as well as different calibrations. Our database, extracted from DataStream, includes thirty-five companies traded on the London Stock Exchange. For each company, the risk and robustness measures are evaluated and an asset risk analysis is carried out through these values, indicating the implications they have on company performance. A comparative company risk analysis is also provided. Then, we employ both risk measures to formulate a two-step asset ranking method. The assets are initially rated according to the investors' risk preference. In addition, an algorithm is suggested to incorporate the asset robustness information and refine further the ranking benefiting market analysts. The rationale provided by the ranking technique serves as a point of departure in designing an asset risk classifier. We identify the fuzzy neural network structure of the classifier and develop an evolutionary training algorithm. The algorithm starts with suggesting preliminary heuristics in constructing a sufficient training set of assets with various characteristics revealed by the values of the pricing factors and the asset risk values. Then, the training algorithm works at two levels, the inner level targets weight optimization, while the outer level efficiently guides the exploration of the search space. The latter is achieved by automatically decomposing the training set into subsets of decreasing complexity and then incrementing backward the corresponding subpopulations of partially trained networks. The empirical results prove that the developed algorithm is capable of training the identified fuzzy network structure. This is a problem of such complexity that prevents single-level evolution from attaining meaningful results. The final outcome is an automatic asset classifier, based on the investors’ perceptions of acceptable risk. All the steps described above constitute our approach to reformulating asset risk analysis within the approximate reasoning framework through the fusion of various computational intelligence techniques.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore