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Abstract 

The problem of asset risk analysis is positioned within the computational intelligence 

paradigm. We suggest an algorithm for reformulating asset pricing, which involves 

incorporating imprecise information into the pricing factors through fuzzy variables as 

well as a calibration procedure for their possibility distributions. Then fuzzy 

mathematics is used to process the imprecise factors and obtain an asset evaluation. 

This evaluation is further automated using neural networks with sign restrictions on 

their weights. While such type of networks has been only used for up to two network 

inputs and hypothetical data, here we apply thirty-six inputs and empirical data. To 

achieve successful training, we modify the Levenberg-Marquart backpropagation 

algorithm. 

The intermediate result achieved is that the fuzzy asset evaluation inherits 

features of the factor imprecision and provides the basis for risk analysis. Next, we 

formulate a risk measure and a risk robustness measure based on the fuzzy asset 

evaluation under different characteristics of the pricing factors as well as different 

calibrations. Our database, extracted from DataStream, includes thirty-five companies 
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Abstract ii 

traded on the London Stock Exchange. For each company, the risk and robustness 

measures are evaluated and an asset risk analysis is carried out through these values, 

indicating the implications they have on company performance. A comparative 

company risk analysis is also provided. Then, we employ both risk measures to 

formulate a two-step asset ranking method. The assets are initially rated according to 

the investors' risk preference. In addition, an algorithm is suggested to incorporate the 

asset robustness information and refine further the ranking benefiting market analysts. 

The rationale provided by the ranking technique serves as a point of departure 

in designing an asset risk classifier. We identify the fuzzy neural network structure of 

the classifier and develop an evolutionary training algorithm. The algorithm starts with 

suggesting preliminary heuristics in constructing a sufficient training set of assets with 

various characteristics revealed by the values of the pricing factors and the asset risk 

values. Then, the training algorithm works at two levels, the inner level targets weight 

optimization, while the outer level efficiently guides the exploration of the search space. 

The latter is achieved by automatically decomposing the training set into subsets of 

decreasing complexity and then incrementing backward the corresponding 

subpopulations of partially trained networks. The empirical results prove that the 

developed algorithm is capable of training the identified fuzzy network structure. This 

is a problem of such complexity that prevents single-level evolution from attaining 

meaningful results. 

The final outcome is an automatic asset classifier, based on the investors9 

perceptions of acceptable risk. All the steps described above constitute our approach to 

reformulating asset risk analysis within the approximate reasoning framework through 

the fusion of various computational intelligence techniques. 
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Declaration of Originality 

I hereby declare that this thesis is composed entirely by myself The notions and 

conclusions included herein originate from my work, if not else acknowledged in the 

text. The work described in the thesis has not been previously submitted for a degree at 

this or any other university. 

The thesis is completed in May 2004 under a supervised PhD programme at 

Brunel University. Developed measures, techniques and algorithms, as well as 

empirical results, have been published as follows: 

0 Chapter 2 in [Pl, P2], Chapter 3 in [P2, P3], 

m Chapter 4 in [P3, P 4], Chapter 5 in [P4, P 5], 

m Chapter 6 in [P6], Chapter 7 in [P7], 

a Chapter 8 in [P8, P 9, P10]. 

The following are considered original contributions: 

n definition of an algorithm for fuzzy asset evaluation, 

m definition of an asset risk measure, 

a definition of an asset robustness measure, 

a developing an asset ranking technique, 

m designing a soft asset classifier, 

m developing an evolutionary training strategy. 

Finally, the suggested approach to knowledge representation in risk analysis is subject 

to further research. 
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The original contributions results from the adopted view that the problem of 

asset risk analysis should be in the centre of the research effort. Therefore, the effort is 

focused on revealing the real-world problem in its various aspects, and then suggesting 

means to resolve them. This is in contrast with a view that prioritises technical and/or 

original developments from the outset. Thus, we define measures, develop algorithms, 

techniques and strategies, and design a classifier system, when and how the problem 

requires. Intriguingly, this results at the end in original contributions due to the 

following major reasons: the intrinsic complexity of the problem; our conviction that it 

should be investigated in its entirety rather than concentrating on one feature and 

ignoring the other characteristics; the deficiency of methods for tackling problems of 

such complexity. 

Here, the contributions are revisited again providing details and justification 

for each of them. 

a definition of an algorithm for fuzzy asset evaluation: 

The rationale behind this contribution is as follows. The emerging field of behavioural, 

finance is receiving increasing recognition as financial theory. This emphasises the role 

the perceptions of various market agents have on the development of the market itself. 

Shiller [1] tests conventional theories against the impressive evidence- particularly 

toward the end of the last century - suggesting that the available economic information 

alone does not explain asset price levels. He identifies characteristics of human 

behaviour that have major effects on asset price trends. Apparently, we can conclude 

that the asset pricing problem is influenced by both measurement-based (economic) 

information and perception-based (behavioural) information, and the solution should 
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allow for the fusion of these types of information. Conventional pricing techniques lack 

effective means in approaching the task of information fusion. Their answer is to 

identify information restrictions under which the corresponding technique is valid. The 

best that can be achieved with a standard pricing method is to attempt to relax to some 

extent some of the restrictions, prove that the initial method is not valid, and introduce 

partial modifications so that the revised method is valid under the revised set of 

restrictions. This describes the trend in asset pricing over some decades, i. e. as shown 

in the literature on the capital asset pricing model [2-15] and the arbitrage pricing theory 

[16-28], summarised. in [P3]. On the other hand, the computational theory of 

perceptions introduced recently by Zadeh [29-33] provides a powerful approach to 

information fusion and processing based on fuzzy logic. Aluha [34] anticipated earlier 

that investment knowledge should not start with the estimation of economic and 

financial variables in terms of certainty or probability but with the perceptions of 

concepts inherent or surrounding the investment process whose character is not 

principally measurable and therefore can be handled by the nonnumeric mathematics of 

fuzzy logic. This gives us the reason to reformulate asset evaluation as a fuzzy 

problem, avoid limited attempts to modify crisp techniques, and approach the problem 

allowing any relevant information. The above description provides the rationale to 

develop an algorithm for fuzzy asset evaluation. We suggest when and how to 

introduce fuzzy variables, how to calibrate the membership functions and when to 

modify the calibration, and how to relate asset imprecision with factor imprecision. In 

comparison with relevant studies, our technique differs in the following way. Fuzzy 

modelling of simpler concepts in finance is attempted in [35-381 and not the 

reformulation of asset evaluation approached here. Also [35-38] only use made-up data, 
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therefore no meaningful calibration procedure is suggested and the results are not 

valuable empirically. On the other hand, we have extracted a database of thirty-five 

assets traded on the LSE with information on their pricing factors over twenty-five 

years. Finally, previous studies have not suggested any algorithm, while here we 

describe step by step when and how to introduce imprecise information and when to 

extract what measures relevant to the subsequent analysis. Initially, we consider 

reformulation of the price-dividend relation, based on the reasoning in Shiller [1] that 

dividends and risk-free rates do not explain asset prices in the last decades of the 

twentieth century - our database is over the same period. Then, we further generalise 

the algorithm for any crisp pricing technique. 

The next three contributions are interrelated and we will describe them together. 

m definition of an asset risk measure, 

w definition of an asset robustness measure, 

a developing an asset ranking technique: 

Some of the crisp asset pricing techniques, including models derived from the arbitrage 

pricing theory, consider a vector of pricing factors and a vector of noises. The latter are 

considered sources of risks. The attempt is to reduce these risks by identifying relevant 

factors. We adopt an alternative approach incorporating factor incompleteness as well 

as factor imprecision into the factor representation. Then, we consider the noise 

components as sources of factor uncertainty rather than asset risks. Our objective is to 

allow any sources of uncertainty and to process the relevant information producing the 

resultant asset evaluation. Thus, we focus on a single all-inclusive asset risk. This is 

relevant to the general interpretation of processing uncertainty presented by Dubois and 
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Prade in [39]. Next, consider the capital asset pricing model - it is effectively a single- 

factor model where the pricing factor is the return on the market portfolio. Though, 

some CAPM modifications involve a three-fund separation theorem [9], so there are 

two pricing factors. Generally, the CAPM interprets the asset variance as the total risk, 

which consists of systematic and unsystematic risk. The systematic risk is that part of 

the total risk that can be explained with the variance of the market portfolio through the 

asset beta, which is the covariance of the asset and the market portfolio. The 

unsystematic risk is the unexplained part of the asset variance, which is the variance of 

the noise component. For example. the partial character of the asset beta in the capital 

asset pricing model is revealed by the existence of further measures of asset 

performance, introduced by Jensen, Treynor and Sharpe, correspondingly. They are 

used to capture the part of the asset return unexplained by the model [5]. In 

comparison, we do not consider the factor variance and the noise variance as risks but 

rather as sources of uncertainty on which basis to derive the risk. The fusion of 

perception-based uncertainty is further welcome in addition to probabilistically 

calculated variances. The intuition behind the risk measure we introduce is as follows. 

The risk is measured through the level of membership of the observed asset price to the 

evaluated fuzzy asset price, which itself is based on processing any involved uncertainty 

and reflect those in its membership function. Thus the risk measure is a single number, 

however all-inclusive of any type of uncertainty, and therefore more informative. 

Another reason for the measure being more informative is its focus on the final 

objective. For example, if one considers investing in the asset today, our risk measure 

will indicate the chance, as measured today, of realising loss on the investment. 

Focusing on the final objective is also relevant to the general interpretation of 
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processing uncertainty and decision-making under uncertainty, presented by Dubois and 

Prade in [39]. They suggest that any kind of uncertainty should be incorporated into a 

problem and processed though its solution, and finally an indication should be provided 

for the total effect on the major problem objective. We further continue with 

introducing a robustness measures. It is based on evaluating the asset and its risk 

measure while changing the modelled factor imprecision. As a result, the asset 

membership function will change, for some assets more and for others less. So, we 

have a reason to call the measure an asset robustness measure. However, the induced 

change will further modify the membership value of the observed asset price to the 

evaluated price. Therefore, it is easier to measure asset robustness through the change 

of the risk value. Thus, this will again be one number but all-inclusive and focused on 

the final objective. It is focused on the final objective for the following reason. The 

objective is to evaluate reliably the chance of realising loss on the asset. The revised 

asset evaluation may change a lot and still affect little the initial risk value. On the other 

hand, the asset evaluation may change only a little but producing a significant effect on 

the risk value. Therefore, the measure of asset robustness we suggest is dictated by the 

final objective. Finally, though interrelated the two measures analyse an asset from 

different perspectives. Thus, the asset may be low risky but low robust, or highly risky 

but highly robust as well, etc. Considering Definition 3.1 and Definition 3.3 in Chapter 

3, the intuition is that a market agent will prefer less risky and highly robust assets. It is 

why we formulate an asset ranking technique based on the two measures, and suggest a 

particular procedure and rules of incorporating the measures and refining the final 

ranking. As a result of the rationale presented in this paragraph, the ranking technique 

is considerably original. For the reasons of comparison, it may be related to techniques 
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of ranking fuzzy numbers [40-431. However they represent approaches to ordering 

membership functions, rather than formulating risk and robustness measures and 

incorporating their effect. So, the former ranking will not address the final objective 

and thus will not be helpful. If considering a ranking based on risk measures from the 

crisp asset evaluation methods, they will experience the limitations of those measures, 

as described here earlier, and the lack of robustness measures. Therefore, there is no 

much ground for comparison. Finally, we investigate here the price-dividend relation, 

because it is the relation Shiller [1] bases its argument on the market behaviour toward 

the end of last century. The argument is that perception based information is important, 

and we provide a technique to incorporate this. At the end, we compare for that model 

the crisp results and the results from our approach involving computational intelligence 

techniques. On the other hand, the same approach can be applied starting from the crisp 

capital asset pricing model or a crisp arbitrage pricing theory model, and then to 

compare for them the crisp results and the soft evaluations. This will require a 

corresponding database. 

Finally, the last two contributions involves the design and training of an asset 

risk classifier: 

m designing a soft asset classifier, 

m developing an evolutionary training strategy. 

The classifier is based on the rationale behind the developed measures and ranking 

technique above. The identification of the architecture involves investigating the 

approximation capabilities of crisp and fuzzy neural networks. We first three-layer 

crisp networks with fuzzy restrictions on the weights to approximate fuzzy asset 

Antoaneta Serguieva May 2004 



Declaration of Originality xi 

evaluation. This type of networks are suggested in Buckley [441, however only 

networks of maximum two inputs have been trained and the training set involves made- 

up data. In comparison, here we train networks with 36 inputs and use an empirical 

database of 36 assets over 25 years. Buckley [45], suggests that backpropagation is not 

applicable in the training, however we modify the Levenberg-Marquart algorithm to 

accommodate for the sign restrictions and successfully train the networks. Still, the 

results prove that this type of network is not able to approximate the complex problem 

of fuzzy asset classification. In Liu [46], it is theoretically proved that four-layer fuzzy 

networks are universal approximator of fuzzy-valued functions, while no experimental 

result are considered. We extend the proof provided there to the multivariable case, and 

train the fuzzy classifier within the empirical database. Furthermore, we develop an 

evolutionary training algorithm. The algorithm works on two levels, out of the three 

levels described in Yao [47]. The first level involves optimisation of the crisp and fuzzy 

network weights, therefore it is concerned with searching the parameters space. The 

second level is concerned with exploring the training set itself, or guidance of the 

leaming process for the parameters from the first level, i. e. it is optimisation of the 

optimisation. Furthermore, the two-level exploratory algorithm is based on the general 

concepts of divide-and-conquer evolution and incremental evolution, the same concepts 

that are the basis of the bidirectional incremental evolution in Kalganova [48]. Based 

on those concepts, the algorithm developed in this thesis is entirely new in its design 

and in its implementation. As an initial stage in the algorithm, we identify database 

heuristics and use them in constructing the training set, then design a dynamic objective 

training function. The empirical results are compared with those of a conventional 

evolutionary algorithm and prove the efficiency of the new algorithm. Finally, the 
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complexity of the problem and approaches by other authors to relevant problems are 

provided in a comparative table. The important contribution is the development of an 

evolutionary algorithm able to resolve a problem of high complexity. A significant 

aspect of the contribution is the application to a real-world problem. The complexity of 

the problem arises from the following reasons. The asset risk takes values within 

different qualitative ranges. Assets are also characterised with qualitatively different 

risk behaviour in time. The fuzzification of the asset pricing factors and the processing 

of imprecise information is performed by the classifier itself. The neural network 

structure involves fuzzy weights. 

All the contributions, in the sequence explained here, work towards resolving 

the real-world problem. 
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Dt 

DY 

DY 

DY 

-I- . ayt 

dyt 

dyt 

f(x) 

i(i) 
j 

I 

I 

is the dividend per share in period t 

is the dividend yield in period t 

is the fuzzy interval substituted for the dividend yield in period t 

\ 11 11 

is the possibilistic variable substituted for the dividend yield in period t 

is the logarithmic dividend yield in period t 

is the fuzzy interval substituted for the logarithmic dividend yield in period t 

is the possibilistic variable substituted for 

the logarithmic dividend yield in period t 

is a crisp function, which is a mapping from R to R 

is a fuzzy function, which is a mapping from . 13 (R) to 3 (R) 

is a fuzzy-valued function, which is a mapping from R to S (R) 

is an identity transfer function of a neuron in the neural network 

is a fuzzy identity transfer function of a neuron in the fuzzy network 

1pIX(K) I Lu 
is a population of full-size v to be used over a complete training set task(K*) 

and generated by recombination of a breeding subpopulation X( 10 
r, 

evolved over a complete training set at level of decomposition ic 
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IP 
ij X()r) 

7 Y, 
is a population of full-size y to be used over 

a training subset task(x') 1:! ý j:! ý j,,, and generated Ij , 

by recombination of a breeding subpopulation X( 
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evolved on a complete training set task(r) 

IP x (10 
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ij 71 ij 

is a population of full-size y to be used over 

a training subset task("*) 1! ý, j! ý j.., and generated Ij , 
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71 Ij 
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IP XX 
(Jr. ) 
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y INC y, 12 11 END 
y, 12 'Jx*m END I yj 12 2 END 

is the full-size population to be used at the first incremental level 
Ir over the set task( m) . and generated by recombination of 

breeding subpopulations of size r, 12 evolved separately over 

the subsets task, 
()r'), 

task( 'V m) d 
_< 

j! ý J at the final decomposition level 
12 1CM 

IP XX (X-) x 
(ir+]) 

7 
INC yj 12 11 END y, 12 IJ Ic END'yj /2 INC 

is the full-size population to be used at some incremental level x. ý, - IC + 

over the set task(r), and generated by recombination of 
breeding subpopulations of size yj 12 evolved separately over 

the subsets task, 
( Ij<i at some level of decomposition ic, ICM 

and the breeding subpopulation evolved over task(r+') 
at the previous incremental level 
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symbols Xlx 

mse is the minimum mean square error of the crisp neural network 

Ngen is the number of generations in the probing step 

used in the evolutionary algorithm 

P. is the asset price in period t t 

P. is the fuzzy interval substituted for the asset price in period t t 

PO is the evaluated fuzzy interval for the current asset price 

P, is the possibilistic variable substituted for the asset price in period t t 

Pt is the logarithmic asset price in period t 

Pt is the fuzzy interval substituted for the logarithmic asset price in period t 

PO is the evaluated fuzzy interval for the logarithmic current asset price 

Pt is the possibilistic variable substituted for 

the logarithmic asset price in period t 

PO ANN 
is the output of the crisp neural network approximating the cr - cuts of po 

POFNN is the fuzzy logarithmic asset price approximated by the fuzzy neural network 

POSS is the possibility operator 

POSS [by, 
--": XDY, 

] 

is the calibrated possibility distribution of the dividend yield in period t 

POSS [jYt 
-": Xdyt 

] 

is the calibrated possibility distribution of 
the logarithmic dividend yield in period t 

POSS [ Pt =X Pt 
I 

is the calibrated possibility distribution of the asset price in period t 
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POSS [PO =X PO 
I 

is the evaluated possibility distribution for the current asset price 

POSS [ P, =.,, ] 
is the transformed possibility distribution of 
the logarithmic asset price in period t 

Poss [ Po =X PO 
1 

is the evaluated possibility distribution for the logarithmic current asset price 

POSS XR ] 

is the calibrated possibility distribution of the constant return 

Poss X r, 
I 

is the transformed possibility distribution of 

the time-varying return in period t 

is the current trading price 

is the logarithmic current trading price 

is the constant asset rate of return 

is the fuzzy interval substituted for the constant rate of return 

is the possibilistic variable substituted for the constant rate of return 

Rt is the time-varying rate of return 

Rt is the fuzzy interval substituted for the time-varying rate of return in period t 

Rt is the possibilistic variable substituted for 

the time-varying rate of return in period t 

rt is the logarithmic time-varying rate of return 
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Symbols xxi 

t is the fuzzy interval substituted for 
the logarithmic time-varying rate of return in period t 

rt is the possibilistic variable substituted for 
the logarithmic time-varying rate of return in period t 

task is the training set for the fuzzy network 
and consists of elements (asset x period, PO 

task("") is the training set for the fuzzy network at level of decomposition ic 

task, v), task2 

are the subsets in the initial decomposition 

of the overall task task(x-) at level ic 

task("'*) is a subset in the consequent decomposition Ij 

of task, 
(r) 

at level ic, where I<j: 5 Jjc; 

the subsets, their number J,, and their size 
are automatically discovered by the BEE 

Cr is a level of membership 

Cr - cut is a level interval in a fuzzy interval 

x is an individual chromosome encoding a fuzzy network 

Zbest is the best fitted chromosome in a population 

best Xi, ýjCEND is the best fitted chromosome at the end of 
the two-level exploratory algorithm 

x is a population of chromosomes 

XSUB is a breeding subpopulation of chromosomes 
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X(10 is a breeding subpopulation of size y, evolved over 
Y, 

a complete training set task(1c) at level of decomposition ic 

X(Ic) is a breeding subpopulation of size r, evolved over 
71 Ij 

a subset task(r) at level of decomposition 1c, where 1: ý j: 5 JV, Ij 

task,, 
),..., 

task(r) and task(r) task, task2 task, 
I 

'jk 
II 

X ('1C) is the better half of a breeding subpopulation evolved over 
y, 12 INC 

a complete set task(') at some incremental level icm - ic + 

451 052 are parameters of linearisation in the logarithmic pricing function 

-Oint erval is the error evaluating the interval approximating capability 
of the trained crisp neural network 

0 (, bo 
FNN , 

is the neuron evaluating the asset risk in the classifier structure 

is the number of chromosomes in a full-size population 
at each step of the evolutionary algorithm 

is the size of a breeding subpopulation. 

is the number of crossover points applied to 
a parent pair of chromosomes to produce an offspring 

is the number of crossover points applied over 
the single-number genes of the parent pair of chromosomes 

112 is the number of crossover points applied over 
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the triplet genes of the parent pair of chromosomes 

P is a membership ftinction 

/I (XD 
Yt 

1,5 yt ) 

is the calibrated membership function of the fuzzy dividend yield in period t 

P(Xdyt Id 
Yt 

is the transfon-ned membership function of 
the fuzzy logarithmic dividend yield in period t 

, 
JP-t. ) is the calibrated membership function of the fuzzy asset price in period t p(xp 

(xp, 1A ) 
is the evaluated membership function for the current asset price 

, U(Xpt I pt) 
is the transformed membership function of 
the fuzzy logarithmic asset price in period t 

,a (Xpo I Po ) 
is the evaluated membership function of the current logarithmic asset price 

9 (XR I jý) is the calibrated membership function of the fuzzy constant return 

9 
(xRt I i? 

t 
) 

is the calibrated membership function of 
the fuzzy time-varying return in period t 

t 
IF, ) is the transformed membership function of (X, 

the fuzzy logarithmic return in period t 

/T is the level of possibility 
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Symbols xxiv 

0 is the bias term of the sigmoid neuron-transfer function 

d2 is a sigmoid transfer function of a neuron in the neural network 

T is the rate of mutation used in the evolutionary algorithm 

is a level of uncertainty in the pricing factors 

PR is the level of uncertainty in the pricing factors which brings 

about the risk value in the evaluated current asset price 

ý (Zi ) is the cost function evaluating the error of 
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Chapter 1: Introduction I 

Chapter 1: Introduction 

1.1 Motivation 

The area of computational intelligence has emerged recently on the basis of many 

computing disciplines introducing their symbiotic use. The principle components 

include fuzzy logic, neurocomputing, evolutionary computing and probabilistic 

reasoning. However further disciplines and forthcoming problem-solving technologies 

are continuously incorporated into the area. These involve chaotic computing, memetic 

algorithms, artificial life, swarm intelligence, DNA computing, to name a few. 

Indicative for the fast development of the area and its recognition is the establishment of 

a corresponding IEEE Society in 2002, with formulated interests in 

'the theory, design, application and development of biologically and 

linguistically motivated computational paradigms emphasizing neural 

networks, genetic algorithms, evolutionary programming, fuzzy systems, 

and hybrid intelligent systems in which these paradigms are contained', 

A further step in this direction is the decision to change the name of the Society from 

Neural Networks to Computational Intelligence, as from June 2004. The new name is 

more descriptive and inclusive than the old one, which only covered a fraction of the 

Society's scope, and the mission is extended with 

'promoting activities in emerging fields such as data mining, bio- 

informatics, computational finance, computational neuroscience, 

autonomous mental development, and intelligent systems applications'. 

The characteristic quality of the methodologies whose coalition constitutes 

computational intelligence - in comparison with traditional hard computing - is their 
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1.1 Motivation 2 

tolerance towards imprecision, uncertainty and partial truth, when such tolerance 

achieves better performance, higher autonomy, greater tractability, lower solution cost 

and better rapport with reality. Furthermore, each methodology provides 

complementary reasoning and searching methods to solve real-world problems. Fuzzy 

logic can represent qualitative knowledge and works with a robust interpolative 

reasoning mechanism. Neural networks are computational structures that can be trained 

to learn patterns from examples. Evolutionary algorithms perfonn randomised global 

search in a solution space. Probabilistic reasoning provides the capability to update 

outcome estimates by conditioning them with newly available evidence. Thus, 

desirable features lacking in one technology are present in another, and their fusion 

attains synergetic results. Incorporating further emerging technologies with 

complementary characteristics, it becomes apparent how the area accumulates 

computational intelligence to perform approximate reasoning -a departure from 

classical reasoning and modelling approaches, crisp classification and deterministic 

search - in solving real-world problems. 

Pursuing progress from perceptions to measurement, science has achieved 

remarkable successes. Still, in some areas the progress has been slower and more 

difficult to realise. The underlying modes of reasoning in these areas are approximate 

rather than exact, and they require methodologies where the objects of computation are 

perceptions of attributes of physical and mental objects rather than their measurements. 

Such methodologies will enhance the ability to solve real-world problems where 

decision-relevant information is a mixture of measurements and perceptions. Relevant 

problems include automating driving in heavy traffic, translating in different languages 

at the level of a human interpreter, building robots that move with the agility of animals, 
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modelling the behaviour of economic and financial systems, etc. Particularly, there is 

much to be desired in improving the ability to model financial decisions, and this is the 

focus of interest of the Technical Committee on Computational Finance, one of the 

eight technical committees in the IEEE Computational Intelligence Society. 

Decisions in financial markets are effectively taken on the fusion of 

measurement-based and perception-based information. The role of perceptions is 

emphasised by the emerging field of behavioural finance, which is looking less as a 

small subfield and more like a pillar of serious finance theory. It takes into account 

details of human behaviour including psychology and sociology, and tests conventional 

theories against the impressive evidence suggesting that price levels are more than 

merely the sum of the available economic information. Contributing factors include the 

sports-style media coverage of market indices, the broadly available internet trading, 

and the psychological attributes of the market anchors that limit the feedback from price 

changes to further price changes amplifying market movements. These are some of the 

factors partly responsible for the developments in the end of the last century that 

influenced Alan Greenspan, Chairman of the Federal Reserve Board, to describe the 

behaviour of stock market investors as 'irrational exuberance'. 

The principle difference between measurements and perceptions is that 

measurements are crisp and quantitative while perceptions are fuzzy and qualitative. 

The area of computational intelligence provides the means to reformulate real-world 

problems and incorporate qualitative information. In particular, it will be possible to 

reformulate asset pricing and account for the perceptions of stock market investors. 
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1.2 Objectives 

The objective of the thesis is the reformulation of the asset pricing problem 

incorporating imprecise information and the development of a decision-support method 

accounting for the perceptions of stock market investors. This is decomposed to the 

following alms: 

0 modelling imprecise factors time-series 

and solving imprecise pricing equations; 

m formulating investment-risk and asset-robustness measures 

based on the modelled and processed imprecise information; 

m developing a qualitative asset ranking technique 

based on the formulated risk and robustness measures; 

m identifying the structure of an asset classifier 

based on the developed ranking technique 

and allowing for investors' perceptions of acceptable risk; 

m identifying characteristics of the search space, 

formulating heuristics and developing a training strategy 

to evolve the parameters in that classifier structure. 

Working consecutively through the aims, they are achieved by first employing 

fuzzy logic, then involving both fuzzy logic and neural networks, and finally the 

development of the soft classifier exploits the fusion of fuzzy logic, neural networks and 

evolutionary computation. Thus, a synergetic effect is achieved when integrating 

different computational intelligence techniques to provide a decis ion- support method to 

market agents - 
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Finally, the work on the above objective has revealed how the developed 

method can be incorporated into a broader problem. The imprecise models and the 

evolved classifier are included into a multiple-model knowledge representation of asset 

pricing and trading. The representation framework is constructed along several 

dimensions, where the perspective of imprecision plays a principal role and modelling 

imprecise relations involve various computational intelligence techniques. Finalising 

the framework is a focus for further research. 

1.3 Computational Intelligence 

The area of computational intelligence merges four principal components - fuzzy logic 

(FL), neurocomputing (NC), evolutionary computing (EQ and probabilistic reasoning 

(PR). We discuss them first separately and then in their fusion. Each technology 

contributes desirable features to approximate reasoning in solving real-world problems. 

Fuzzy logic [39,49-521 is usually interpreted in a wide sense as involving four 

major facets -logical (FUL), set-theoretic (FL/S), relational (FL/R) and epistemic 

(FLJE). The first facet is a logical system which is not truth-functional in nature and 

underlies inference from imprecisely defined premises [531. The second aspect is 

focused on the theory of sets with unsharp bounds, and mostly related to fuzzy 

mathematics [54,551. FUR is concerned with representation and analysis of imprecise 

dependencies, and exploits the concepts of linguistic variables and fuzzy if-then rules 

applied to fuzzy system analysis and control [56]. The epistemic aspect is relevant to 

knowledge, meaning and imprecise information, and includes the possibility 
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theory [57]. These four facets are overlapping and have unclear boundaries, however 

they all share the ability to model and process information at fuzzy granular level. 

Therefore, fuzzy logic is a methodology for dealing with fuzzy granularity (f- 

granularity). Though, FL was initially introduced as reconciling mathematical 

modelling and human knowledge in engineering sciences, the area of application of the 

methodology has extended to natural, cognitive and social sciences, involving fg- 

generalisation (fuzzification and fuzzy granulation) of concepts and techniques. The 

important direction in FL is towards computing with words and perceptions [29-331, 

which allows reformulation of problems in various domains where imprecision plays a 

key role, as is the case of decision-making in finance [58-59]. 

Neurocomputing [601 is concerned with processing information, which 

involves a learning process within an artificial neural network (ANN) architecture. The 

architecture responds to inputs according to a defined learning rule, and therefore has a 

mechanism for extracting knowledge from data. NNs are divided into feedforward 

networks, used in supervised mode, and recurrent networks, typically employed in 

unsupervised learning. Since it was proven that feedforward. multilayer NNs are 

universal functional approximators [611, they have attracted the focus of attention. 

Those networks implement backpropagation training algorithms [62], and most research 

has focused on improving the convergence speed of the algorithms [63,64]. Depending 

on the scope of network characteristics involved in the training process, the learning is 

parametric or structural - the counterparts, respectively, of parametric estimation and 

system identification in classical system theory. Once trained, networks can be used to 
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perform certain tasks depending on the application - like pattern recognition, event 

classification, and nonlinear- system control and identification - and we are most 

concerned with neurocomputing applications in finance [65-691. 

Evolutionary computing [69-72] is a paradigm for randomised global search 

including variations as genetic algorithms (GA), genetic programming (GP), 

evolutionary programming (EP) and evolutionary strategies (ES). All approaches share 

the same generic concepts: a population of competing candidate solutions, random 

combination and alteration of potentially useful structures to generate new solutions, 

and a selection mechanism to increase the proportion of better solutions. The variations 

are distinguished by the genetic structures - chromosomes - that undergo adaptation and 

the genetic operators - crossover and mutation - that generate new candidate solutions. 

Implementing GAs requires to address the genetic representation of candidate solutions, 

the way to create an initial population, the evaluation function that describes the quality 

of each individual, the genetic operators that generate new variants during reproduction, 

and the values of parameters like population size, number of generations and 

probabilities of applying genetic operators [73]. GP is concerned with the automatic 

generation of computer programs and mostly employs a tree structure to encode them, 

and then breed over many generations a population of improving programs that solve 

particular tasks [74]. ES are distinguished by self-adaptation of additional strategy 

parameters, which enables them to adapt the evolutionary optimisation process to the 

structure of the fitness landscape [75]. EP shares a number of features with ES, 

however differs in generating new variants solely by means of mutation and not 

employing any crossover operator [76]. The boundaries between the variations 
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of evolutionary computation are not clear, and they continuously borrow or combine 

features while new techniques are being developed. Promising directions in EC involve 

dynamic, multi-objective, and knowledge- incorporating evolutionary optimisation 

[77-791. EC has been successfully applied to a remarkable variety of different domains, 

and we are predominantly interested in the application to problems in finance [80-82]. 

Probabilistic reasoning [83-85] suggests mechanisms for evaluating the 

outcome of systems affected by probabilistic uncertainty. The mechanisms share the 

common feature of performing inference while updating probability estimates through 

conditioning them on new available evidence. Two main currents within PR involve 

Bayesian belief networks (BBN) and Dempster-Shafer theory of evidence (DSTE). 

BBNs are concerned with propagating probability values over a network structure like 

trees, poly-trees or directed acyclic graphs (DAG), and considerable efforts have been 

directed recently towards improving the computational efficiency of propagation over 

general graphs. DSTE defines a mapping from basic probability assignments - masses 

assigned to subsets of the frame of discernment - to the computation of the lower bound 

(belief) and the upper bound (plausibility) of a proposition - regions defined in the same 

frame of discernment. Some interesting applications of probabilistic reasoning to 

finance are presented in [86-89]. 

It has been realised that the above four major technologies provide 

complementary characteristics in soft modelling, computing and reasoning, while 

attempting real-world problems. Fuzzy logic enables the translation and embedment of 

empirical and qualitative knowledge about a problem to be solved into reasoning 
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systems capable of performing approximate pattern matching and interpolation. FL, 

however, does not have learning features as it lacks mechanisms to extract knowledge 

from data. On the other hand, this is the typical characteristic of neurocomputing. Still, 

NC may become mired in local optima, and powerful search and adaptation techniques 

intrinsic to evolutionary computing become desirable. Finally, probability reasoning 

contributes to the ability to handle various types of uncertainty and imprecision. 

Uncertainty in probabilism is derived from the nondeterministic membership of a point 

from the sample space in a well-defined region of that space. The well-defined region 

represents the probable event. The characteristic function of the region dichotomises 

the sample space. A probability value describes the tendency with which the 

probabilistic variable takes values inside the region. Probabilistic inference is 

performed through conditioning. On the other hand, uncertainty in fuzziness is derived 

from the partial membership of a point from the universe of discourse in an imprecisely 

defined region of that space. The region represents a fuzzy set. The characteristic 

function of the fuzzy set does not create a dichotomy in the universe of discourse. A 

membership value describes the degree to which the particular element of the universe 

of discourse satisfies the property that characterises the fuzzy set. Fuzzy reasoning is 

based on the extension principle. The complementarity of captured imprecision is 

supported by the introduction of probability measures of fuzzy events and the definition 

of belief functions in fuzzy events. Considering further the frequentistic and the 

subjective interpretations of probability, as well as the interpretation of fuzzy 

membership as possibility, similarity, desirability or preference, enriched is the scope of 

handled imprecision. Therefore, the fusion of different computational intelligence 

approaches will result in an effective approximate-reasoning methodology that explores 
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the don't-know, don't-need, can't-solve, and can't-define rationales. The don't-know 

i rationa e applies when the values of variables or parameters are not known sufficiently 

precise to justify using conventional modelling techniques. The don't-need motivation 

presents situations where exploiting the inherent tolerance for imprecision achieves 

tractability, robustness or low solution cost. The can't-solve reason reveals problems 

that cannot be solved through quantitative modelling and computing. The can't-define 

principle relates to concepts that are too complex to allow definition through a set of 

numerical criteria. 

A body of literature is growing on the hybrid implementation of computational 

intelligence techniques. The interaction between fuzzy logic and neurocomputing 

results in neuro fuzzy systems (NFS) or fuzzy neural networks (FNN), depending on the 

dominant component. The work in the field relates to approximations between fuzzy 

systems and neural nets [90,91], building hybrid NNs to equal fuzzy systems [92,93], 

FL controlling parameters in NC [94] or NC tuning FL [95-97], using neurocompiting 

to solve fuzzy problems [44,46,981, investigating the approximating capabilities of 

fuzzy NNs [99-103], and constructing and implementing hybrid fuzzy neural networks 

(HFNN) [93,104]. Further, two major approaches in integrating of fuzzy logic and 

evolutionary computation include fuzzy evolutionary algorithms (FEA) and 

evolutionary fuzzy systems (EFS). An FEA uses FL to improve its performance 

through controlling parameters as mutation and crossover rates or population size 

[105-1071, or taking advantage of the tolerance for imprecision and saving 

computational resources through fuzzifying those operators [108,109]. An EFS is a FS 

augmented with an evolutionary tuning process, and the most extended class of EFS 
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corresponds to evolutionary fuzzy rule-based systems (EFRBS) [110,1111. Next, the 

integration of EC and NC employs evolution as another fon'n of adaptation in addition 

to learning. Evolutionary algorithms perform various tasks, such as training weights, 

designing architectures [112,113], adapting learning rules, selecting input features, 

initialising weights, etc. A general framework for evolutionary neural networks (ENN) 

is introduced in [471 suggesting three levels of evolution that concern weights, learning 

rules and architectures, correspondingly. Each inner level of evolution is included in 

the next outer level, if such exist in the problem, then the lower the level, the faster the 

time scale of the evolution. Further, merging evolutionary computing and probabilistic 

reasoning [1141 has been used in evolving the optimal structure of Bayesian networks 

[1151, as well as in modelling EC with BBNs and producing Bayesian optimisation 

algorithms (BOA) [ 116,117]. The combination of EC, NC and FL typically involves 

augmenting regular or hybrid feedforward multilayer FNN with evolutionary learning 

capabilities into evolutionary fuzzy neural networks (EFNN). EFNNs include fuzzy 

connection weights, or fuzzy operations in the nodes of the network, or fuzzy nodes that 

represent membership functions, and the learning process implements evolutionary 

techniques to achieve coarse-granularity followed by backpropagation for fine- 

granularity search, or to obtain the weights of the network, or to adapt the transfer 

functions of the nodes, or to optimise the topology of the net [118-1221. The fusion of 

all computational intelligence techniques has created the area of computational 

intelligence which is gathering recognition as a driving engine for artificial intelligence 

[33,123-1291. 

As a result, computational intelligence has emerged as a methodological 

paradigm for representing, incorporating and processing uncertain, incomplete, 
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imprecise or perception-based information at granular level. The consequence is the 

ability to reformulate the representation of real-world problems and the techniques for 

their solution, as well as the competence to build in these developments into 

autonomous or decis ion- support intelligent systems. Financial markets constitute one of 

the areas that will directly benefit from the methodological advances, and exploit the 

rationales of don't-know, don't-need, can't-solve, and can't-define. Relevant problems 

involve forecasting market movements, volatility modelling, asset and derivatives 

pricing, developing investment strategies for asset and derivatives traders and hedgers, 

mastering market timing and switching in and out of various securities classes, portfolio 

management, risk analysis and management, trading systems design, and agent-based 

modelling and simulation of artificial stock markets [130-134]. 
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1.4 Thesis Outline 

Relevant computational intelligence techniques, as described in section 1.3, are 

employed throughout the thesis in the following sequence. Chapter 2 applies fuzzy 

logic in its broad sense, and specifically fuzzy mathematics, to evaluate the fuzzy asset 

price. The epistemic aspect is also concerned while modelling the imprecise pricing 

factors. Chapter 3 explores two measures of the information encoded into the fuzzy 

asset evaluation. Chapter 4 still works with the results of implementing fuzzy logic to 

the problem, and builds an asset ranking techniques on the basis of the measures of risk 

and robustness from Chapter 3. Chapter 5 elaborates on putting the rationale behind the 

ranking technique into more practical use - building an asset classifier. This involves a 

further computational intelligence technique, neural networks, or rather fuzzy neural 

networks. Chapter 6 is focused on the risk module of the classifier, therefore the risk 

classifier, and a two-level exploratory algorithm is developed as its training strategy. 

Thus a further element of the computational intelligence paradigm is employed, and the 

technique builds up as evolutionary fuzzy neural computing. Chapter 7 presents the 

empirical results of training, validating, and predicting with the risk classifier. Finally, 

Chapter 8 involves the intermediate products of the approach - the fuzzy asset 

evaluation procedure, the ranking technique, and the soft risk classifier - into the 

knowledge representation module of an intelligent system in asset risk analysis. The 

system further applies the computational theory of perceptions - another component in 

the computational intelligence paradigm - in user analysis with the objective to improve 

the efficiency of decision support or the quality of tutoring in the domain of asset 

evaluation and risk analysis. 
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Chapter 2: Fuzzy and Possibilistic Asset Pricing 

2.1 Introduction 

We focus on the price dividend relation, introducing fuzzy intervals or possibilistic 

variables to model uncertain asset prices, dividend yields and interest rates. However, 

the approach can be applied to any of the pricing techniques, while involving an 

alternative modelling of the imprecision in the corresponding pricing factors. 

Using fuzzy intervals allows one to take into account a broader range of 

imprecision, beyond the probability type of uncertainty. Furthermore, substituting 

possibilistic distributions for the fuzzy intervals, and applying multilevel interval 

calculus, the asset price is evaluated at various possibility levels. The possibility levels 

or the degrees of membership corresponding to the cr -cuts of the evaluated asset price 

match those related to the a -cuts of the uncertain factors. This feature of the solution 

is beneficial as giving an idea of the levels of uncertainty a market agent could 

accordingly choose or prefer to work at. Each level involves some of the modelled 

imprecision. Thus if we attempt to represent the broader range of imprecision the 

market could possibly suffer, then an agent may choose the level of uncertainty within 

that range corresponding to his preferences. That level however delimits the degree 

with which the evaluated interval of asset prices will belong to the true price. On the 

other hand, one may use the possibilistic solution to compare the intervals 

corresponding to different levels of uncertainty. 
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2.2 Modelling Uncertainty with Fuzzy Intervals 

The analysis is focused on common shares and the asset rate of return is described with 

R+j (DYt+l + 1) 
pt 

(2.1) 

where Pt denotes the ex-dividend share price at the end of period t and DYt+l is the 

next-period dividend yield. The equation may be solved backward or forward for the 

asset price at t. Then, an evaluation of the current price at t=0 will involve weighted 

past and future prices, 

T, T2 

Po AtP BtR 
-t +E t 

t=l t=l 
(2.2) 

where At and Bt are the parameters of the model. Past prices are known, however may 

be considered as chance realisation of a highly volatile process. Future prices may be 

estimated, however the estimates are only reliable to some degree. Fuzzy intervals may 

be used in modelling both past and future prices, and the evaluation of the current price 

will be based on the weighted fuzzy values. A fuzzy interval is a fuzzy set in the real 

line R, whose level-cuts are intervals. 

As an illustration, we will solve the equation (2.1) forward. The intuition is 

that a fair value for the current price is the present value of all expected proceeds on the 

asset in the future [135]. 
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Oo RDY PO =Itt 
t=l (I + R)t 

(2.3) 

However, an evaluation is only produced over a limited time horizon and the estimated 

proceeds are approximate. Therefore, 

T Y, PT 
PO 

(1 + R)t (1 + R)T 
(2.4) 

where the fuzzy intervals Pt, f)Yt and k will be substituted for the uncertain Pt, DYt 

and R, correspondingly. 

PtDYt 
t 

+ i? ) 

PT 

+ i? 
(2.5) 

An alternative view on the formula (2.5), in line with the model (2.2), will 

describe the evaluated current asset price as based on the fuzzified variables Pt, 

I 
-< t <- T, and the fuzzified parameters Bt resulting from DYt and R with no further 

weighting, while the parameters At = 0. Thus the fuzzy model involves both fuzzified 

variables and parameters, and one may argue that the current asset price is evaluated 

while approaching the broader imprecision the market could possibly suffer, well 

beyond the probability type of uncertainty. 

Let the notations 
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(xPt IP)" (p pt tbIPtvIPte) 

, U(xDy jb-Yt)=(DYtb1DYtv1DYte) (2.6.2) 
t 

, 
+Rj, ý)=(Rb1Rv1Re) 

, (2.6.3) 

stand for the membership functions of Pt, DYt and R, respectively. The graph of the 

membership function u(xp 
, 

1, ýt ) is a triangle with a base on the interval [ Ptb, Pte ] and a 

vertex at the point xp =R< Pte. Analogous descriptions apply tv where O<P tb <P tv 

for the functions p (xDy )Y -cut of a fuzzy interval jf 
t) and fl(xRj, ý). The weak a 

[52] is defined for Pt as 

Ptb, Pte 
Pt (a, ) 

, Pt (a) = Pt (a) 
xp 

It lp (xp, I -t al 

a=O 
(2.7) 

, O<a<l 

and the a- cuts 15 Yt (a) and ý (a) are specified in a similar way. 

Considering the character of the crisp function (2.4), the domain area of the 

arguments and the choice of their membership functions, we can derive the following 

conclusions and apply the calculi of fuzzy intervals [39,52]. The arguments P,, bY, 

and R are fuzzy intervals in the positive real line R+. In this domain area, the crisp 

function PO is continuous on all its arguments, while monotonically increasing on Pt 

and DY , and monotonically decreasing on R. 
t 

following proposition are satisfied. 

Therefore, the conditions in the 
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PrOposition 2.1: If a function has a finite number of arguments and is continuous and 

monotonic with respect to each of them, then it commutes with level- 

cutting whenfuzzy intervals are substitutedfor the arguments. [391 

PO (a) are Thus, the evaluated price will be also a fuzzy interval PO, whose a- cuts 

calculated from 

P- (a)=[ Po(a)], 0:! ýa<l oI 

T Pt (a) DYt (a) PT (a) 
Po (a) =I+T 

t=l (]+-R(a))t (I +R -(a)) 

Tp 
PO (cr) t 

(a) DYt (a) 
+ 

PT (a) 

T 
t=1 (I +R (a))t (I +R (a)) 

and whose membership function g(x PO 
IA ) is defined as 

suplalxp G Pi P(Xpo 1po) 
00 

(a), O: ý a! ý 11 

(2.8) 

1) 

1) 

(2.9) 

In conclusion, using fuzzy intervals one is able to evaluate the asset price while 

involving various types of uncertainty. The approach is not restricted to the price- 

dividend function, and one may consider other pricing formulas. In each case, 

reasoning on the character of the function, the choice of arguments and their domain 

area, as well as the appropriate fuzzification, will decide on the features of the 

corresponding solution. 
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2.3 Modelling Uncertainty with Possibility Distributions 

From the theory of ftizzy sets and the possibility theory, it is known that the 

membership function of a fuzzy set may be interpreted as the possibility distribution of 

a fuzzy variable. This conclusion is used in [35,136-138] to introduce alternative 

uncertainty modelling. We will apply here the general result from [35,136-138] to 

provide an interpretation of the approach we introduced in section 2.3 and to analyse 

further the obtained solution. This is described in our publications [PI, P2]. 

Let substitute possibilistic variables Pt, DYt and R for the arguments in the 

function (2.4). Again, the possibility of an event differs from its probability, and allows 

modelling a wider range of imprecision. A possibility distribution is less restrictive 

than a probability distribution. The possibility that the variable Pt will take a specific 

value may be further interpreted as a measure of the belief that the value will happen. 

Therefore, values whose possibility is at least T where 0< ir:! ý 1, are the values whose 

level of uncertainty is at most v=1 -)r. Thus, if a possibility distribution models some 

considered range of imprecision, then v is a level of uncertainty within that range. For 

example, the level v=I covers the whole range, while the level v=0.9 only accounts 

for 90% of the range. 

Evaluating the possibility distribution of a function requires producing the joint 

distribution of the arguments which may involve interactivity. In the general case, the 

analytical solution is computationally infinite. However, a good approximation is found 

in the fuzzy interval solution. With the appropriate choice of possibility distributions 
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for the arguments, the fuzzy interval evaluation of the function serves as an upper 

boundary for its possibility distribution evaluation, in the sense that the former at least 

includes the latter. in the case of the pricing function (2.4), and the choice of calibration 

technique described in the next section, the two solutions will be equal. 

To provide that the evaluation of 

T 
-= PT 
Po (2.10) 

is equal to that in the formula (2.5), we choose the possibility distributions for the 

arguments as follows. The possibility that the variable Pt takes some value will be 

equal to the degree of membership of this value to the fuzzy interval Pt, 

Poss xp t 
(xp 

tt 
IPt), 1:! ý t: ý T 

By analogy, the distributions of DYt and R are described with 

Poss [b Yt 
, 

IbYt), 1:! ý t:! ý T, = XDY, P(XDY. (2.11.2) 

POSS[lý': --XR]: --, U(XRjIý) - 

As a result of this choice, the distribution of the current asset price PO will be 

Poss[p =X (2.12) o POI=P(XPOIPO) 

where the membership function u (xpo I PO ) is evaluated from (2.9). 
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Now we can benefit from the computability of the fuzzy interval solution and 

the logic behind the possibilistic reasoning. Let us consider again all the values of the 

variable Pt whose possibility to happen is at least T, or as described earlier, whose 

level of uncertainty is at most v=1- /T. From the definitions (2.7) and (2-11), it 

follows that those values are presented with the a- cut of the fuzzy interval Pt for 

t Xp poSS [ j5 = Xp 
tI, 

]ý! 
a) = Pt (a), 0: ý a: 5 1,1: 5 t: 5 T 

Correspondingly, for the rest of the arguments, the values at the level of uncertainty 

a are described with 

Poss [byt = xDy 1,1! ý t! ý T JXDYt It 
al =, bYt (a), 0: 5 a (2.13.2) 

I 
XR 

I POSS [, ý : ": XR ] ýý a) -": 'ý 
(a), 0: ýý a: 5 1- (2.13.3) 

This will also apply for the evaluated asset price, 

-Po(a) ], 0:! ý a: 5 1 Xpo 
10 

al = Po (a) = 
[Po 

(a) (2.14) Poss [p= 
xp 0, 

Furthermore, the computation of the fuzzy interval solution with the formula (2.8) 

produces the level-cut interval of the function 
[PO 

(a) 
, 
_PO(a)] for some a, as based 

on the level-cut intervals of the arguments Pt (a), DYt (a 
,Ra at the same level a. 

Therefore, we can fonnulate the following definition, as described in our publication 

[P2] and subsequently apply the relevant line of reasoning. 
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Derinition 2.1: Factor and asset imprecision 

All the values of all arguments in the pricing formula that are 

assigned the same level of imprecision produce or are responsible for 

all the values of the evaluated asset price at the same level of 

imprecision. [P2] 

2.4 Empirical Results 

The emphasis in this thesis is the analysis of imprecision, while providing for various 

types of uncertainty without concentrating on a specific type or source. To illustrate the 

method, we could use unreliable predictions of the arguments in the pricing formula 

(2.5) and based on them evaluate the current price. Alternatively, we could move the 

evaluation point back in time, and use historic volatile data for the arguments. We 

settled for the latter. 

Datastrearn data are employed from 1975 to 2000, on share prices and dividend 

yields for thirty-five UK companies traded on the London Stock Exchange (LSE), as 

listed in Table 2.1. The companies come from various sectors and have a diverse 

market capitalisation. The selection was initially based on a favourable price-to-book 

value. Furthermore, formula (2.5) is applied to evaluating any company's share price, 

and the argument ý acts as a discounting factor for the proceeds from investing in 

those shares. To model i?, we use the three-month UK treasury bill rate approximating 

the risk free rate of retum. 
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Table 2.1: List of companies 

BASS 
BBA GROUP 
BENTALLS 
BLUE CIRCLE INDUSTRIES 
BOC GROUP 
BOOTS CO. 
BP AMOCO 
BRITISH AMERICAN TOBACCO 
BUNZL 
COATS VIYELLA 
DIXONS GROUP 
GOODWIN 
GREAT UNIVERSAL STORES 
HANSON 
INCHCAPE 
LEX SERVICE 
MARKS & SPENCER 
NORTHERN FOODS 
PILKINGTON 
RANK GROUP 
RMC GROUP 
SAINSBURY (J) 
SCOTTISH & NEWCASTLE 
SMITH (WH) GROUP 
SMITHS INDUSTRIES 
TARMAC 
TATE & LYLE 
TAYLOR WOODROW 
TIGROUP 
TRANSPORT DEVELOPMENT GROUP 
UNILEVER 
UNITED BISCUITS HOLDINGS 
WHITBREAD 
WIM[PEY (GEORGE) 
WOLSELEY 
Market Capitalisation in 2000. 

sector market capitalisatioW., fm 
Restaurants, Pubs & Breweries 7,616.94 
Engineering - General 2,186.50 
Retailers - Multi Department 26.79 
Building & Construction Materials 2,912.45 
Chemicals - Commodity 6,530.61 
Retailers - Multi Department 5,445.32 
Oil - Integrated 121,241.85 
Tobacco 7,654.29 
Business Support Services 1,553.66 
Other Textiles & Leather Goods 292.00 
Retailers - Hardlines 7,103.14 
Engineering Fabricators 5.65 
Retailers - Multi Department 3,641.28 
Building & Construction Materials 3,383.77 
Vehicle Distribution 242.97 
Vehicle Distribution 436.58 
Retailers - Multi Department 8,464.95 
Food Processors 609.23 
Building & Construction Materials 926.97 
Leisure Facilities 1,516.28 
Building & Construction Materials 2,218.21 
Food & Drug Retailers 6,707.54 
Restaurants, Pubs & Breweries 2,684.77 
Retailers - Soft Goods 1,200.80 
Aerospace 2,912.40 
Building & Construction Materials 1,126.40 
Food Processors 1,820.48 
Other Construction 510.63 
Engineering - General 2,401.66 
Rail, Road & Freight 161.18 
Food Processors 13,261.69 
Food Processors 1,255.64 
Restaurants, Pubs & Breweries 3,102.43 
House Building 415.45 
Builders Merchants 2,725.25 

Then the crisp data are transfon-ned into fuzzy intervals, using the following 

calibration procedure for the membership functions. The support of the membership 

function of Pt at a particular t, that is the a- cut Pt (a) for a=0, is chosen as 2.5% 

wider than the 99% normal-distribution confidence interval of the crisp Pt over the 

whole horizon of the pricing factors ]:! ý t<T. 
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il 
_] 

9 

lüt (0) =1 Pt (0) 
TT2 

Pt (0) = Pt - 1.025-2.576- P-Z Pr IT 
r 

(T+1), 1: 9t: 9T 

, r=] r=I 

TT2 
Pt(O)=Pt+1.025-2.576- 1: Pr-2]P 

.., rIT 
(T+]), 1! ýt! ýT 

Fr= 

T=1 

(2.15.1) 

This permits for a broader range of possible values to be considered when modelling 

uncertainty than the range of probable values. Further, the vertex of the membership 

function, that is the value with a membership level of I, is selected equal to the crisp 

value, 

Pt (1) = Pt, 1:! ý t<T (2.15.2) 

Finally, we avoid non-positive values of rates, yields and prices, e. g. in case in the 

calibrated membership function Pt(O):! ýO, then Pt(O)=e>O is chosen. The 

calibration procedure is repeated for DY,, 1:! ý t:! ý T, and for R where 

T 
R(])=ERt T. 

t=1 

/I 

To illustrate the imprecision, modelled within each company's data, we will 

present the fuzzy trajectory of its dividend per share over the investment horizon, 15. it 

is calculated as the following Cartesian product, 
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T 
fl (P-,. (a) J5 Y, (a)), 0! ý a<I 
t=l 

(2.16) 

Alongside the fuzzy trajectory of the arguments, the graphics below also present the 

evaluated with the pricing formula fuzzy interval for the asset price at t=0, January 

1975. We include here the graphics for the first ten companies, and provide the 

complete set in Appendix Al. 
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Figure 2.6a: BOOTS CO. - fuzzified data 
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Figure 2.9a: BUNZL - fuzzified data 
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Figure 2.9b: BUNZL - 
evaluated fuzzy share price 

From the empirical results above, we can make the following conclusions. 

Although the same data calibration procedure is applied to all companies, the resultant 

fuzzy trajectories differ in shape, and thus in the uncertainty modelled. Furthermore, 

one can observe how the character and shape of the fuzzy trajectory affects the shape of 

the membership function of the evaluated share price P0. An a- cut in the fuzzy 

interval price PO (a) in the graphics on the right-hand side includes all the values 

possible as a result of all the values associated with the same level of uncertainty in the 

graphics on the left-hand side. Each a -cut 
PO (a) is an interval estimate of the price 

at the corresponding level of uncertainty. 

2.5 Conclusion 

In this Chapter, a general concept for solving fuzzy equations with made-up data 

[35,136-138] is applied. However, we specify this general concept and introduce 

relevant modifications to produce a particular approach to asset pricing using empirical 

data. The recommended steps are as follows. First, the crisp equation is solved with 

regard to the variable of interest, and we solve the equation (2.1) to produce the function 
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Second, the arguments in the resultant function are fuzzified, and we get the 

fuzzy function (2.5) and decide on the shape of the membership functions of its 

arguments. Third, an appropriate fuzzy interval approximation of the solution is 

provided, and we show that the applied pricing function commutes with level-cutting, 

and the fuzzy interval evaluation of the asset price is produced with the formulas (2.8) 

and (2.9). 

The same approach can be applied to solving single equations or systems of 

equations: linear, non-linear, difference or differential. Therefore, following the line of 

reasoning presented in this Chapter, a fuzzy solution to any crisp pricing model may be 

derived, and the results are not restricted to the model considered here. Thus increasing 

the computational flexibility, any imprecision relevant to the problem could be included 

in the asset evaluation. 

In comparison, in hard computing imprecision and uncertainty are undesirable 

properties. Standard financial techniques focus on the most probable solutions, regard 

relatively large market shifts as too unlikely to matter, and completely neglect extreme 

situations. Such techniques may account for what occurs 'most' of the time in the 

market, but the picture they present does not reflect the reality, as major events happen 

in the residual time and investors are surprised by 'unexpected' market movements. In 

[1411, it is argued that this events are not as extreme as it is usually assumed and that 

standard techniques ignore events that may happen every month on the market, or even 

every week. 

The approach presented in this Chapter exploits the tolerance of soft computing for 

imprecision and uncertainty in order to achieve a tractable asset evaluation, which then 

serves as a basis for an asset risk and robustness analysis, introduced in the next Chapter. 
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Chapter 3: Measures of Risk and Robustness 

3.1 Introduction 

A soft computing solution to a problem allows an enhanced analysis of the results. We 

illustrated this quality in the previous Chapter, with the interpretation of the a -cuts of 

the evaluated asset price and the level of uncertainty in the pricing factors. In this 

Chapter, the analysis is continued and we introduce measures of risk and robustness. 

The former measure communicates the risk that the market overvalues an asset, 

i. e. the risk that the asset costs effectively less than the price we pay. This is relevant to 

the situation toward the end of the twentieth century [1,142,143]. The fuzzy asset 

evaluation may be based on various pricing factors. When the factors include estimated 

future performance, then the measure presents the risk that we will not be able to 

recover the initial outlay. 

A fuzzy evaluation of an asset is produced as a result of some considered range 

of imprecision modelled into the pricing factors. Then the risk measure is derived from 

this resultant evaluation. If the range of data imprecision is further broadened, this will 

modify the membership function of the evaluated price and affect the risk value. A 

robustness measure is introduced to estimate how sensitive is the evaluated fuzzy asset 

price and particularly its risk level toward increased imprecision. 

The analytical conclusions for both measures are followed by empirical results 

and their interpretation. 
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3.2 Asset Risk Measure: Definition and Empirical Results 

The decision to invest in an asset is generally based on an estimate of how favourable 

this choice is. The following risk measure serves the role of such an indicator. We 

have the fuzzy evaluation for the asset price, and observe how that asset is currently 

priced on the market. The fuzzy interval evaluates the true value of the asset. Every 

crisp price element of the fuzzy interval is assigned a degree of membership to the true 

price, g (xpo, I PO ). Then, if the current market price Q is hypothetically considered as 

element of the fuzzy interval, it can also be assigned a degree of membership. This 

degree indicates up to what level qQ , 0:! ý qQ :! ý 1, we believe the market price is the 

true asset price, i. e. the asset is neither undervalued nor overvalued. 

aQ =/I NO =QIA) (3.1) 

When the market price is situated on the left-hand side of the point with a membership 

level of I in the graph of the evaluated fuzzy interval price PO (1), then the asset could 

be undervalued currently and thus attractive for investment at this time. The opposite is 

valid when the market price is situated on the right-hand side. 

Let us focus on the former case, Q<P (1) 
. If a price value with a membership 

level lower than qQ happens to be the true value, p NO I PO) < qQ, then the investor 

effectively overpays and bears the risk of realising a loss. When the market price 

accords with the true value, then no loss or profit is expected, and for values with 
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,, 
JPO) > qQ, the asset would be underpaid for. Therefore qQ differentiates (xp 

between the two outcomes, and may serve as a risk measure SR, 0! ý 91! ý 1, as 

introduced in our publications [P2, P3]. 

Derinition 3.1: Asset risk measure 

The asset risk measure can beformulated as: 

9ý=a =, u(Ql- Poss - (3.2) Q Po 1po = Q1 , 

where qQ is the membership level of the current market 

price Q to the evaluatedfuzzy asset price Po. [P2, P3 ] 

If we consider the case where Q>P (1) 
, the risk there is too high for any value of qQ 

Thus the risk measure %=I is accepted for all qQ. 

The above analysis is illustrated with the following graphics presenting the risk 

evaluation for the first ten companies. The complete set of graphics is provided in 

Appendix A2. 
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Figure 3.10: COATS VIYELLA 
evaluated risk 91 =0 

There exist three qualitatively different modes for the investment risk measure: 9ý =0, 

0< 91 <I and 91 = 1. Furthermore, within the range 0< SR < 1, the risk can be low, 

medium or high. The results are summarised in Table 3.1 below. 

0 In the first mode, any element of the evaluated price has a higher possibility to be 

the true value of the asset then the price the asset is currently traded at. Therefore, 

no loss is expected and the asset is a favourable investment. The empirical results 

show that the shares of the following companies qualify as favourable assets: 

BLUE CIRCLE INDUSTRIES, BOC GROUP, BP AMOCO, COATS VIYELLA, 

LEX SERVICE, TARMAC, TI GROUP, TRANSPORT DEVELOPMENT 

GROUP, UNITED BISCUITS HOLDINGS and WOLSELEY. 

a In the second mode, there exists a subset of possible values in the fuzzy asset price 

situated left to the trading price. Most companies fall in this category. The larger 

the subset and the higher the possibility of its elements to be the true asset value, the 

higher the investment risk. For example, PILKINGTON with 91=0.026, 

TATE & LYLE with 91 = 0.190 and BBA GROUP with 91 = 0.245 all have a low 
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Table 3.1: Evaluated risk measure by company 

company risk 91 

BASS 0.772 
BBA GROUP 0.245 
BENTALLS 0.528 
BLUE CIRCLE INDUSTRIES 0.000 
BOC GROUP 0.000 
BOOTS CO. 1.000 
BP AMOCO 0.000 
BRITISH AMERICAN TOBACCO 0.901 
BUNZL 0.839 
COATS VIYELLA 0.000 
DIXONS GROUP 0.656 
GOODWIN 0.421 
GREAT UNIVERSAL STORES 0.942 
HANSON 0.507 
INCHCAPE 1.000 
LEX SERVICE 0.000 

MARKS & SPENCER 0.944 

NORTHERN FOODS 0.339 

PILKINGTON 0.026 

RANK GROUP 0.658 

RMC GROUP 0.479 

SAINSBURY (J) 1.000 

SCOTTISH & NEWCASTLE 0.487 

SMITH (WH) GROUP 0.986 

SMITHS INDUSTRIES 0.584 

TARMAC 0.000 

TATE & LYLE 0.190 

TAYLOR WOODROW 0.937 

TIGROUP 0.000 

TRANSPORT DEVELOPMENT GROUP 0.000 

UNILEVER 1.000 

UNITED BISCUITS HOLDINGS 0.000 

WHITBREAD 0.765 

WIMPEY (GEORGE) 1.000 

WOLSELEY 0.000 
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risk measure. The risk values for BENTALLS, MONS GROUP, GOODWIN, 

HANSON, NORTHERN FOODS, RANK GROUP, RMC GROUP, SCOTISH & 

NEWCASTLE and SMITHS INDUSTRIES fall within the medium range 

0.250 < 91 < 0.750. Next, WHITBREAD with 91 = 0.765, BASS with 91 = 0.772 

and BUNZL with SR = 0.772 are assigned a relatively high risk, while BRITISH 

AMERICAN TOBACCO., GREAT UNIVERSAL STORES, MARKS & 

SPENCER, SMITH (WH) GROUP and TAYLOR WOODROW all have a measure 

that exceeds 0.9 and thus approach the maximum risk value. 

s In the third mode, the trading price exceeds the element with the highest possibility 

to be the true asset value, PO (1). There may still exist elements of the ftizzy 

interval price situated right to the trading price, however in these cases we will 

consider the investment as too risky and assigned the measure 91 = 1. The results 

indicate that the shares of the following companies qualify as unfavourable assets at 

that particular time, January 1975: BOOTS CO., INCHCAPE, SAINSBURY (J), 

UNILEVER and WIMPEY (GEORGE). 

The approach is illustrated here with monthly data, as higher frequency data are 

expensive to obtain. However, modelling uncertainty with fuzzy intervals and 

evaluating a fuzzy asset price will make even better sense with daily or hourly data 

when the market is less settled and the fluctuations respond to various sources of 

imprecision. 
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Other techniques analyse different types of risk that may cause a project or 

investment to be unprofitable. Here those are rather considered as various sources of 

uncertainty, and allowances are maid to incorporate most types of imprecision while 

producing the overall risk measure. This feature of the approach is consistent with a 

line of reasoning in [ 144] suggesting the introduction of allowances for any type of 

imprecision while deriving the solution to a problem, and then analysing the character 

of the solution toward an overall criterion. 

3.3 Asset Robustness Measure: Definition and Empirical Results 

In Chapter 2, we described how the a -cuts of the fuzzified data can be considered as 

the values of the pricing factors that are situated at the same level of uncertainty 

u=I-a, and that those values are involved in producing the corresponding a- cut of 

the asset price P0. In section 3.2, we proposed the membership degree of the trading 

price Q to the evaluated asset price as a measure of the investment risk 91. That 

membership degree determines the highest a -cut in the evaluated asset price which 

includes the trading price, and we will call it the 9R - cut . The elements of all a- cuts 

situated above the 91 -cut have a higher possibility to be the true asset value, and the 

investment will be profitable if any of them happens to be the asset value. On the other 

hand, any a- cut situated below the SR - cut in the solution involves elements that will 

make the investment unprofitable, if they happen to be the asset value. The higher such 

a -cuts are situated, the more values with a higher possibility to be the asset value will 
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have the chance to turn the investment unprofitable. This is another justification for the 

correct choice of the risk measure. Furthermore, it allows us to give one more 

interpretation of that measure. There is a critical level of the uncertainty embodied into 

the fuzzified pricing factors that delimits the risk of a project investing into the asset to 

become unprofitable. As u=1-a, then starting with u=0 and gradually increasing 

the level of factor uncertainty, the level 

U91 =1-91 (3.3) 

is reached. The investment is profitable at all levels of uncertainty lower than u9j, 

u< u9j, and there is a chance of becoming unprofitable at levels u> u9j. Generally, a 

low uqj means that the chance of realising a loss appears at a low level of factor 

imprecision and thus the investment is highly risky. If for some asset u9j = 0, then the 

investment is unprofitable even at the lowest and practically at any level of uncertainty. 

Therefore, the highest risk SR =I is correctly assigned to such assets. If ug, =I, then 

the asset constitutes a profitable investment at all involved levels of imprecision. 

Accordingly, the lowest risk 91 =0 is associated with such assets. 

In Chapter 2, we also explain that the fuzzified factors model a range of 

imprecision, and their level-cuts only represent levels of uncertainty within that range. 

Figure 3.11 illustrates how the fuzzy factor tra ectory for BP AMOCO transforms under j 

a broader range of imprecision. Further illustration of the transformation of the fuzzy 

factor trajectories by company is available by comparing figures A1.1a to A1.35a in 

Appendix I with figures A3. Ia to A3.3 5a in Appendix 3. 
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Figure 3.11b: BP AMOCO - fuzzified data 
under a broader range of modelled imprecision 

Factors modelling a broader range of imprecision will produce a modified fuzzy asset 

evaluation. Therefore, the transformed factor trajectories will affect the corresponding risk 

measures. The chance of realising a loss will appear at lower levels of uncertainty U912 

within the broader range of data imprecision, 

USR I. 

Consequently, the evaluated risk measure should increase, 

912 ýý 911 
- 

(3.4.2) 

Figure 3.12 illustrates this analytical conclusion with the empirical result for BP AMOCO. 
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evaluated asset price and risk measure 912 = 0.529 
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Notably, the risk value increases from SRI =0 under the initial calibration to 

912 = 0.529 here. Analogous effect is observed when comparing graphics A2.1 to 

A2.35 in Appendix 2 with graphics A3.1b to A3.35b in Appendix 3, where the results 

by company are provided. 

The analysis from the beginning of the section up to this point deducts the 

following definition, as introduced in our publications [P2, P3]. 

Derinition 3.2: Asset risk and modelled factor imprecision 

There exists a critical level of the uncertainty embodied into the 

pricingjactors, and that level delimits the investment riskfor the asset. 

m The critical level shifts downwards under a broader range of 

imprecision modelled with thefuzzifted data. 

N This results in an increased risk measure. [P2, P31 

Therefore, we can introduce a further measure A, 0:! ý A: 5 1, evaluating another feature 

of an asset, how robust is its risk measure. The more robust assets should be assigned a 

higher measure, suggesting the following definition, as introduced in our publications 

[P3, P41. 

Derinition 3.3: Asset robustness measure 

The asset robustness measure can beformulated as: 

A=]-(912-911) ') 

911: 5 1,0: 5 912 :51,912 ýý 911 
ý 

(3.5) 

where SRI and 912 are risk measures under different calibration of 

the uncertain pricingjactors. [P3, P4] 
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Let us present the robustness evaluation of the shares for the list of companies 

in our database. First, a broader range of data imprecision is modelled through slightly 

modifying the calibration procedure from Chapter 2. The support of the membership 

function of a factor, e. g. DYt at a particular tE-= [1, T], is chosen as wide as the 95% 

confidence interval of the Student's distribution, with only 6 degrees of freedom, of the 

crisp factor DYt over the whole horizon 1:! ý t<T. 

DYt (0) =19 DYt (0) -1 
-) 

DYt (0) = DYt - 2.447 2: DYr -Z DYV T 1: 9 t: 9 T 

TT 
DYt (0) = DYt + 2.447 2: DYV - 

2: DY T t: 9 T. 
r- 

v=I 

/' / 

(3.6) 

The choice of the vertex of the membership function has not changed. The procedure is 

repeated for the rest of the factors Pt , 1: 5 t !ýT, and R. Next, the evaluation of the 

robustness measure for the first six companies in the database is presented in figures 

3.13b to 3.18b. The complete set of graphics is provided in Appendix A3. 

Again, there are three qualitatively different cases for the robustness measure: 

A=1,0! ý A<I and 'no value assigned'. Additionally, the second case has 

subcategories, as some assets demonstrate lower robustness, while others are associated 

with higher values. 
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0 The highest value A= 1 is assigned to companies with 912 = 0, and therefore 

SRI = 0. It is unlikely for the risk measure to stay the same 912 = 911 if the initial 

risk is 0< SRI < 1. Graphics 3.16 and 3.17 identify BLUE CIRCLE INDUSTRIES 

and BOC GROUP, correspondingly, as maximum robustness companies. The 

summary of the results in table 3.2 show the same quality for COATS VIYELLA, 

LEX SERVICE, TARMAC, UNITED BISCUITS HOLDINGS and WOLSELEY. 

f-- 0 line 

LL 
a- 

, F: 
ic 

Dividend per Share, F-/100 

Figure 3.13a: BASS - fuzzified data 
under a broader range of imprecision 

912 = 0.820 

0.772 

Share Price, E/100 

Figure 3.13b: BASS - 
evaluated robustness A= 0.952 

0 line 

r_ 
0 
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0- 
ýa 
LO 
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Dividend per Share, Ell 00 

LL 

.0 

Figure 3.14a: BBA GROUP - fuzzified data 

under a broader range of imprecision 

C 0 
t5 

IL 0.527 9ý2 

.0 E 
0.245 

Share Price, E/100 

Figure 3.14b: BBA GROUP - 
evaluated robustness A=0.718 
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Dividend per Share, EA 00 

Figure 3.15a: BENTALLS - fuzzified data 
under a broader range of imprecision 
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Figure 3.16a: BLUE CIRCLE INDUSTRIES - 
fuzzified data under a broader range of imprecision 
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Figure 3.17a: BOC GROUP - fuzzified data 

under a broader range of imprecision C, 
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Figure 3.15b: BENTALLS - 
evaluated robustness A=0.706 
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Figure 3.16b: BLUE CIRCLE INDUSTRIES - 
evaluated robustness A=I 
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Figure 3.17b: BOC GROUP - 
evaluated robustness A=I 
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Figure 3.18a: BOOTS CO. - fuzzified data 
under a broader range of imprecision 

Figure 3.18b: BOOTS CO. - 
no robustness measure is assigned 

n Although most of the companies are associated with the second case, this mode is 

not homogeneous and we should distinguish between different submodes. For 

example, the shares of PILKINGTON are a low robust asset at t=0, with 

A=0.257 in table 3.2. Further, BP AMOCO with A=0.471, TI GROUP with 

A=0.437 and TRANSPORT DEVELOPMENT GROUP with A=0.339 all show 

relatively low values. Next, TATE & LYLE is assigned a medium measure 

A= 0.522. On the other hand, figures 3.14 and 3.15 present BBA GROUP with 

A=0.710 and BENTALLS with A=0.706, correspondingly, as companies with 

relatively high robustness. In table 3.2, the same is valid for GOODWIN with 

A=0.846, NORTHERN FOODS with A=0.796, RANK GROUP with A=0.761 

and SCOTTISH & NEWCASTLE with A=0.813. Finally, BASS in figure 3.13, 

and BRITISH AMERICAN TOBACCO, BUNZL, DIXONS GROUP, 

GREAT UNIVERSAL STORES, HANSON, MARKS & SPENCER, 

RMC GROUP, SMITH (WH) GROUP, SMITHS INDUSTRIES, 

TAYLOR WOODROW and VvIHITBREAD in table 3.2, all demonstrate high 

measures of A> 0.9. 
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Table 3.2: Evaluated robustness measure by company 

company robustness A 
BASS 0.952 
BBA GROUP 0.718 
BENTALLS 0.706 
BLUE CIRCLE INDUSTRIES 1.000 
BOC GROUP 1.000 
BOOTS CO. - 
BP AMOCO 0.471 
BRITISH AMERICAN TOBACCO 0.981 
BUNZL 0.959 
COATS VIYELLA 1.000 
DIXONS GROUP 0.943 
GOODWIN 0.846 
GREAT UNIVERSAL STORES 0.990 
HANSON 0.934 
INCHCAPE - 
LEX SERVICE 1.000 
MARKS & SPENCER 0.989 
NORTHERN FOODS 0.796 
PILKINGTON 0.257 
RANK GROUP 0.761 
RMC GROUP 0.936 

SAINSBURY (J) - 
SCOTTISH & NEWCASTLE 0.813 

SMITH (WH) GROUP 0.995 

SMITHS INDUSTRIES 0.945 

TARMAC 1.000 

TATE & LYLE 0.522 

TAYLOR WOODROW 0.956 

TI GROUP 0.437 

TRANSPORT DEVELOPMENT GROUP 0.339 

UNILEVER - 
UNITED BISCUITS HOLDINGS 1.000 

WHITBREAD 0.959 

WIMPEY (GEORGE) - 
WOLSELEY 1.000 
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0 When the initial risk is 91, = 1, and inevitably 912 = 1, then no robustness value is 

assigned, as both the calculated A=1 or the choice of A=0 would not adequately 

correspond to the case. Figure 3.18 identifies BOOTS CO. in that state. This is also 

the case with the following companies - 

UNILEVER and WIMPEY (GEORGE). 

3.4 Conclusion 

INCHCAPE, SAINSBURY (J), 

The analysis in this Chapter further demonstrates how a fuzzy solution to a problem is 

more informative than the crisp one. We introduce two measures, the risk 91 and the 

robustness A, characterising each asset as an investment choice. Though related, the 

two measures focus on different features of the investment choice. Thus an asset may 

be assigned a low risk value and a high robustness value, or a high risk measure and a 

low robustness measure, etc. The empirical results confirm this analysis, as the shares 

of the companies in our database represent risk and robustness measures in various 

combinations. 

Each measure is associated with three qualitatively different modes: SR = 0, 

0< SR <I and 91 =I for the risk value, and 'no value assigned, 0:! ý A<I and A=I 

for the robustness measure. The middle modes are most interesting and versatile. The 
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measures for the majority of assets take values there. To distinguish further quality 

within those modes, we introduce 7ow', 'medium' and 'high' risk and robustness. On 

the other hand, the boundary modes have special meaning. Thus, SR =0 represents 

investments that are not associated with any loss at all levels of uncertainty, while 

SR =I stands for those that will realise a loss at any level of uncertainty. Assets that 

keep a zero risk measure under the broader range of imprecision 912 =0 are assigned 

maximum robustness A=1, while those whose risk value under the narrower range is 

91, =I are assigned no robustness value. 

The logical step forward is to suggest a ranking procedure that applies the two 

measures and orders the assets on a preference scale. This is the subject of the next 

Chapter. 
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Chapter 4: Asset Ranking Technique 

4.1 Introduction 

Here we design an asset ranking technique based on the conclusions in the preceding 

Chapters. In the sense of the formulated risk and robustness measures, lower values for 

the former and higher values for the latter are preferable. Assets are initially ordered 

according to their risk value. Then, among those with relatively close risk measures, 

assets with a higher robustness measure are given a higher ranking. Therefore, the 

technique involves two steps, risk and robustness related accordingly. 

The first step starts with evaluating the risk measure for each asset under 

conditions and a range of imprecision that are closer to reality. Modelling conditions 

closer to reality depends on the choice of pricing factors. It involves decisions like 

whether to consider a factor as constant or time-varying, whether the effect of a factor 

can be approximated with a linear or a nonlinear relation, etc. Next, considering the 

fuzzy interval data, the choice relates to the calibrating procedure that will introduce a 

range of imprecision sufficiently broad to approach that involved in real problems. 

The second step in the ranking technique starts with the choice of qualitative 

values for the robustness measure. This resolves the problem of ranking assets with 

close both risk and robustness measures. Two assets with close risk values only 

exchange their position in the ranking table if the slightly riskier asset has a 

qualitatively higher robustness. 

The two-step technique provides a market agent with a soft asset ranking 

adjusted to data imprecision and market imperfections. 
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4.2 Time-Varying Return 

The ranking technique starts with evaluating the risk measure under conditions 

approaching reality. In Chapter 2, the pricing formula is derived from the price- 

dividend relation under the assumption of a constant return, though compensating for 

that by modelling a fuzzy interval return. Here we will follow the argument that stock 

returns are time-varying rather than constant, as regression tests have convinced 

financial economists [135]. Thus a modified pricing formula is produced. 

The assumption of time-varying returns increases the nonlinearity of the 

solution. Therefore, a loglinear approximation is required. The logarithmic prices, 

dividend yields and returns are denoted with the small letters pt =- ln(Pt), 

dyt =- 1n (DYt ) and rt -= 1n (I + Rt ), correspondingly. Starting from the logarithmic 

price-dividend relation 

rt+l --.: pt+l - pt +In (I+ 
edyt+l 

) 
11 

the following pricing formula is derived 

(4.1) 

T 
PO = 2ý 51'-] [(l-5j)(dyt+Pt)+(52-rt]+'5lTPT (4.2) 

t=l 

Here o5l and J2 are parameters of linearisation, 
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(51 
= 

I 

T 
F, dyt IT 

I-e t=l 

p 0<45, <1 9 

1 
82 

-(1 - i5l)ln 81 -1 p 
92 `: ý 1- 

(4.3) 

To obtain the fuzzy evaluation of the log asset price PO, let us substitute in 

(4.2) the fuzzy intervals Pt, ýyt and Ft, 1:! ý t:! ý T, for the crisp pt, dyt and rt , 

correspondingly. 

T 
1] 

I Yt ++2 TPT 
t]+ I 

t=l 
(4.4) 

The parameters of linearisation are considered crisp. The function (4.2) satisfies 

proposition 2.1 in Chapter 2. Therefore, the extension principle solution for (4.4) will 

commute will level-cutting. Thus, the a -cuts and the membership function of the log 

asset price are obtained as follows. 

Po (cr) =I To(a)], 0:! ýa<l , 
(4.5) 

T 
po (a) =L gl'-' [ (I -+ pt (a)) + 92 - rt (a)] + 91T PT (a) 

t=l 

Tg 
gT 

Po(a) =I PT (a) - 
t=l 

/I 
(x 

Po 
IPO) 

= suplalXpo E PO (cr), 0:! ý- a! ý 1) 
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If we instead substitute in (4.3) the possibilistic variables Pt, ýyt and it' for pt, dyt 

and rt, 1: 5 t:! ý T, and choose the possibility distributions as 

Poss [, bt xp, 
]= 

li (xpt I Pt ), I !ýt<T. 

POSS [ýYt 
Xdyt 

]=9 (Xdyt Idyt), 1: 5 t<T 

POSS[ýt =xrt 
] 

=P(Xrt I &), 1:! ýt<T 
3, 

(4.7) 

then the possibility distribution of the evaluated asset price will correspond to the 

membership function in (4.6), 

Poss [PO 
--.,: XPOI : -- 9( Xpo 1po) - 

(4.8) 

Once the modified pricing formula is derived and its fuzzy solution provided, 

the next decision concerns the calibration of the fuzzy interval data. We will use the 

procedure from Chapter 3 applied to each Pt, dYt and now each & as well, as this will 

introduce quite a broad range of imprecision approaching real conditions. Moreover, 

we want to provide comparability with the results obtained so far for the risk and 

robustness measures. Accordingly, the calibration procedure is not directly used to 

produce new triangular membership functions for the logarithmic data, but is applied to 

the nonlogarithmic Jbt, 
f)Yt and kt, instead, as it is in Chapters 2 and 3. Indeed, the 

only difference with the calibration in Chapter 3 is that now a fuzzy interval for each 

T 
Rt, ]:! ý t! ý T, is considered rather than just one for R Rt T. Then, the fuzzy 

intervals for P,, dyt and Tt are produced from P-t. , D- Yt and Rt through the following 
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transformation, 

,u 
(xp, u 

(ln (xp 
, 
)IP~tý), 1: 5 t<T, 

li 
( 
xdyt 

läyt)=, 
u(1n(XDYt)1, ý)yt), 1: ýgt<T 

P(X, 
tI7t)=, 

U(ln(xR, )1, kt), I: gt<T 
9, 

(4.9) 

resulting in nonlinear memberships functions for the logarithmic pricing factors, as 

illustrated with figure 4.1. 

") 9t 

LL 
Cl. Z 
LA 

C 
0 

1i :3 
LL 
ct 

Nonlogarithmic Pricing Factor Logarithmic Pricing Factor 

Figure 4.1: Transformation of data membership functions. 

Now the risk measure 913 for each asset is re-evaluated under realistic 

conditions. Comparing 913 with the risk 91, under a narrower range of imprecision, as 

presented in Section 3.2, the final robustness measure is produced, 

"-ý31 -": 1- (%3 - 911 )- (4.10) 

We will only include in the ranking table assets with risk 9ý3 < 1, as those with 913 :::::: I 

are not attractive investments at t=0. Within the database of thirty-five companies, 
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nineteen firms meet this requirement. Their graphics are included in Appendix A4, 

where q= 1n (Q) indicates the logarithmic current trading price. The results are 

summansed in table 4.1. The comparison of table 4.1 with table 3.2 reveals that the 

time-varying return induces the following relation for the robustness measure, 

A31 ý: * A21 , 
0: ýý A31 : ýý 1,0: ýý A21 "ý 1- 

Accordingly, the risk values augment as 913 ýý 912 ýý 911,0!! ý 911,912,913 !ýI- 

Table 4.1: Evaluated risk and robustness measures by company 
under time-varying return 

company 

(4.11) 

risk 913 robustness 6131 

BBA GROUP 0.696 0.549 

BLUE CIRCLE INDUSTRIES 0.000 1.000 

BOC GROUP 0.000 1.000 

BPAMOCO 0.904 0.096 

COATS VIYELLA 0.000 1.000 

GOODWIN 0.925 0.496 

HANSON 0.673 0.834 

LEX SERVICE 0.000 1.000 

NORTHERN FOODS 0.656 0.683 

PILKINGTON 0.919 0.107 

RMC GROUP 0.739 0.740 

SCOTTISH & NEWCASTLE 0.775 0.712 

SMITHS INDUSTRIES 0.959 0.625 

TARMAC 0.000 1.000 

TATE & LYLE 0.778 0.412 

TI GROUP 0.664 0.336 

TRANSPORT DEVELOPMENT GROUP 0.736 0.264 

UNITED BISCUITS HOLDINGS 0.000 1.000 

WOLSELEY 0.092 0.908 
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4.3 Two-Step Ranking: Derinition and Empirical Results 

The ranking procedure involves two steps, risk and robustness related, correspondingly. 

The risk measure has a higher priority to investors. Therefore, at the first step, the 

assets are ordered in accordance with their risk values. We consider here the final rather 

than the intermediate risk measures, as it is beneficial to hold a risk ranking produced 

under realistic conditions, though further assisted by the robustness measures. As an 

illustration, Table 4.2 presents the ranking of the nineteen companies from Section 4.2 

according to the measure 913 
- 

A preparatory point for the second step is the choice of appropriate qualitative 

values for the robustness measure. For example, based on the dispersion of the measure 

A31 in table 4.1, we introduce the following qualitative ranges, 

low relatively low 
A 

robustness A31 0 ... 0.300 0.301 ... 0.525 
medium relatively high high 

A 

0.526 ... 0.725 0.726 ... 0.950 0.951---l 

(4.12) 

The qualitative robustness value for each asset is included alongside its quantitative risk 

in table 4.2. 
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Table 4.2: Risk ranking 

rank company risk 913 robustness 1ý131 
1 BLUE CIRCLE INDUSTRIES 0.000 high 
I BOC GROUP 0.000 high 
I COATS VIYELLA 0.000 high 
I LEX SERVICE 0.000 high 
I TARMAC 0.000 high 
I UNITED BISCUITS HOLDINGS 0.000 high 
2 WOLSELEY 0.092 relatively high 
3 NORTHERN FOODS 0.656 medium 
4 TIGROUP 0.664 relatively low 
5 HANSON 0.673 relatively high 
6 BBA GROUP 0.696 medium 
7 TRANSPORT DEVELOPMENT GROUP 0.736 low 
8 RMC GROUP 0.739 relatively high 
9 SCOTTISH & NEWCASTLE 0.775 medium 
10 TATE & LYLE 0.778 relatively low 
II BP AMOCO 0.904 low 
12 PILKINGTON 0.919 low 

13 GOODWIN 0.925 relatively low 

14 SMITHS INDUSTRIES 0.959 medium 

Let us illustrate each qualitative value with a representative asset. In figure 4.2, the 

results for BP AMOCO describe a case of low robustness 'ý31 = low, as the risk value 

has increased from the minimum SRI =0 UP to 913 = 0.904. TATE & LYLE in figure 

4.3 demonstrates relatively low robustness due to the significant change from 

SRI = 0- 190 tO 913 = 0.778. The graphics for SCOTTISH & NEWCASTLE in 

figure 4.4 indicates robustness 1ý131 = medium . Further, the qualitative value 

Antoaneta Serguieva May 2004 



4.3 Two-Step Ranking: Definition and Empirical Results 56 

0.904 913 

0 
c :3 

LL 0 
CL 4 <-- = 0.529 9ý2 

o 12 , % =0 

.B (j -,., E 
iI 

(D 

q line 

16 1 61, z !5 
Log ýkare Pdce 

Figure 4.2: BP AMOCO - 
qualitative robustness value: 

A31 10w 

C 
0.775 

0 
91 = 0.674 

c2 :3 
LL 

0.487 
U) 
(D 

E 

f-- q line 

oo") 
0 18 13 

Log Share Price 
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Figure 4.6: HANSON - 
qualitative robustness value: 
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Figure 4.3: TATE & LYLE - 
qualitative robustness value: 
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, 6131 = relatively high 

q line 913 0 

c 912 0 

c :3 LL 

E 

0 Oý 

Log Share Pdce 

Figure 4.7: BOC GROUP- 
qualitative robustness value: 

1ý31 = high 
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A31 =relatively high is presented with two companies to illustrate the earlier 

conclusion that higher robustness does not necessarily imply lower risk. While figure 

4.5 indicates only a slight increase in the minimum risk 91, =0 to 9R3 = 0.092 for 

WOLSELEY, the graphics for HANSON in figure 4.6 demonstrates a stable and yet 

significant risk, 9R, = 0.507 and 913 = 0.673. Finally, BOC GROUP in figure 4.7 is an 

example of a highly robust asset. 

Next, the ranking from the first step of the procedure is adjusted in accordance 

with the robustness measure. Between two assets with close risk values, where 

giasset] giasset2 0.1 3-3 (4.13) 

the more robust one is preferable. In order to ensure the priority of the risk ranking, the 

two assets will only change places if they have qualitatively different robustness values. 

For example, the shares of HANSON with 1ý131 = relatively high and 913 = 0.673 are 

preferable to the shares of NORTHERN FOODS with 1ý131 =medium and 913 = 0.656 

and TI GROUP with 1ý131 = relatively low and 913 = 0.664. By analogy, RMC GROUP 

is more attractive than NORTHERN FOODS, BBA GROUP, TI GROUP and 

TRANSPORT DEVELOPMENT GROUP. Next, BBA GROUP and TI GROUP will 

change places, as well as SCOTTISH & NEWCASTLE and TRANSPORT 

DEVELOPMENT GROUP. The robustness adjusted ranking is in favour of TATE & 

LYLE before TRANSPORT DEVELOPMENT GROUP, as well as in favour of 

GOODWIN before BP AMOCO and PILKINGTON. Finally, SMITHS INDUSTRIES 

with 0131 = medium, 913 = 0.959) is preferable to GOODWIN with 
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(A31 = relatively low, 913 = 0.925), BP AMOCO with (A31 = low, 913 = 0.904) and 

PELKINGTON with (1ý131 
-= low, 913 = 0.919). Table 4.2 presents the robustness 

adjusted ranking, where the modifications described in the lust column are applied to 

the risk ranking in table 4.1. 

Table 4.3: Robustness adjusted ranking 

rank I company 

I BLUE CIRCLE INDUSTRIES 

I BOC GROUP 

I COATS VIYELLA 

I LEX SERVICE 

I TARMAC 

I UNITED BISCUITS HOLDINGS 

2 WOLSELEY 

3 HANSON 

4 RMC GROUP 

5 NORTHERN FOODS 

6 BBA GROUP 

7 TIGROUP 

8 SCOTTISH & NEWCASTLE 

9 TATE & LYLE 

10 TRANSPORT DEVELOPMENT GROUP 

12 SMITHS INDUSTRIES 

II GOODWIN 

13 BP AMOCO 

14 PILKINGTON 

risk 913 robustness A311 modification 

0.000 high 

0.000 high 

0.000 high 

0.000 high 

0.000 high 

0.000 high 

0.092 relatively high 

0.673 relatively high 

0.739 relatively high 

0.656 medium 
0.696 medium 
0.664 relatively low 

0.775 medium 
0.778 relatively low 

0.736 low 

0.959 medium 
0.925 relatively low 

0.904 low 

0.919 low 

In the Section Original Contributions, we have described how the measures of 

asset risk and robustness we introduce with Definitions 3.1 and 3.3, correspondingly, 
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relate to the crisp asset risk analysis. Particularly to the crisp capital asset pricing model 

and the arbitrage pricing theory. Considering the discussion there and the available 

information in our database, we can only suggest the following meaningful comparison. 

crisp, yet all-inclusive risk measure is introduced as the potential profit, i. e. the 

difference between the crisp price-dividend evaluation and the observed asset price. 

The larger the difference the smaller the risk and the more preferable the asset. 

Table 4.4: Crisp asset ranking 

rank company crisp measure 
LEX SERVICE 1.31 

2 COATS VIYELLA. 0.97 

3 TIGROUP 0.53 

4 TARMAC 0.51 

5 HANSON 0.48 

6 BBA GROUP 0.47 

7 NORTHERN FOODS 0.46 

8 BOC GROUP 0.38 

9 UNITED BISCUITS HOLDINGS 0.37 

10 RMC GROUP 0.36 

11 TRANSPORT DEVELOPMENT GROUP 0.34 

12 TATE & LYLE 0.32 

13 SCOTTISH & NEWCASTLE 0.31 

14 BLUE CIRCLE INDUSTRIES 0.27 

15 WOLSELEY 0.26 

16 PILKINGTON 0.12 

17 GOODWIN 0.10 

18 SMITHS INDUSTRIES 0.05 

19 BP AMOCO 0.04 
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Table 4.4 does not make much sense on its own, as the crisp measure is not an effective 

risk measure. There is also no indication how reliable the crisp measure is. For 

example, the crisp measure can be high and there may still exist highly possible price 

values that are smaller than the observed price. This is the case with TI GROUP. For 

TI GROUP, the most possible profit is high at 0.53, which positions it high in the crisp 

ranking. However, the observed price is still well within the range of the evaluated 

fuzzy price and has a membership value of 0.664, which positions it low in the fuzzy 

ranking. Moreover, the fuzzy ranking indicates that the robustness value is relatively 

low, which suggests that the risk value is prone to increase. The latter is an argument 

that the crisp profit, though high, is unreliable. Another line of reasoning is the case 

when the crisp measure is low, however a tight membership function for the evaluated 

asset provides that the fuzzy risk measure is low and highly robust. This is the case 

with BLUE CIRCLE INDUSTRIES. The low crisp measure of 0.27 suggests a low 

most possible profit, however the fuzzy ranking indicates that the profit is highly 

reliable as the fuzzy risk measure is 0 and the robustness is high. As a result, though 

starting from the same crisp formula in both cases, the ranking in Table 4.3 and Table 

4.4 is quite different. Therefore, the crisp ranking in the latter may be deceptive due to 

the ignored perception-based infonnation. Finally, though it is ineffective, we have still 

chosen the crisp measure as closely related to the way the fuzzy measures are derived. 

Thus, it is slightly complementary rather than completely irrelevant. For example, once 

we are aware of the asset risk and the asset robustness, we may want to know the profit 

we risk. However, this could be better represented by a deffuzzificaion other than the 
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most possible value, which is the crisp value. An alternative deffuzzification will 

effectively introduce a third measure derived from the fuzzy problem reformulation that 

will contribute to the analysis. Still it was hinted by the crisp measure. 

The same approach can be applied starting from an arbitrage pricing theory 

model or a capital asset pricing formula, and the corresponding crisp and fuzzy results 

can be compared. This will require extracting a database for relevant economic factors 

and market indices, correspondingly. 

4.4 Conclusion 

The fuzzy asset evaluation provided in Chapter 2 is used as a basis for deriving the risk 

and robustness measures in Chapter 3 that are the core of the ranking procedure 

developed in this Chapter. The assets are initially ordered in relation to the risk values 

and then their positions are adjusted according to the robustness values. Thus the final 

ranking informs investors about the attractive less risky and highly robust assets. 

This method can be applied to any crisp asset pricing technique. Therefore, in 

the general case, the proposed ranking procedure will be fonnulated as follows. 
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Algorithm 4.1: Reformulating asset evaluation and analysis 

In order to rank assets in a preference scale of low risk and high 

robustness, 

a. choose a crisp asset pricing model, 

b. substitutefuzzy intervalsfOr the pricingfactors, 

c. calibrate the membership functions of thefuzzy intervals to model 

broaderfactor imprecision than the probabilistic type of 

unce ain , 

d. evaluate thefuzzy asset price and the initial risk measure, 

e. identify realistic conditions relevant to the chosen pricing model 

and transform thefactor membership functions, 

f produce thefinal risk measure and the robustness measure, 

rank the assets in relation to theirfinal risk values, 

h. adjust the ranking according to the robustness values. 

The rational step ahead is to build an asset classifier based on the developed ranking 

technique. This is the topic of the next Chapter. 
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Chapter 5: Asset Classifier: Architecture 

5.1 Introduction 

The ranking technique from Chapter 4 will order a set of assets, and this will require the 

evaluation of all the assets and their corresponding measures. Let us consider the 

variety of market agents with their diverse ranges of preference. Once the ranking is 

completed, each agent will be able to make the decision which assets have acceptable 

characteristics. The decision of an individual investor will differ from the decision for a 

mutual fund, as their risk and robustness preference ranges are different. 

On the other hand, we can implement the major conclusions of the ranking 

technique, without having to consider the whole set of assets. The technique favours 

less risky and highly robust assets, and each investment agent works within the 

preference ranges 91accepatbel ! ý9%ent and Aacceptable ý! Aagent 
- Therefore, it will be 

beneficial for him to be able to classify directly assets which fall within those ranges. 

In this Chapter we identify the network structure that allows classifying assets 

with attractive characteristics. The classification is agent-dependent, as the same 

opportunity may be attractive to some investors while unacceptable for others. The 

major task is the analysis of the approximating capabilities of neural networks toward 

fuzzy functions. 
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5.2 Crisp Neural Network with Sign Restrictions on the Weights: 

Configuration and Empirical Results 

The first step in building the soft classifier is to identify the artificial neural network 

(ANN) structure capable of approximating the fuzzy asset pricing function. We start 

with the configuration introduced in [44-46,145], as it relates to the fuzzy evaluation 

approach presented in Chapter 2. The structure has been shown to approximate some 

types of fuzzy functions that are a -cuts and interval arithmetic extensions of 

continuous real-valued functions. Furthermore, in order to achieve effective training, 

this configuration accommodates for a function being increasing or decreasing on some 

of its arguments, by imposing sign constraints on the network weights. 

The three-layer feed-forward neural network to be employed is presented in 

figure 5.1. The input neurons distribute the input signals - the logarithmic pricing 

factors pt , rt and dyt ,I:! ý t :! ý T- to the neurons in the hidden layer. Therefore, the 

transfer functions of the input neurons are identity relations, Ipt 9 Ir 
t, and Idyt 

]:! ý t:! ý T, correspondingly, with no weights and no bias terms. Next, the hidden layer 

consists of m neurons with sigmoid transfer functions d2j I -! ý j:! ý m, where Oi is the 

bias term in the function -(2j - Furthermore, wtj is the weight of the input pt, utj is the 

weight of rt and ztj is the weight of dyt in -12j . 
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A 

POAATN 

OM 

Figure 5.1: Crisp neural network approximating the fuzzy pricing function 

w the inputs are the logarithmic pricing factors pl,..., dyT; 

the transfer functions in the input layer are the identity relations Ip, IdyT with no 

weights and bias terms; 

m the transfer functions in the hidden layer are the sigmoid relations d2l,...,. (2m with 

weights fwltult, zltll:! ýt!! ýTl,..., Iwmt, umt, zmtll!! ýt!! ýT) andbias terms 

m the transfer function of the output neuron is the identity relation IpO with weights 

v, v,, and no bias ten-ns. 
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Dj (pl,..., dyT) = 
I 

T 
I+exp -2ýýwjtpt+ujtrt+zjtdyt)-Oj 

t=l 

(5.1) 

Finally, the output neuron has an identity function I PO with no bias terms, where vj is 

the weight in I PO of the signal from the j- th hidden neuron. 

The output POANN is described with 

m 

POANN =E 

j=l 

vj 

T 

., 
(wjtpt + ujtrt + zjtdyt) - Oj + exp -, 

I 

t=l 

(5.2) 

and trained to approximate function (4.2). All the signals, weights and bias terms in the 

network are crisp real numbers, and the training involves crisp computation. However, 

the objective is to approximate the fuzzy asset price. Therefore, when the network is 

simulated with the a-cuts of the input pricing factors, it should produce the 

corresponding a -cut of the asset price: 
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[ 
p,,,, (a) 

, p,,,, (a)] =[ po (a) 
, po (a)] 

1) (5.3) 

m 
I 

j=j 

vj 

T 
1+exp -Z a) + ujt rt (a) + zjt dyt (a)) - Oj 

, 
(Wit 

Pt 
t=j 

(dyt (a) ++ J2 - rt 
-(a)] 

+ 51T pT (a) (51t pt (cr) rt (cr) 

t=l 

m vj 2: 

T j=l 
I+exp wjtpt(a)+ujtrt(a)+zjtdyt(a))-Oj 

t=l 

T 
dyt (a) Pt (a)) + 952 - rt (a)] +, 5, T 

pT (a) + 
t=l 

It has been shown in [44-45,145] that 

Proposition 5.1: A layered feedforward crisp neural network with sigmoid transfer 

functions in the hidden layers can approximate the cr -cuts of the 

fuzzy interval extension of a continuous function f with nonnegative 

or nonpositive arguments, if certain sign constraints are imposed on 

the network weights. 77ze constraints are such that the partial 

derivatives of the network transfer function fANN towards each of 

the network inputs have the same signs as the partial derivatives of 

f towards each of its arguments. [46] 
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In our case, pt = ln (Pt ) ý! 0 for Pt : ý: 1 penny, rt = ln (1 + Rt ) ý! 0 for Rt ý! 0% , and 

dyt=ln(DYt)ý! 0 for DYtý! O%, 1: 5t! ýT. The interpretation of the arguments 

suggests that it is the usual case. Furthermore, we consider functions (4.2) and (5.2), 

and derive the following conditions., 

apt = apo/ap 'ý* 0 apOANN /t' 

apoANNIart = apo lDrt <0, 

apOANN IDdyt = apolDdyt >0. 

There are two alternative sets of sign constraints that satisfy conditions (5.4) for the 

(5.4) 

structure in figure 5.1, 

wjt >0 Vujt :! ýO, zjt >0, vj >0, ]! ýt: 5T, 1! ýj: 5m , (5.5.1) 

wit <oyujt > 0, zit :90, vi < 0, 1: 5 t:! ý T, 1:! ý j: 5 m. (5.5.2) 

Regarding the empirical results, we choose the Levenberg-Marquart algorithm 

to train the network from figure 5.1, as this is one of the fastest backpropagation 

techniques available. We further modify the algorithm to accommodate for the sign 

restrictions. Also, all the input vectors in the training set are presented to the network 

concurrently, as batching of concurrent inputs is computationally more efficient. The 

same thirty-five companies are considered, and to optimize computations further, the 

horizon of the pricing factors is shortened to twelve months T= 12. The fuzzy interval 

price PO is now evaluated with fonnulas (4.5) and (4.6) in January 1999. The supports 

I[ 
p, (a) 

, po (a)], ja = 0,1!! ý c:! ý 351 of PO for all companies c are provided 
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in Appendix A5 and show that 

min 
() >o . (5.6) 

Thus, constraints (5.5.1) are applied, as vj >0 will produce a positive network output. 

The training involves a set of crisp vectors comprising elements of the supports of the 

fuzzified data. It yields a minimum mean square error of the output po ANN compared 

with the corresponding solution po of (4.2). On the other han(], the testing involves a 

set of interval vectors that are a- cuts of the fuzzified data. Therefore, the interval 

approximating capability of the trained network is evaluated by 
--lomparing the interval 

output with the a -cuts of PO obtained with (4.5) and (4.6), 

-cint erval max Inetworki-targetil 
llýiý5itest 

max max pOANN (ai) - po (ai)l, max 
I 
p0A, (ai) - po (ai) 

I ai E=- 
ai ai 

where itest is the number of test vectors. 

(5.7) 

We have successfully trained a network for each asiet. The training set 

consists of 362 crisp vectors in each case and the goal is rrtse:! ý 1.10-4. To avoid 

overfitting, the network with the minimum number of hidden neuirons mEN is chosen 

every time and then tested with a set of 39 interval vectors aiming at 

-'interval :! ý 2.5-1 0-2 . No element of the training set is a boundary of an interval element 

of the test set. The results are surnmarised in table 5.1. 
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Table 5.1: Crisp neural network performance 

company I mse (training), 10-4 1 Einterval (test), 10-2 
BASS 0.988 1.29 
BBA GROUP 0.877 0.99 
BENTALLS 0.862 0.96 
BLUE CIRCLE INDUSTRIES 0.140 0.86 
BOC GROUP 0.745 0.95 
BOOTS CO. 0.010 0.18 
BP AMOCO 0.035 0.19 
BRITISH AMERICAN TOBACCO 0.349 0.62 
BUNZL 0.330 0.98 
COATS VIYELLA 0.966 2.10 
DIXONS GROUP 0.236 0.55 
GOODWIN 0.958 2.10 
GREAT UNIVERSAL STORES 0.608 1.37 
HANSON 0.054 0.36 
INCHCAPE 0.939 1.39 
LEX SERVICE 0.012 0.14 
MARKS & SPENCER 0.260 1.15 
NORTHERN FOODS 0.019 0.21 
PILKINGTON 0.161 0.67 
RANK GROUP 0.651 1.23 
RMC GROUP 0.148 0.68 
SAINSBURY (J) 0.316 0.63 
SCOTTISH & NEWCASTLE 0.956 1.41 
SMITH (WH) GROUP 0.191 0.89 
SMITHS INDUSTRIES 0.423 1.86 
TARMAC 0.980 1.41 
TATE & LYLE 0.070 0.47 
TAYLOR WOODROW 0.454 1.40 
TI GROUP 0.385 1.25 
TRANSPORT DEVELOPMENT GROUP 0.020 0.39 
UNILEVER 0.121 0.54 
UNITED BISCUITS HOLDINGS 0.967 1.10 
WHITBREAD 0.925 2.08 
WRVIPEY (GEORGE) 0.234 1.52 
WOLSELEY 0.058 0.48 

The fact that it is possible to train a crisp network to present an asset's fuzzy 
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price proves that neural networks with sign restrictions on their weights have some 

interval approximation capabilities. Again the result is not restricted to the pricing 

function used here. Once trained, a network can be simulated any time the information 

related to the asset is subject to change. For example, an agent believes he has obtained 

more reliable information, then the network is simulated with modified data 

membership functions. 

A hybrid part attached to the regular network from figure 5.1 will further 

produce the relevant risk and robustness measures. However, we will not advance in 

that direction yet, as our objective was to train a network over all assets. Though using 

various number m of hidden neurons and introducing a second hidden layer, it was not 

possible to achieve that goal. We consider two reasons. First, although the proposition 

5.1 has been theoretically proven [461, it has only been practically applied to simpler 

fuzzy functions and networks with no more than two input neurons [44-46,145]. 

Second, the parameters of linearization i5l and 152 are asset dependent, though 

determined by the network inputs. This further complicates the character of the 

function and may entangle training across assets. 

We have considered reasonable to approach the complex task of network 

approximation of fuzzy functions with the structure presented in this section, as it 

relates to the level-cutting evaluation technique introduced in the previous Chapters, and 

has been successfully applied to simpler functions. Though some partial result is 

achieved, the conclusion is that the objective of discriminating between different assets 

requires exploration of further network structures. In the next section, the 

approximating capability of a fuzzy neural network is investigated. 
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5.3 Hybrid Fuzzy Neural Network: Configuration 

The research interest in ANN is motivated to some extent by the fact that they are 

universal approximators for crisp functions [146]. Then, the anticipated question is 

whether the fuzzy extensions of the networks are also universal approximators for the 

fuzzy extensions of the functions. Therefore, the problem regarding the approximating 

capabilities of fuzzy neural networks (FNN), both regular and hybrid, has been studied 

recently [45,99-103,1471. Though regular crisp networks represent continuous crisp 

functions to an arbitrary degree of accuracy, regular fuzzy networks do not demonstrate 

corresponding approximating qualities towards continuous fuzzy functions [100,147]. 

However, regular FNN (RFNN) are universal approximators, of continuous fuzzy- 

valued functions [103]. In this section, we will identify the regular structure capable of 

representing the asset pricing function to an arbitrary degree of accuracy, and will 

subsequently configure the hybrid FNN (HFNN) that will discriminate among assets 

and classify those that are less risky and highly robust. 

Let us introduce relevant notations. RFNN are fully fuzzified multilayer feed- 

forward networks, where fuzzy arithmetic is used to compute the output of neurons with 

standard transfer functions, e. g. identity or sigmoid. On the other hand, the choice of 

neuron-transfer functions in a hybrid FNN (HIFNN) is more versatile and does not 

necessarily involve fuzzy arithmetic. The hybrid networks may include regular parts. 

Next, IV denotes the set of natural numbers, R is the set of all real numbers, and 

3(R) stands for the set of all fuzzy intervals defined on R. A crisp function is a 

mapping from and to R, fcip (y): R --> R. If the argument is defined on a compact 
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set S (-- R, then the mapping is modified to fcisp (y): S --> R, and in the 

multivariable case takes the form fcjsP(yl,... 
' Yk): Sl, ---, Sk ->R. Furthermore, a 

fuzzy function ffizzy (ý) is a projection from and to the fuzzy-interval set 3 (R) 

ff,, zzy 
(R) (R). Altematively, a fuzzy-valued function ffuzzy-valued (Y) 

is a projection from the real-number set to the fuzzy-interval set, 

ffuzzy- valued 
(y): R -> S' (R). When considering the multivariable case and the 

domain area of the variables, the mapping transforms into 

ffuzzy-valued(Y], 
---, Yk): SIX ... X Sk --> 3 (R) 

, Si c R, 1 :! ý i :! ý k (5.8) 

Finally, let pf RFNN I ! 
RFNN fuzzy -valued 

(Y] 
PIIIPA 

)I stands for a class of RFNN with 

fuzzy-valued network-transfer functions, where 

Pmin 
IFNNIIFNNfuzzy-valued (Y], 

---, Yk)l 

is the subclass with minimum fuzzification. 

(5.9) 

Based on the conclusions in [103] for the single-variable case, we will 

formulate with (5.10) and (5.11) types of continuous multivariable fuzzy-valued 

(CMFV) functions, and propose in (5.12) a minimum-fuzzification network structure 

capable of representing those functions to an arbitrary degree of accuracy. The proof is 

analogous to that provided in [1031. Let fcrisp(yl, 
---, Yk): SIX 

... X Sk ---ý R is a 

multivariable continuous crisp function on the compact sets SjcR, 1: 5i! ýk. If 
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f ti E=- -3(R) is a uzzy interval and - -> 3 (R) is a ffuzzy-valued (Y] Yk): SI X ... X Sk 

multivariable fuzzy-valued function, where 

ffuzzy-valued (Y], 
-A 

(a-fcrisp ) (yi, 
-- 

ýii"fcrisp(yl, ---, Yk), YiESi, l:! ýi:! ýk 
9 

(5.10) 

then is continuous on Furthermore, if ffuzzy 
-valued 

( YI, A SI x ... XSk 

fj(Y], ---, Yk), ]! ýj!! ýK, are CMFV functions of type (5.10), then the linear 

combination 

KK 
ffuzzy-valued "::: I 

(: ý! j (Y], 
--AE 

(15j 
*fj (Y], 

-- 
j=l j=l 

iij E=- S (R), 1:! ý j:! ý K, yj E: Si, Si c R, ]:! ý i! ý k 
1, 

(5.11) 

is also a CMFV function on S, x ... X Sk - It can be proven that the following class p of 

four-layer feed-forward RFNNs is a universal approximator for the function from 

definition (5.11), 

RFNN 
nm 

fRFNN (Y], 
--A 

jj ýi E 

i=l j=l 

ýij 
k 

1+ exp - iv-jl yj - ýj 

n, mE=- N, y E=- R, ýj, ýij, iVjI 
, 
ýj 

E=- 3 (R) 
, 

! 
RFNN: R --ý3 (R) 

* 
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The network structure includes sigmoid transfer functions with fuzzy shift terms Oj in 

the first hidden layer, and identity transfer functions with no shift terms in the input, the 

second hidden and the output layer. Furthermore, w- j, are the fuzzy weights on the 

signals from the input to the first hidden layer, ýjj are the fuzzy weights from the fist to 

the second hidden layer, and ýj are the fuzzy weights towards the output layer. Finally, 

fRFNN ( Yl,..., A) is the fuzzy-valued network-transfer function. In order to reduce the 

complexity of the training task, the minimum-fuzzified structure is required. The 

following subclass p .. j,, of p can be derived in (5.12), that retains approximating 

capabilities towards CMFV functions of type (5.11). The weights and the shift terms 

ýIjj, ýv-jj, ýjES(R) 
are restricted to be real numbers lij, wj,, OjE=-R, with the 

exception of the weights to the output layer ýj E=- S' (R) which are triangular fuzzy 

intervals, thus simplifying the fuzzy-value network-transfer ftinction fRFNN ( YI, A 

omin RFNNIIRFNN(yl, ---, Yk)= 
m 
Ek 

j=l I+exp ->'wjlyl -Oj 

n, m ý'ij p Wjj, Oj, Yj ER, ýi pGS 
(R), ! 

RFNN :R (R) (5.12) 

Therefore, if the pricing functions are presented in the form (5.11), then we 

will be able to build the hybrid fuzzy network in figure 5.2, which comprises regular 

parts and is able to discriminate between assets according to the general rules of the 

ranking technique introduced in Chapter 4. 
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(91 

OM 

5.2: Fuzzv neural network structure assets with attractive risk and robustness values 
the network inputs are the level (nonlogarithmic) pricing factors P, D YT , and the transfer functions in the input layer 

IP, IDy are identity with no weights or bias terms, while the node IR produces the average of the factors R, RT 
T 

" the transfer functions in the hidden layer LNp, LN dYT are logarithmic with no weights or bias terms; 

" the transfer functions in the hidden layer d2m , d2M+j,..., d2m+m are sigmoid with weights jWjt, Uj,, Zjtj 

I WMt 
I Umt 

I ZMt I, I W1 t' U it, ZI tI, ---, 
I WMt, Umt, zmt ,I:! ý t :! ý T, and b ias term s 01 OM 

, 
01 Om 

, correspond i ngl y; 

" the transfer functions in the hidden layer I, ,--- IN , IN+] ,--- IN+n are identity with no bias terms and with weights 
L, LNM 

, 
111 1nm on the co nnecti ons from the neuro ns d2j, ---J2M , d2m +I flM +m 

the hidden layer I PO I PO 
has fuzzy identity transfer functions with fuzzy weights VI VN , 

ý1- 
-- 

ýn and no bias terms; 

the transfer functions in nodes OPO , 
OPO produce approximations of the initial and the final risk measure, correspondingly; 

the nodes IF% 
, 
Tý have hard I imit transfer functions with agent-dependent thresholds 'Yagent 

, Aagent ; 

the output neuron produces the network advice on the asset: I (attractive risk and robustness values), 0 (disqualified asset). 

Antoaneta Serguieva May 2004 



5.4 Conclusion 

The inputs to the network are the crisp pricing factors. There are two regular 

fuzzy segments evaluating the asset under constant and time-varying return, 

correspondingly. In the general case or with other pricing functions, this translates as 

fuzzy evaluation under some restrictions on the factors and under more realistic 

conditions with relaxed restrictions. The network weights are denoted with capital 

letters in the former segment and small letters in the latter. Then the hybrid part 

employs the current trading price and the agent preferences as further inputs, in order to 

produce a recommendation of the type 'an asset with attractive risk and robustness 

values' - output 1- or 'an asset with unacceptable characteristics' - output 0. 

5.4 Conclusion 

We test empirically the capability of a crisp feedforward network with sign constraints 

on the weights, as the literature suggests the structure is applicable to approximating 

fuzzy interval extensions of continuous functions with nonnegative or nonpositive 

arguments. Some partial result is achieved, however the objective of discriminating 

between different assets requires exploration of further types of networks. We direct 

our attention toward fuzzy networks and identify the regular fuzzy network structure 

able to represent continuous multivariable fuzzy-valued functions. Thus no sign 

restrictions are imposed on the arguments of the pricing function, which works toward 
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5.4 Conclusion 

generalising the approach. Considering fuzzy-valued rather than fuzzy functions 

suggests that the fuzzification of the factors is incorporated into the information 

processing abilities of the network, which is expected to have a positive effect on the 

user of the decision- support technique. Now he will work directly with the crisp market 

data as inputs to the network - no data preprocessing and fuzzification is necessary once 

the network is trained - and will get as output an advice on the asset based on fuzzy 

logic. 

Having a decision about the classifier structure, the next step is to develop a 

weight training strategy. This is the subject of the next Chapter. 
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Chapter 6: Risk Classifier: Evolutionary Training Algorithm 

6.1 Introduction 

In Chapter 5, the regular fuzzy networks approximating the pricing functions under 

different conditions, or two functions involving different number of pricing factors, are 

embedded into a hybrid network to produce asset classification according to a general 

version of the criterion introduced in Chapter 4. Here we will focus on the risk 

classification of assets and develop a network-weight training strategy based on 

evolutionary computing. 

The preliminary step includes outlining the structure of the risk classifier, and 

modifying the pricing relation to a fuzzy-valued function. The next important step 

involves representing the network weights and bias terms into the chromosome, and 

deciding the search operators of crossover and mutation. Finally, an evolutionary 

algorithm is designed based on the general concepts of divide-and-conquer evolution 

and incremental evolution. These concepts are also employed by bidirectional 

incremental evolution (BlIE) [48], however the two-level exploratory algorithm we 

suggest here is completely new as a design. The algorithm not only trains the weights 

and the bias terms but also adapts the learning process to the training sample and the 

random initial condition toward more efficient training. If the general framework for 

evolving artificial neural networks [47] is considered, then we may argue that the 

algorithm concerns the inner two layers, the evolution of weights and the evolution of 

learning, while the decision about the architecture has been taken on the basis of the 

reasoning in the previous Chapter. The quality of the algorithm can be recognised when 

compared with single-level evolution. 
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6.2 Risk Classifier: Structure and Function 

We will focus on asset classification according to the risk measure from Chapter 3 and 

the agent's risk preference. The classifier architecture is correspondingly reduced to the 

following network. 

--------------------------- 
I AQ 

Figure 6.1: Risk classifier architecture 

the regular fuzzy segment has two hidden layers, with the crisp logarithmic pricing 
factors as inputs and the evaluated fuzzy logarithmic price as output; the weights and 
the bias terms in the segment are crisp except the fuzzy weights on the 
connections to its output neuron which performs fuzzy arithmetic; 
in the hybrid part, the neuron 4) PO approximates the membership value of the 

logarithmic trading price to the evaluated fuzzy price, and the neuron <P PO compares 
the evaluated asset risk with the risk preference of the agent to produce an advice in 
favour or to disqualify the asset. 
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Here Ip, ,---, IdyT and In are crisp identity functions, (21 d2,,, are s igmoid 

relations, IpO is a fuzzy identity function, and m, n are the numbers of nodes in the 

two hidden layers of the regular segment, respectively. The output of the regular 

segment PO 
FNN approximates the fuzzy logarithmic price, and the transfer function 

OPO produces the asset risk 9RFNN relevant to the evaluated price and the trading 

logarithmic price q, 

91 FNN -= 0 (POFNN 
gq)=, u(qIPOFNN)=supfalx,. =ql . 

Then, the hard-limit transfer function V(91FNN, 91agent) compares the evaluated asset 

risk with the agent's risk preference, where the tolerable risk SRagent acts as a threshold. 

It is recognised that the same opportunity will have different bearings on the risk 

position of different market players, and the advice is agent-dependent. In comparison, 

the general practice is to produce asset-related recommendations only. 

Our task is to train the regular network segment, which requires modifying the 

fuzzy pricing formula (4.4) into a fuzzy-valued function. This involves a four-step 

procedure: 

For each asset, the parameters of linearisation 051=051(dyj, ---, dyT) and 

152 = 152 (dyl, 
---, dyT ) are evaluated from relations (4.3) and considered crisp. 
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w Factor imprecision is introduced following initially the calibration technique from 

Chapter 4, which produces triangular fuzzy numbers for the level data - 

corresponding to fatter-tail possibility distributions - and nonlinear membership 

functions for the logarithmic data. Next, positive fuzzy coefficients ýt, bt, Jt are 

obtained from 

Sj 

4t 
s ytj 

sss dytj 
Id ýýtlptj s( 

It, 
lrtj 

-t = -, 
J=j j=l j=j 

where s is the number of assets in the sample, T is the time horizon of the pricing 

factors, and ptj, rtj, dytj are the logarithmic factors. Then, the initial data calibration 

is modified to 

ptj = at ptj , 
ýtj = bt rtj , dytj = Jt dytj 

,It:! ý T, Ij !ýs 

Thus the final calibration further introduces characteristics of the sample 

imprecision. Therefore the classifier can be trained with a representative sample for 

a market sector, introducing relevant sector imprecision. 

w The fuzzy evaluation of the logarithmic asset price is presented as 

T 
T dYt +5tPt)+8 lWt 2 -4r, 

]+ PO (5 1 5TPT --": [alPl (1 1)] ++ 
[a 5 

TPT IT- 

_[jrj 
]-... 

- 
[rTS['] 

+ [ejdyj (1- öj)] ++ [ETdYTS[' (1- Si)] +[ 

=algal +.. -+aTgaT - blgbl -----bTgbT +jlgcl +-+ýTgcT +9, 
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where ga, '= ga, ( Y) , gbt = gbt ( y) gc, = gc, ( y) , g=g( y) are continuous 

functions defined on the crisp factors y=(p, p.... pT, rl, ..., rT, dyl,..., dyT ), pt > 0, 

0< rt < In (2), dyt < 0,1:! ý t!! ý T, employed to evaluate an asset. Thus the asset 

price is described as a continuous multivariable fuzzy-valued function of 

type (5.11). 

w Finally, applying the extension principle, the nonlinear membership function of the 

asset price in formula (6.1) is defined by 

,u 
(X,, I PO) = supfal xpo c Po (a)l 

, (6.2) 

Po (a) = 
falgal (y) +---+ cTgcT (y) +g (y) I 

a, e a, (a),..., CT E JT (a), y= (pl,..., dyT )I 

where the a -cut PO (a) commutes with interval arithmetic computation. 

The above procedure yields the fuzzy-valued price PO (y) in (6.1) as dependent on the 

crisp factors y- this is a CMFV function of type (5.1). The four-layer feedforward 

RFNN segment in figure 6.1 corresponds to the subclass I RFNN I jRFNN (y)j of 

networks in definition (5.12) that are capable of approximating such type of functions. 

The inputs to the segment are the crisp factors y and the segment-transfer function 

fRFNN (y) = po 
FNN 

(y) is fuzzy-valued. Considering its fuzzy parameters the 

segment-transfer function meets the conditions of proposition 2.1 and commutes with 

level-cutting, where the a -cut po FNN 
(a) is computed through interval arithmetic. 
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6.3 Chromosome Encoding and Search Operators Definition 

We will develop an algorithm that evolves JRFNN I POFNN (y)j. The first task is to 

represent the network weights and bias terms into the chromosome and to generate the 

initial population. The crisp weights wjt, ujt, zjt, fij and bias terms Oi 
9 

for 

are presented with real numbers. A nonisosceles 

triangular fuzzy weight ýi, ]:! ýi:! ýn, is described with the real triple 

( begin vertex end Vi , Vi , Vi 
) 
11 corresponding to its support and vertex, where 

begin vertex end 
. Thus the fuzzy network is encoded into a chromosome ;r of Vi < Vi < Vi 

3mT +m+ mn + 3n real numbers, 

begin vertex end lwll, 
W12,..., WmT,..., UmT, ---, ZmT, ---, 

Om, 
---, 

ýnm, 
---, 

(Vn 
, Vn , Vn 

)) (6.3) 

begin vertex .,:, ýnd Vi < Vi Vi 91 <- i!! ý n 

where each weight and bias term is recognised as a single gene. The initial population 

X= [XI X2 *** Xy I of y individuals X from definition (6.3) is generated 

simultaneously as a matrix of size (3mT+m+mn+3n)x; y,, whose elements are 

realisations of a random variable with standard normal distribution. A block 

I 

representation of X as x(l) X(2) (I+n) helps to 
[ 

(3mT+m+nm)xy 3xn Xlk%; 
y 

] 

concurrently sort its elements according to the inequality restrictions in (6.3). 
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The next task is to choose the search operators of crossover and mutation. A 

multipoint crossover operator is considered, where the number A of crossover points is 

randomly chosen for every generation. A triple representing a fuzzy weight is recognised as 

a single gene, which restricts the crossover points indexi ,I !ýi :ýA, to the following set of 

positions in the chromosome indicating the beginning of a gene. 

indexi e 11,2,3, 
... , 3mT +m+ nm, 3mT +m+ nm +I 

3mT+m+nm+4, 
... , 3mT+m+nm+3n-21 

(6.4) 

Two randomly chosen chromosomes from the parent population are combined to obtain 

two offspring, only one of which is included in the new population. For each parent pair, 

the position of the A points is randomly chosen from the set described in (6.4). 

single-number genes First Parent triplet genes 

gene,; gene 00 ; gene 2; ...... ; gene 0 3mT+m+nml m+nm+l ...... 

crossover points A A] + A2 A2 crossover points 
Second Parent 

gene,; gene,; ..... ; gene 3mT+m+mn gene 3mT+m+nm+l ..... ; gene 3mT+m+nm+n 

Figure 6.2: Multipoint crossover operator 

the crossover points are only set between genes, a single gene consists either of one 
real-number network parameter or of a triple representing a fuzzy-number weight; 
parent chromosomes belong to the best subpopulation, only the first-child 
chromosomes are added to that breeding subpopulation to form the next 
full-size population. 
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However, it is assured that the crossover points are proportionally distributed over the 

two types of subsets representing crisp network parameters and fuzzy weights, 

respectively. Thus A, points are chosen within the former subset and A2 points are 

used in the latter, as shown in figure 6.2. 

3mT+m+nm 
A A2 =nA 3mT+m+nm+n 3mT+m+nm+n 

Next, the mutation operator transforms a temporary full-size population, obtained from a 

breeding subpopulation through crossover, into the new generation of network 

representations. The operator involves a constant rate r and thus the number of mutated 

genes is constant. However, their positions are randon-ýy chosen for every generation, and 

the position of a mutated gene in a chromosome takes values from the set described in (6.4). 

Modified elements are generated as realisations of a random variable with standard normal 

distribution. All mutated triplet genes are concurrently sorted according to the inequality 

restrictions in definition (6.3). Furthermore, the rate of mutation r is maintained over the 

subsets of single-number genes and triplet genes, correspondingly. As the size of the latter 

subset is smaller, this means that the search is intensified over the fuzzy weights in the 

network. The reasoning is that they introduce to the network features of the factor 

imprecision along with features of the asset evaluation, and thus have an important 

contribution to the infonuation processing ability of the network. 
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Finally, a breeding subpopulation XSUB of size r, is selected from the full- 

size population X at each generation, through minimising a cost function ý(Xj). 

min((j)) � 1ýiýy � 

The cost function evaluates the error of the RFNN encoded in a chromosome 

zi, 1! ý- i<7, 

max max PO (a) 
' POFNN, Xi 

(a) - PO (a) (6.5) POFNN, 
Zi 

(a) ýo (a) 

Therefore, single-level evolution goes through initialisation, selection and recombination 

steps. Initialisation involves chromosome encoding and generating the initial population, 

selection identifies the best subpopulation, and recombination employs the crossover and 

mutation operators. The selection and recombination steps are repeated until the best 

chromosome Xb, t attains fitness 100%. The fitness function ý is formulated as 

0 

(6.6) 

ýmax - ýmin 

where the parameters ý,. and 4ýj, define a scope of network error ý. 
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6.4 Two-Level Exploratory Algorithm: Design 

Single-level evolution may not cope with the network training, and we design a two- 

level exploratory algorithm to overcome the anticipated stalling effect. The algorithm 

adapts the process of learning features of asset evaluation through exploiting 

characteristics of the training sample. Improved performance is achieved through first 

decomposing the overall task while identifying efficient subtasks and their efficient 

training sequence, then evolving the subtasks and merging the subsolutions gradually 

while following the identified sequence. The subtasks involve different number of 

various assets evaluated at varied periods. Thus divide-and-conquer evolution and 

incremental evolution are incorporated to optimise the network over the entire training 

sample. The algorithm is outlined as follows. 

Algorithm 6.1: Two-level exploratory algorithm: Design 

1: Define the training sample as a set of s different assets evaluated at T, different 

periods. For each asset x period element of the set obtain the price PO with 

formula (6.1). In fact, every element asset x period cR is a set of real-number 

asset-pricing factors. Then define the overall task as the set task of s, = sT, 

elements of type (asset x period, PO ), therefore 

task =I (asset x period, PO ), asset x period c- R, POE=- S (R), ]:! ý i:! ý s, 
I- 

Antoaneta Serguieva May 2004 



6.4 Two-Level Exploratory Algorithm: Design 89 

II: Choose the probing step of generations Ngen and the population sizes v and y, - 

Choose the parameters ý()r) DEC], --(x-) 'vDEC2, 
(10 
DEC3, A00 tDEC4, 

(X-) 
DEC5, 

ýDECEND, 

ýINC, ýINCEND of the dynamic objective function 
-F in definitions (6.7). Here 

ic = 1,2,... denotes a level of decomposition of task . 

III: Encode the chromosome X according to rule (6.3) and generate a random initial 

population IP of size r- Initialise ic = 1, task(1c) =task. 
y 

IV: Evolve a fuzzy network for Ngen generations over the complete training sample 

task('r) . using the cost function ý(X) from formula (6.5). 

V: Keep the result of the evolution - the breeding subpopulation X(v) of size 

< 

VI: Apply the criterion 

Yl 00 (6.7.1) max Wk)) EC I ": ý 0 Xi (=- Xor) 

task("') 
r, 

If the average network error of the breeding subpopulation X("*) over the 
r, 

complete task("') is above the parameter 
(1c) 

then go to step ", DECP 
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VII: Apply the criterion 

<0 '-IDEC2 (6.7.2) 

to the separate elements of task(v). If no element of task("*) exists for which the 

average network error of the breeding subpopulation X(c) 
Y, 

parameter A(r) then generate a full-size population tIDEC21 

recombination of X00 , and go to step IV. 
IV, 

is smaller than the 

IP X (10 

7 Y, 

('r) VIII: Group the elements of task(v) satisfying the criterion (6.7.2) into the set task, 

of J subsets of task(r) . where task("*) task("*) k, (j"),..., task, 
(j"ý') 

and IC IH..., ta-s 
Ic 

I 

each task(lc) ,1<-<J,,,, is of maximum size subject to the condition Ij J- 

max (6.7.3) D(E C2<0X 
i=l task Ij 

IX: Partition the training set into task(r) task task("'),..., task("*), task 11 Ij 'jk 2 

where J,, is the number of subsets satisfying condition (6.7.3). J,, is specific 

for the level of decomposition ic. The subset task(r) consists 2 of elements not 

ov) 
meeting the objective (6.7.3) and task(x-) task task, In the extreme, 2 

task 
("*) 

= 10 1 or task 
(r) 

= task 22 
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X: Generate different full-size populations IP X(, V) IP X 
r Y, I ... Ir Y, 

and IP 2 X(X*) by recombination of the same breeding 
Y 71 

subpopulation X(r) 
r, 

XI: Evolve a separate fuzzy network in Ngen generations for each training subset 

of task 
(v) 

. Keep the evolution results - the breeding subpopulations 

X(r) and X("ý) 
71 11 r, Ii/c 71 2' 

XII: For those of the subpopulations X (r), I :! ý j:! ý J),, evolved in step XI that meet 
r, Ij 

the objective 

Y, 

max 0X (6.7.4) -4 -I DEC3 Ij 
task 

(r) r, 
ij 

generate full-size populations IP X("*) and then continue with step XIII. 
y Ij Y, Ij , 

For those subsets task(lc) that does not satisfy objective (6.7.4), go to step XIV. Ij 

XIII: Continue evolving a separate fuzzy network for each training subset task(r) that Ij 

meets objective (6.7.4), until the average network error over the better half of its 

breeding subpopulation X is smaller than the parameter ýDECEND 

, Y112 

Therefore, the new objective is 
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2 yj 12 

max X (10 (6.7.5) h=5 =E- ýDECEND ̀ ý 0 
y, 12 Ij i=l task (K. ) 

ij 

Keep the result of the evolution - the better halves of the breeding 

subpopulations ý' (r) 
y, 12 Ij END 

XIV: If a task(r) consists of one element and satisfies the following conditions, Ij 

'o -IDEC2 

c X(X. 
) 

6-6 
Y, Ij 

(6.7.6) 

4, 
D(ICE)C 3 

then discard the evolved subpopulation X("c) and generate a new full-size 
71 Ij 

population IP Ij X(X-) by recombination of subpopulation X(K) from 
7( IV, r, 

step V. Else, go to step XVI. 

XV: For each single-element subsets task(v) satisfying (6.7.6), evolve a fuzzy Ij 

network in Ngen generations. Keep the result of the evolution - the breeding 

subpopulations X('v) . Go to step XII. 
Y, , 

XVI: If a subset task(lc) consists of more than one element and the following Ij 

conditions are satisfied, 
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max <0 4ýEC4 

task 
(c) 
ij 

Z' 7 X (6.7.7) Ij 

max 
Y, 

"DEC3 
i=l task 

(1c) 
ij 

then generate a full-size population IP X("r) . Consider the subset task(r) 
7 Ij Y, Ij Ij 

as a complete training set task('r+') = task, 
(9 

and augment the decomposition 
i 

level ic = ic +1. Go to step IV. 

XVII: If a subset task, 
(9 

consists of more than one element and the following 
i 

conditions are satisfied, 

max (ý(xj)) - 
4ýkEC2 <0 

task 
(r) 
ij 

Aw '8 'r 'I . =- X 
ij (6.7.8) 

max (ý(xj)) 
ri 

4>0 ýDEC 
i=l task Ij 

then discard the evolved subpopulation X("*) and generate a new full-size 
r, Ii 

population IP Ij X(10 by recombination of subpopulation X(K) 
7(Y, Y, 

from step V. Consider the subset task(r) as a complete training set Ij 

task task(x*) and augment the decomposition level )r 1. Ij 

Go to step IV. 
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XV111: If the objective 

1 r, 

(kx-) , =9 max <o xi E X(, C) (6.7.9) 
(x) 

4ýEC5 
2 

task2 

is satisfied for the subset task(1c), then generate a full-size population 2 

IP X(r) by recombination of the evolved subpopulation X(r) from step 
;Y2Y, 2 Y, 2 

XI, and continue with step XIX. Else, generate the new population 

IP 2 X(r) by recombination of the breeding subpopulation X(r) from 
Y Y, Y, 

step V. Consider task(r) as a complete training set task('r+l) at the level of 2 

decomposition ic +1, therefore task("*+I) = tasko*). Augment ic = ic +1 and 2 

go to step IV. 

X1X: If task('ý*) consists of one element, then evolve a fuzzy network until meeting 2 

the objective 

2 y, 12 
X 

(K) 

5 (6.7.10) -'ý 10 `-E (ý (Xi» - ýDECEND <0' 'Z' 
E2 

Y' i71 Y, 

keep the result - the better half of the breeding subpopulation X 
(r) 

- and 
yj 12 2 END 

J10 continue with step XX. Else consider task2 as a complete training set 

task("'+') = task(v) at the level of decomposition /C +I. Augment ic +1 2 

and go to step IV. 
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XX: Set ic = icm at the highest level of partition xm =max (ic). This corresponds to 

the lowest incremental level Consider the training set 

task 
(k) 

task(x-' 
) 

..., task 
(1c' ) 

task(x-') Generate a full-size population 11 'JkM '21- 

IP 

INC 
XX Or. ) 

x through recombination y yj 12 HEND 
y, 12 'j)rM END' 

yj 12 2 END 

Ic of the better halves of the breeding subpopulations X( ') 
9 1) yj 12 11 END 

X 
(x-. ) 

X 
Ov-) 

evolved when last visiting steps XIII and XIX. 
7112 'JX*M END' yj 12 2 END 

XXI: Evolve a fuzzy network over the training set task("*) until meeting the objective 

3 y, 13 
Awl] --I max ýINC 0X (7c) 

rl i=l task(c) y, 13 INC 

Keep the result X 
Ov) 

y, 12 INC 

XXII: Decrease x- = x- - 1, which is equivalent to increasing the incremental level. 

Consider the set task("*)= task, 
("*),..., 

task(lc) . task(lc) = task(x-+')l 
II 

lix. 2 

Generate population IP X 
00 

X 
(10 

X of full- 
ly 

INC ,, 12 HEND ; V112 HIC END'y, 12 INC 
) 

size, through recombination of the better half of subpopulation X (""+') 

Y, 12 INC 

evolved when last visiting step XXI, as well as the better halves of 
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subpopulations X (r) 
... 9X 

Or) 
r, 12 1 ]END I r, 12 HIc END 

XIII for the Vth time. If ic > 1, go to step XXI. 

evolved when visiting step 

XXIII: Evolve a fuzzy network over the whole training set task= task(') until the 

final objective is achieved, 

best, MaX ZINC E-ND)) - ýING 
-M5 task(') 

(6.7.12) 

best where XiiiCEND is the best chromosome in the population. Keep chromosome 

best XjRCEND - it represents the completely evolved network. 

First a random initial population IP of size v is generated and a fuzzy 
r 

network is evolved over the full training set task for a probing number of generations 

Ngen - If the objective based on the average value of the network error ý- on all 

elements of type (asset x period, PO) in the training set and over the resulting 

subpopulation X( 1) 
of yj best-fitted chromosomes - is above the limit I(') then ýDECI I 

evolution starts again with a new random initial population. Otherwise, each element of 

task is probed against an updated objective S2 over the best subpopulation X( If 
r, 

there does not exist a single element (asset x period, PO) of task with an objective 

value below the updated limit ý(') then a new full-size population is generated by DEC21 

recombination of the best subpopulation and the evolution is continued for another 
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Ngen generations. Otherwise, all the elements satisfying the condition are grouped into 

(1) 
the training subset task, 

(') 
and the rest are included into the subset task2 , where 

task = task() task(), task(') The elements of task(') are further probed in 12 
J* 

I 

different combinations against the second limit ý(]) over the subpopulation X(l) DEC2 

(I in order to identify training subsets taskj) of maximum number of elements according 

(1) 
is partitioned into the subsets to objective E3 Then task, 

task( task( ]),..., task('),..., task(') where J, is the number of subsets, each 1 11 Ij lil 

maximum-size subset task(') satisfies objective -- , and every element of task( 
I) 

Ij -3 Ij 

meets objective S2. Thus the decomposition at the first level x- =I is produced. Now 

J, +I different full-size populations IP " '(1) , ... , IP '(1) and 
r 71 r r, 

Ip 2 x(l) are generated by recombination of the same breeding subpopulation and 
Y 

(71 

a separate fuzzy network is evolved in Ngen generations for each subset of taskM. 

The results are the breeding subpopulations X(l),..., X( 1) 
and X(l). For those of 

71 11 r, 11,71 2 

subpopulations that meet objective S4 over their corresponding subset taskj) xlj 
b 

the next full-size population is generated by the recombination IP A _(I) and the 
Y Ij Y, Ij , 
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network evolution over task() continues until the average error over the better half of Ij 

the breeding subpopulation X 
(1) 

is smaller than the parameter ýDECEND. For those 
r, 12 'J 

of subpopulations X(l) that do not meet objective E4, we consider two cases - when 
r, Ij 

their corresponding subsets task(') consist of a single element (asset x period, PO ) or Ij 

a number of elements. If condition S6 is satisfied in the single-element case, then the 

evolved X(1) is discarded, the next full-size population IP x(l) is generated 
r, Ij 7 Ij r, 

on the basis of the subpopulation evolved earlier over the complete training set task 
(1) 

, 

and a network is evolved over taskV) in another N gen generations in order to approach 

objective S4 again. Otherwise, if taskj) is a multiple-element subset, it is considered 

as a complete training set at the next decomposition level, with a starting full-size 

population obtained as IP X( 1) if objective S7 is met or as IP x(l) if 
y Ij r, Ij y Ij Y, 

condition S8 is valid. Considering subset t6tsk( 
I) if objective Fq introducing A(') 2, 'ýDEC5 

is not satisfied, then XM evolved over task(') is discarded, IP is produced from 
Y, 22y2 

X(1) evolved earlier over task('), and task(') is assumed a complete set at a further 2 
ri 

level of decomposition. Otherwise, we generate the next population as the 
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recombination IP X(1) , and again involve single-element and multiple-element 
y2r, 2 

cases. If task() is a single-element subset meeting objective Sq, then a fuzzy network 2 

is evolved until the error over this element averaged on the better half of the breeding 

(1) subpopulation falls below the limit ý, '; EICEND and this half X is kept as one of 
y, 12 2 END 

the temporary results. . If task() is a multiple -element subset meeting objective Fq, 2 

then task() is assumed a complete set at a further level of decomposition. Then the 2 

steps up to here are repeated with revised parameters in the ob ectives F-0 until 

several levels of decomposition are identified, where each level is characterised with a 

unique partitioning into subsets and a specific number J,,. The decomposition stage 

completes when the neural networks evolved over each corresponding subset meet 

objective H5 or objective Elo. Then, the incremental part of the evolution starts from 

the highest decomposition level icm = max(ic). Each of the training subsets at this level 

has an evolved breeding subpopulation associated with it. A full-size population is 

generated by recombination based on the better halves of these subpopulations 

IP xx 
OV. ) 

X 
(1c. ) 

The evolution continues over 
y INC y, 12 HEND" y, 12'jx-mEND', yj12 2 END 

the whole training set task( IC m) existing at the highest decomposition step until the 

objective SI, - involving the parameter ý, Nc and the subpopulation X 
(K. 

-) - is 
y, 13 INC 
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met. This is the first incremental step. Then the second highest decomposition level is 

considered. The training set existing at this level includes by definition the whole 

training set from the highest decomposition step and some further subsets. Again one 

full-size population is generated by recombination of the better halves of the breeding 

subpopulations associated with each training subset here. The subset equivalent to the 

highest decomposition set of projects is presented with the subpopulation evolved at the 

first incremental level X( IC '). The parameter in objective HI, is still ý, Nc but Z-11 
y, 12 INC 

is evaluated over a larger training set task(x. - -1) 
, where task( X- m) c- task(xm -1) 

. This 

is the second incremental level. The incremental procedure continues by analogy until 

the first decomposition step is reached, where the partitioning was applied over the 

initial full set. Therefore, the fuzzy network evolved at the final incremental level 

considers all elements (asset x period, PO ) in task. The evolution concludes when the 

error of the best chromosome reaches the limit ýINCEND in the final objective S12 - 

This best chromosome 1-1 represents the completely evolved network. ZINCEND 

The two-level exploratory algorithm is visualised in figure 6.3. For simplicity, 

the decomposition part of the evolution in figure 6.3 is slightly generalized, omitting 

objectives F6,. F7, E8 that involves parameters t: ( k t: (k) (k) 
t, DEC2, tDEC3, tDEC4 
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Choose the complete training set 
task(l) of assets, covering different 
ompa, nies, and evaluate the share 

rice AO for each element of the set. 
Set the decomposition level at X- I 

T'211 

random initial 
population /Pof size y 

7 

EVOLVE: 
a fuzzy network over 

task("ý) projects for Ngen 

'crenerations using the 
fitness function ý 

Keep the geno, 7 f 
Xf subpopulation Y, ,f 

tah: Y, 
best- fitted chromosomes 

( 

Generate a full-size 

population 1P by 
Yx 

recombination of - 
Ki 

no 

Is objective 
I Ar K 

nWX -ý(EýC rl 
task(") 

met for Xi E 

yes 

objective 
ri 

-F2 E>C2" 0 

" met for a single element of ý 

task 
(-) 

+ yes 

Group all single elements of task(w) that do not 

meet H2 into task('O . Partition the trainina set as 20 

task("ý) task( A'), task(A-) 12 

Generate a full-size population 
1P 2 by recombination of X("') <oes task(c) Y Y, 42 

no fa sin. -le el 

IC (, % Group all elements of task( 
) 

that meet -ý*2 in a set task, 

Then partition task('r) into JIC subsets task(-) Of I Ij 
maximum size according to condition 

Ir 
-F3 ý, MaX W4 )) 4DXEC2 

'0 over Xi c X(") 
YI i=1 task(r, ) 71 

Generate -/x- full-size populations 

IP /I X ('C) IP IJ, 
( (, ) ) 

r 

(71 )I.... 

y Y, 
bv recombination of the same subwoulation 

EVOLVE: 
a separate fuzzy network for 

no each subset task(') for Ngen 
Ij 

generations using fitness 

EVOLVE: yes 
a fuzzy network with task2(K) EVOLVE: 
for Ng, generations using 00 

a fuzzy network with task2 using fitness function 

until objective. F10 is met over E X(') , where xi 
Y/ 

ep the genotype of 2r 12 
( A-) -=10 ý- 

ý (ý(Xi))-ýDECEND "-0 
subpopulation X2 of e Y, 

Y/ 

Keep the genotype of the first 
half of the evolved best-fitted 
subpopulation X 

00 

Y. 

Is objective r, 12 2 END 
r 

W< ('C) + (Xi )) 
IDEC5 Y' 

fask('r) tart the incremental part. Set k at the 
met for Xi E no highest level of partition x- = inav (A-) 

+ yes 
Generate a full-size population 

00 
Consider the training set 

/P X 22 by recombination 
Y 

(YI 

task 
(x) 

task 
(A) 

task("') =ltaskl I 11,2 
of the evolved best subpopulation and generate the full-size population 

Generate a full-size population /P x 
(, C+ x 

END' INC INC 

ýX 
(/'I 

END.... 
(K) r112 y112 Y r112 

IP 
2X by recombination 

( 

r YI 

of the earlier best subpopulation j EVOLVE: 
_ + task(A-) using a fuzzy network on training set 

Consider the subset task(x-) as the full training 
- 

until satisfying on subpopulation X 
13 INC 

y 
t decomposition level. set task for the nex 

1 

3 Y 

Set the decomposition level at x-=K-+] 

ý 

max (Xi ýINC <0 

i=1 task(") 

Keep the genotype of the first 
half of the evolved best-flitted 

subpopulation X (A7) 

., /, INC 

Decrease the level of partition 
A7 = x- - 1, which is equivalent to Figure 6.3: irýcrewsing the incrernenW level. 

Two-level exploratory algorithm Cortsider 
task(-) =Iask(4*+') 2 

Keep the genotype of each 0 
subpopulation X (A-) 

of yj 
Y, Ij 

best-fitted chromosomes 

Is objective >fE 

F4 max (ý (XJ) 
)C 

3 
C) 

YI i=11 task 

a somle subsýet me"Or' 

ask 

+ yes 

For any subset task(-) that meets -F4 Ij 
0 generate a full-size population 
IP Ij by recombination of the 
Y 

evolved best subpopulation X(x 
YI Ij 

For any subset task"" that does not Ij 
meet H4 Aiscard the evolved X 

r, Ij 

and generate a full-sized lp ij based 
r 

onthe earlier subpopulation X(c) 

no 

EVOLVE: 
a fuzzy network over the subset taskl(j-) using C, 
until meeting objective F5 over vi EX 

00 

Yý 
YJ12 Ii 

5 max (ý (Xi ýDECEND "- 0 
i=1 task( ,/r ') 

Keep the genotype of the III 01 half of the evolved best-fitZ 
U'st 

subpopulation X (10 

,. /, Ii END 

yes 

K. > I 

EVOLVE: 
(1) 

a fuzzy network over the training set task 
until meeting the objective 

b1 
12 ý M'61-'C 

(ý (XIIVCEND)) 
- ýINCEND "ý 0 

t. sk(') 

Keep the best-fitted chromosome 

Xblk'C'END ' 
It represents the 

completely evolved network. 
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6.5 Conclusion 

We suggest a single-level algorithm and a two-level exploratory algorithm. Though 

both algorithms employ the cost function ý (Xi ), they do this in a different manner. B 

definition (6.5), ý(, Xj) evaluates the network error associated with a single 

chromosome over a single element (asset x period, PO) of the training set. 

Throughout single-level evolution, the error is calculated on a single chromosome over 

the complete training set task, MaXý(Xj). On the other hand, throughout the two- 
task 

level exploratory algorithm, ý(Xj) is involved in varying ways in the dynamic 

objective function -F 
from definitions (6.7). At different steps, 3-F evaluates the error 

of a single chromosome - as in the final objective F12 - or the averaged error on 

subpopulations of size y, - as in objectives SI, F2, H3, E4, S6, Z7, E8, Eq - or 

E subpopulations of size 7ý 
21 in H5, Hlo, and rý13 in Ell. Furthermore, . 0' 

calculates the error over training subsets involving various number of different elements 

of task rather than over the full set task . Thus, S, and E, I involve set task( 'V) 

where task(x-) c task , 
Z2 involves a single element of task(K), then 

&F S 3,4 EEF 
, 5,7,8 involve subset task("ý*) where Ij 

taskor) Ij 
(X-) 

c task = 
Itask(K),.. 

III . task(K) 
I 

and Ii 
(K) 

c task(K), E6 involves a single- task, 
/c 
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element subset task 
(v) Eq Ij , involves subset task(v) 2 where 

task("*) c task("') 2 task, 
(lc), 

task("*) . -710 2 involves a single-element subset task(x*) 2 

and finally F includes different -F]2 involve the full set task. Furthermore, . 

parameters - some out of 4ýkECI 
I 'IDEC21 'ýDEC3 , '-IDEC41 "ýDEC5 , 

ýDECEND, ýINC 

ýINCEND - at different steps in the algorithm. Moreover, the objective F depends on 

the partitioning or incrementing level it is evaluated at, as 
( IC-1) , A(IC) 4ECI 

"ýDECI 

and 4ýEC2 ýEC4 4ýEC3 
r--, DEC3 I -r-', DEC2, 

ýk 
-r- tDEC4,4ýEC5r-vDEC5 

task c task task 
(x'- 1) 

# task 
(x. ) 

, task 
(x'- I)# 

task(r) ij Ij 22 

On the other hand, both single-level and two-level evolution use the same 

fitness function ý(ý(Xbest)) from definition (6.6) concerning the ongoing best 

chromosome Xb, t, whether on the full set or on a partial subset. This allows the 

comparison of the two algorithms, which is the subject of the next Chapter 7, where the 

empirical training, validating and predicting are also included. 
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Chapter 7: Risk Classifier: Empirical Results 

7.1 Introduction 

The two-level exploratory algorithm described in Chapter 6 is employed here to train 

the risk classifier over a sample of assets evaluated on asset pricing factors that involve 

time horizons of length T. The initial task is to construct a representative training set. 

This requires considering preliminary heuristics about the types of assets and the modes 

of risk. 

Then the central task is training the fuzzy neural network. The steps in the 

two-level exploratory algorithm are presented that take effect throughout training. 

Though the general description of the algorithm in Chapter 6, every implementation will 

invoke different steps. By different implementation we mean training the classifier on a 

entirely different complete training set. On the other hand training over subsets of a 

complete training set are considered steps in the algorithm and not different 

implementation. We include the empirical results at each effectuated step, the value of 

the ongoing objective, the automatically discovered number of decomposition levels, 

the automatically discovered partitioning at each decomposition level, and the 

automatically discovered sequence to follow when enlarging the training set throughout 

the incremental levels. 

Next, the results reached through the two-level exploratory algorithm are 

compared with those obtained from single-level evolution. The comparison involves 

the number of generations and the value of the approached final fitness, as well as the 

graphics of the fitness function throughout generations. 

Finally, the consequent task is to validate the classifier on elements not 

included in the training set, and then use it in prediction. 
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7.2 Training Set: Preliminary Heuristics 

A single element (asset x period, PO ) of the training set task consists of crisp pricing 

factors asset x period , involved in evaluating an asset at some period, as well as the 

corresponding fuzzy price PO. The number of assets is s, the number of periods in 

which they are evaluated is TI, and the horizon of the involved factors is T. Then 

s, = sTj is the number of elements (asset x period, PO ) in the complete set task. 

Evolving a fuzzy network over a single element (asset x period, PO) constitutes a 

problem of lowest complexity. Problems with a higher level of complexity concem 

evolving a network over a multiple-element subset of task . The elements in a subset 

may concern the same asset evaluated in different periods, or different assets evaluated 

at the same period, or a mixture of those. The problem of highest complexity is 

evolving the network over the complete training set of size s, = sTI. The concept of the 

tow-level exploratory algorithm is to identify problems with decreasing complexity and 

their efficient sequence, then to solve the lowest complexity problems and to merge 

them incrementally while following the efficient sequence, in order to optimise the 

solution of the overall problem. Notably, each single element of task has an intrinsic 

complexity. Thus it is possible for a subset, consisting of elements with a low intrinsic 

complexity, to be evolved to the final decomposition objective involving parameter 

ýDECEND, without the need for further partitioning. Therefore, such subset will be 
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included in task(Ký") at the highest decomposition level, along with some single 

elements. Furthermore, the complexity of evolving a network over a multiple-element 

subset depends on the size of the subset, as well as whether different evaluation periods 

or different assets are involved. 

The intrinsic complexity of an element depends on the mode of risk and the 

type of asset the element represents. There exist three modes of risk: 91 = 0,0 < SR <I 

and SR =I. Further, three types of assets are considered. Having the broad range of 

modelled imprecision at each evaluation period as well as the varying imprecision 

involved at different periods, it is unrealistic to consider assets with constant SR =0. 

Thus the first type relates to assets with decreasing risk values in consecutive periods. 

The second kind concerns assets with unstable risk values without particular direction 

or assets with an increasing risk measure. The third kind includes assets with constant 

91 =I throughout. In order to provide for good predicting capabilities of the classifier, 

it should be trained over a set that includes elements representing the three modes of 

risk as well as the three types of assets. 

The empirical data involve three UK companies - GOODWIN, 

DIXONS GROUP and MARKS & SPENCER - from June 1998 to December 1999. 

Some of the related factor imprecision is visualised in figure 7.1. Furthermore, a six- 

month factor horizon is selected producing three projects per company and nine in total. 

Table 7.1 displays the evaluated risk level for each project. 
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c 0 

LL 
CL 

E 

Log Dividend per Share 

Figure 7.1a: GOODWIN - 
factor imprecision iitpt+ýtdyt 

0 

CL 
7: 
Co 

Figure 7.1c: MARKS & SPENCER - 
factor imprecision 5tpt+Jtdyt 

All risk modes are represented. Furthermore, in the second column, GOODWIN 

demonstrates a continuously improving risk measure and thus an asset of the first type. 

In the third column DIXONS GROUP indicates oscillating risk levels - the second asset 

type - and in the fourth column MARKS & SPENCER maintains 91 =I throughout - 

the third type. Figure 7 illustrates how the risk measure for a project is derived based on 

the estimated fuzzy-valued log share price P, and the market price 

Table 7.1: Types of assets 

period / company 
GOODWIN 

project: risk 
DIXONS GROUP 

project: risk 
MARKS & SPENCER 

project: risk 
July-December, 1998 project,: SR =I project3: 91 =I project5: 91 =I 
January-June, 1999 project2: 91=0.683 project4: 91 =0 project6 : 91 =I 
July-December, 1999 project7: 91 =0 projectg: 91=0.858 project8: 91 =I 

Log Dividend per Share 

Figure 7.1b: DIXONS GROUP - 
factor imprecision iitpt+jtdyt 
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7.3 Two-Level Exploratory Algorithm: Implementation 

Training is attempted using single-level evolution and two-level exploratory algorithm, 

correspondingly, over the first six projects in table 7.1. Each project comprises a six- 

month horizon T=6 for the pricing factors. Therefore, the number of nodes in the 

input layer of the fuzzy network is 3T = 18. Experimenting preliminary with the 

number of nodes in the two hidden layers and considering a trade-off between simpler 

configuration and evolution convergence, the values m=5 and n=3 are selected, 

respectively. 

Single-level evolution is applied over the six projects simultaneously and the 

performance is measured with the fitness ý of the ongoing best chromosome Zbest 

over the complete set task =I project, .., project6 I, 

0> 

- max 
(ýprojectj West 

projectp..., project6 1 
'100 

ýmax 
ýmax - 

ýmin 

ýproject (Xbest) max max POFNN, Xbest, projectj 
(a) - PO, projectj 

(a) 

(7.1) 

POFNN 
, Zbes t, p roject j 

(a) - PO, projectj (a) 

where ý, 
wx = 0.1515 and 4ýj,, = 0.0015. The training makes some initial progress and 

then stalls. To get more representative results, five simulations of the single-level 

algorithm are averaged. The averaged fitness function reaches 4633% in 500,000 

generations. 
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The implementation of the training algorithm went through the following steps, 

where the relevant parameters are selected as shown in Table 7.2. 

Table 7.2: Implementation: Algorithm parameters 

description notation value 

population size r 100 

breeding subpopulation size at decomposition levels r, 30 

probing number of generations Ngen 10000 

parameter in the fitness function ý ýmin 0.0015 

parameter in the fitness function ý ýmax 0.1515 

parameter in objective E, at the first decomposition level am 
', DEC] 

0.1525 

parameter in objectives E2 and 3-73 at the first decomposition level 
'vDEC2 

0.0525 

parameter in objective F4 at the first decomposition level 
t, DEC3 

0.0125 

parameter in objective Fq at the first decomposition level '1-. 
(1) 

'-, DEC5 
0.0775 

parameter in objective F5 during the decomposition stage and 

related to least complexity problems 

ýDECEND 
0.0025 

parameter in objectives E2 at the first decomposition level . (2) 
"-, DEC2 

0.0225 

parameter in objectives Fq at the first decomposition level 
,,. 

(2) 
t, DEC5 

0.064 

parameter in objectives E2 and E3 at the third decomposition level -(3) t, DEC2 
0.0425 

parameter in objective Ell during the incremental steps ýINC 0.002 

parameter in objective '7'12 at the final incremental steps ýINCEND 0,0015 
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Algorithm 7.1: Two-level exploratory algorithm: Implementation 

Decomposition 

Set the decomposition level IC = 1. Start with the training set 

task(') =I project,, project2, project3, project4, project5, project6 1. Generate a 

random initial population IP of size 100 and evolve a fuzzy neural network 
Y 

for Ngen ý'-- 10 000 generations. Probe whether objective S, is satisfied, 

max 
ýprqjectj ( Xi ý(kE) 

CI <0 
rl i=l project,,..., project6 

Zi 
ri 

where A() 
-= 0.1525 and 30. The result in table 7.3 shows that the 'oDECI 

objective is met. Therefore, we keep the evolved breeding subpopulation XM 
30 

of size 30. 

Table 7.3: Implementation: Objective S, -first attempt 

f projectp project2, project3, project4, project5, project6 I 

IF, -0.0249 

ii: Probe whether a single project satisfies the second objective S2 9 

1 30 
x() 

ßý2 2 -": - 
2: ýprojeaj (Xi 

e DEC2 <0 
30 i=, 30 

(1) where ýý'EC2 = 0.0525. 
q 
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Table 7A Implementation: Objective H2 -first attempt 

project, project2 projectj project4 project5 project6 

-2 0.0730 0.0751 0.0589 0.0681 0.0447 0.0178 

Therefore, no project satisfies the objective and no partition is yet possible. 

iii: Generate a full-size population IP x(l) by recombination of the breeding 
100 30 

subpopulation X(l) evolved in step L Continue training over task() for another 
30 

Ngen -": 10 000 generations. Probe again whether a single project satisfies objective 

04 2 as formulated in step ii. 

Table 7.5: Implementation: Objective E2 - second attempt 

project, project2 projectj project4 project5 project6 

, F2 -0.0077 0.0214 0.0166 0.0108 -0.0053 0.0032 

(1) 
and Therefore, project, and project5 meet the objective. Group them in task, 

group the rest of the projects in task(l). Thus the first partitioning is identified. 2 

(1) (1 
task 

Itask, 
task2 

)J 

task, 
(I) 

=I projectp project5l , task(') =Iproject2, project3, project4, project6I 2 

Keep the breeding subpopulation X( 
30 

evolved in this step. 
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iv: Probe whether objective S3 is satisfied for some combination of elements of 

r (1) task, 

1 30 

max 0.0525<0 
, xi(=- X(l) 'ý-'3 =-I 

(ýprqjectj (Xi ) 
30 

j=1 proyeal, pro 30 ject5 

Here ZiE=- X(l) is the subpopulation evolved in step iii. The only possible 
30 

combination is I project,, project5l and the result is E3 = 0.0395. 

Table 7.6: Implementation: Objectives H3 -first attempt 

f project,, project5l 

"73 0.0395 

Therefore, the objective is not satisfied and no further grouping of projects is 

possible. Thus the number J, =2 is identified and the final partitioning at the first 

level of decomposition is described as 

(1) 
task(')= task, 

(', ), 
task, 

(; ), 
task2 

121 (7.2) 

task(') 1project, I, task(l) = lproject5l 
12 

projectp project5l , task2(l) project2, project3, project4, project6 task, 2 

v: Generate different full-size populations IP II x(l) I IP x 
100 30 100 30 

IP '(1) by recombination of the same breeding subpopulation X(l) 
100 30 30 
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from step iii. Evolve a separate fuzzy network in Ngen ý 10 000 generations for 

each subset task('), task(') I 
11 12 , task( 

) from description (7.2). Keep the evolved 2 

subpopulations X(l), X(l) and X(l) 
3011 3012 30 2 

vi: Probe whether task, 
(], ) 

or task, 
(21) 

meet objective S4, I' 12 

30 
tasko: S4= 

1 
To ýprojectj (Xi) 

DEC3 0X 
31 30 

task(') : S4 =1 
30 

- ItV) --: ý 0x 
(1) 

12 30 
ýproject5 

'ýDEC3 30 12 

where '(1) -':: 0.0125 and X(112) 'ýDEC3 - 30 130 are the subpopulations evolved in step v. 

Also check if task() meets objective Eq, 2 

1 30 
=9 =-E 

30 i=l 
max 

(ýprojectj (Xi 

project2, project3, project4, project6 I 
'(1) <0 4ýEC5 

I 

x (1) 
302 

where ý(') --,,: 0.0775 and X (1) is taken from step v. DEC5 
302 

Table 7.7: Implementation: Objectives S4 and Eq - first attempt 

I 
project, I f project5l f project2, project3, project4, project6 

A1 = -0.0061 54 S4 = -0.0089 = -0.0131 IF9 
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Table 7.7 shows that the objectives are met by the corresponding subsets. 

Therefore, none of the breeding subpopulations X(j), X(I), XM is discarded. 
30 11 30 12 30 2 

vii: Generate full-size populations IP x (1) 
and IP X (1) by 

100 11 3011 100 12 3012 

recombination of the subpopulations approved in step A. Evolve a separate fuzzy 

network for task(') and task(l), correspondingly, until the average network error 11 12 

over the better half of the breeding subpopulation falls below ýDECEND = 0.0025. 

15 

-'2 - 0.0025 <0 X(Ij) ýproject, (, Zi) 
15 i=, 15 

1 15 
AW --0.0025 <0, ZiEE X 

(1) 

T5 
ýproject5 (Xi 

12 1-1 15 

Table 7.8 includes the number of generations run to reach the objective. 

Table 7.8: Implementation: Objective H5 - first attempt 

I project, I project5l 

S5 -0.000018 -0.0000004 

Ngen,. F5 9014 13465 

Keep the best r, 12 = 15 chromosomes, X 
(1) 

and X 
(1) 

, 
in the evolved 

15 HEND 15 12END 

populations, correspondingly. This is the last decomposition step at which 

project, and project5 participate. 
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viii: Set the level of decomposition x- = 2. 

as the full set task 
(2 ) 

at level two, 

Consider the subset task( from level one 2 

task 
(2) 

= task(') project2, project3, project4, project6 2 

Probe whether a single element of this set satisfies the modified objective -F2 

(2) 
where 4 ýkEC2 

- 0* 0225 and the subpopulation Xi c- X (1) is the one approved in 
302 

step vi. 

1 30 (2) (2) 
A* , Zi E=- X( projectj c task 2 ýProjectj (Xi 

DEC 2<0 30 i=l 30 

Table 7.9: Implementation: Objective S2 -third attempt 

project2 project3 project4 project6 

A-2 0.0419 0.0406 0.0383 -0.0044 

Table 7.9 indicates that project6 satisfies the objective. Therefore, the 

partitioning at the second decomposition level is identified as in description (7.3). 

task 
(2) 

task 
(2) 

, task 
(2) (7.3) 11 21 

task 
(2) 

= task 
(2) 

=Iproject6l , task 
(2) 

project2, project3, project4 1 11 2 

As only one project meets F2, this sets J2 =I and no further grouping is 

possible. 
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ix: Generate a full-size population IP X 
(2 1) 

and evolve a separate network for 
100 11 302 

task 
(2) 

until the average error over the best fifteen chromosomes falls below 11 

ýDECEND = 0.0025. 

15 
xi C X(2) 5'- 

1 
15 -, 

ýproject6 (Xi )-0.0025 <0 
1511 i=I 

Table 7.10: Implementation: Objective E5 - second attempt 

I project6 I 

, F5 -0.000032 

Ngen, H5 5147 

Notice that Ngen, Z-5 -, z 5 147 < Ngen -'z 10 000 which avoids overfitting. Keep the 

evolved subpopulation of size 15, X(2) . This is the last decomposition step at 
15 HEND 

which project6 participates. 

x: Generate a full-size population IP X 
(1) by recombination of the 

100 2 302 

subpopulation approved in step A, and evolve a fuzzy network for Ngen : -- 10 000 

(2) 
generations over the training set task2 . 

Check whether objective H9 is satisfied, 
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1 30 
)_ e2) S9 max I ,: ý 0X (2) (ýprojectj (Xi )I Xi 9 30 project2, project3, project4 

DEC5 
302 

where ý (2) 
=-0.064. The result in table 7.11 suggests we should keep the DEC5 

evolved subpopulation X (2). 
302 

Table 7.11: Implementation: Objective Eq -second attempt 

project2, projectj, project4) 

IF9 -0.0002 

A: Set the level of decomposition at ic = 3. Consider the subset task 
(2) from the 2 

second level as the full set task 
(3) 

at the third level, 

task 
(3) 

= task 
(2) 

project2, project3, project4 2 

Generate a full-size population IP X(2 by recombination of the 
100 302 

subpopulation evolved in step x. Evolve further the network over task 
(3) for a 

multiple of Ngen : -- 10 000 generations until the modified objective FI is satisfied, 

_ C(3) 1 30 ( ýpro 
max ýectj 

(Xi » 
DEC 1<0X 

(3) 

30 30 
1221 { projeCt2, p roject3, p roject4 1 
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Table 7.12 shows that this is achieved after 4Ngen 
- 

subpopulation X (3) 

30 

Table 7.12: Implementation: Objective S, - second attempt 

project2, project3, project4l 

-0.0071 

Ngen, S, 40000 

Keep the evolved 

xii: Probe whether some of the single elements of task 
(3) 

satisfies the modified 

objective F2 where , t(3) =0.0425 and X(3) is the subpopulation evolved in 'ýDEC2 30 

step 

30 (3) (3) 
<0 Xi E X(l) 

, projectj E-= task 2 To ýprojectj (Xi ýDEC2 
3( 30 

The result in table 7.13 indicates that projectj and project4 meet the objective. 

Table 7.13: Implementation: Objective S2 - fourth attempt 

project2 projectj project4 

S2 -0.0071 -0.0071 -0.0071 

Therefore, the following initial partitioning of task 
(3) is identified. 
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task 
(3) 

task, 
(3) 

, task 
(3)) 
2 

task 
(3) 

=Iproject3, project4l , task 
(2) 

project6 12 

xiii: Check whether some combination of elements of task 
(3) 

satisfies a modified I 

,, ý: (3) 
X(3) objective S3 where 'vDEC2 -0,0425 and 
30 

is the subpopulation evolved in 

step A. The is only one possible combination, therefore 

30 (3 
<0 XiE X(3) =To max 

(ýprojectj (Xi ýDkE)U 
Y project3, project4 1 30 

Table 7.14: Implementation: Objectives H3 - second attempt 

projectj, project4) 

S3 -0.0004 

The result suggests that the two elements of task 
(3) 

should be grouped into I 

task 
(3) Thus the number J3 : -- 1 is identified as well as the final partitioning at the 11 * 

third level of decomposition., 

(3) 
= 

(3) (3) 
task 

Itask, 
,, task2 

I 

task 
(3) 

=Iproject3, project4l 11 

task 
(3) 

= task 
(3) 

1 11 t Is 
(3) 

a k2 =I project2 

(7.4) 
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xiv: Generate different full-size populations IP X(3) and IP X (3) 
11 100 30 2 100 30 

by recombination of the same subpopulation from step A Evolve a separate 

fuzzy network over task 
(3) 

and task 
(3) 

, correspondingly, until the average 11 2 

network error of the best 15 chromosomes falls below ýDECEND 
- 

15 (3) 1 max - 0.0025 <0X 
ý,, 

Oj,, tj 
(Xi ) 

11 15 lproject3, project4l 15 

15 
IR C X(3) 

15 
=, 

PrOject2 
(Xi)) 

- 
ýDECEND 0 xi 

15 2 

Table 7.15 includes the number of generations run to reach the objectives. Note 

that these are smaller than Ngen -": 10 000 - 

Table 7.15: Implementation: Objectives S5 -third attempt and E10 -first attempt 

project3, project4 f project2l 

-0.000074 -0.000024 

Ngen,. F 1403 1312 

Keep the evolved subpopulations X (3) 
and X(3) 

15 11 END 15 2 END 

concludes the decomposition part of the algorithm. 

of size 15. This 
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Incrementing 

xv: Set Ic = max (ic) = 3. Consider the training set task 
(3) from description (7.4) in 

step xiii. Generate a full-size population IP X(3) X(3) by 
100 INC 15 11 END'15 2 END 

X(3) X(3) recombination of , HEND and 2END 
from step xiv. Evolve a network over 

15 15 

task 
(3) 

until meeting the objective S, I where ýINC = 0.002 

ow =- max = X(3) 
1 10 

- ýINC < 0, Zi e h-. f 11 

10 

liproject3, project4l, lproject2lI 

(ýprojectj (Xi )) 
10 INC' 

Table 7.16: Implementation: Objective Ell -first attempt 

project3, project4 1,1 project2 

-0.000038 

gen, =� 1918 

Thus the subset task 
(3) 

= task 
(3) 

=jprqject3, prqject4j is incremented to the 1 11 

subset task 
(3) 

=Iproject2l, and the first incremental level completes with the 2 

network optimised over task 
(3) 

=I project2, project3, project4 1. Keep half of the 

resulting breeding subpopulation X 
(3) 

15 INC 
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xvi: Set ic = 2. Consider the training set task 
(2) from description (7.3) in step viii. 

(2) (2 
to subset Increment subset task I= task,, 

) 
=I project6 I 

task 
(2) 

= task 
(3) 

=jproject2, project3, project4j from the first incremental step 2 

xv into task 
(2) 

=Iproject2, project3, project4, project6l. Generate a full-size 

population IP X(2) X(3) by recombination of X(2) from 
100 INC 15 11 END 15 INC 15 HEND 

step ix and X(3) from step xv. Evolve a network over task 
(2) 

until meeting the 
15 INC 

modified objective Ell 9 

1 

max 0.002 < 0, -Z 11 --:: -L 
(ýprojeaj (Xi »- 

5 i=, Ilproject61,1projeCt2, project3, projeCt411 

X P) 
5 INC 

Table 7.17: Implementation: Objective S, I -second attempt 

if project6 ), I project2, project3, project4j) 

Ell -0.000016 

NF 
gen, =,, 503 

This completes the second incremental level. Keep half of the resulting breeding 

subpopulation X(3) 
15 INC 
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xvii: Set ic = 1. Consider the training set task( I) from description (7.2) in step iv. 

(I Increment subsets task, 
(', ) 

=1project, I and task, 2) =fproject5l to subset I 

task(') task 
(2) 

project2, project3, project4, project6 from the second 2 

incremental step xvi into the set task() and thus obtain the complete training set 

task = task(') =I projectp project2, project3, project4, project5, project6 1. 

Generate a full-size population IP x (1) 
,x 

(1) X (2) by 
100 INC 15 11 END 15 12 END'] 5 INC 

recombination of X(I) and X (1) from step xvi and X(2) from step 
15 11 END 15 12 END 15 INC 

xvi. Evolve the network over task until meeting the final objective FJ2, 

(ý ( be t max XI) E12 
project, 1,1 project5 1,1 project2, project3, project4, project6 11 

NsCEND)) - ýINCEND 

best 
e x(l) where ýINCEND = 0.0015 and Xj, ýCEND 

30 INC * 

Table 7.18: Implementation: Final objective E12 

Ilproject, 1, {project51,1 project2, project3, project4, project6 

E12 -0.0000096 

N- gen,.: 12 
15481 

best Keep the best chromosome XhýCEND It encodes the completely evolved 

network. This is the final incremental part in the implementation and completes 

the evolutionary algorithm. 
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Steps i to xiv in the implementation correspond to the decomposition part of 

the algorithm where the complex problem is divided into subtasks of decreasing 

complexity. The implementation automatically discovered three levels of 

decomposition and the corresponding partitioning in descriptions (7.2), (7.3) and (7.4). 

Then in steps xv to xvii, the subtasks are merged incrementally in reverse direction to 

obtain the overall solution. Figure 7.2 presents the result of the automatic partitioning 

and incrementing. 

[project 1, project 2, project 3, third 
full-size training set incremental 

I 

project 4, project 5, project 6] 
1 

level 

evolution towards 
increasing 

complexity tasks 

first-level [project 2, project 3, second 
1project 11 tproject 5) tproject 2, project 3 

incremental 
partitioning roject 61 project 4t 61ý level 

second-level /project 2, project 3, tproject 2, project 3, first 
tproject 61 

1 incremental partitioning project 
1 
41 pr ect 

=4'1 

level 

evolution towards 
third-level 1project 3, tproject 21 

decreasing partitioning 
ý 

project 4) 

complexity tasks 
I 

Figure 7.2: Implementation: Training set exploration 

m 

0 

exploration strategy: the training set is explored at several levels and the evolution 
proceeds through tasks with decreasing and then increasing 
complexity toward solving the integral problem; 

dvnamic obiective: is awlied throughout the decomoosition and incremental levels. 
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7.4 Risk Classifier: Training, Validating, Predicting 

The performance of single-level evolution is measured with the fitness function ý from 

definition (7.1). It represents the fitness of the best chromosome vb, t at each 

generation, over the complete set task. To provide for the comparability of the results, 

the same fitness function ý is considered in the two-level exploratory algorithm. It 

again represents the fitness of the best chromosome Zbest at each generation and uses 

the same parameters ýnujx = 0.1515 and ýmjn = 0.0015. However, the fitness at each 

generation is measured over the corresponding training set subtask at that generation. 

0> 

ýmax - MaX 
(ýprojectj (Xbest)) 

(7.5) 

subtask 100 < ýnzax 
ýmax - 

ýmin 

subtask E 
ýJtaskj, jtask(l) 

task() task(') task 
(2) 

task 
(2) 

task 
(3) 

task( 
3) 1, itask (3) 

task 
(2) 

task(') 11 
111 

12 
111 

2 
111 

11 
H2 111 

11 
H2HH 11. 

Thus the beginning of the decomposition part and the end of the incremental part are 

completely comparable with single-level evolution as they concern the full training set. 

Also, the network error ýprqjectj (Xbe, 
t 
), both in definition (7.1) and (7.5), is evaluated 

with 

ýprojectj (, Xbest )= max max POFNN, Xbest, projectj (a) - 

POFNN, Xbest, projectj 
(a) 

- 

PO, projectj 

Po, projectj 
(a) 

(7.6.1) 
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where the network approximation POFNN, Xbest projectj 
(a) is computed from 

nMM 
(a)= min vi, xb,,, (a) v (a) 1: t ie, Xbest d2e POFNN, Xbest, projectj 

E ýieXbest d2e 
' i, Xbest 

e=l e=l 

nMM 
(a) max ie, Xbest d2e ' Vi, Xbest 

(a) ie, Xbest fle POFNN, Zbest, PrOjeCti Vi, Xbest 
(a) 

e=l e=l 

fle =1+ 

exp -T Wet, Xbest Pt, projectj + Uet, Zbest rt, projectj + Zet, Xbest dyt, 
projectj 

)- Oe, 
Xbest Z( 

t=l 

(7.6.2) 

Here T=6, m =5, n=3, and ýi, 
xbe,, , 

ýie, 
xbe,, , wet, Xbest ' Uet, Xbest , Zet, Xbes, , 

Oe, 
Xbes, are 

the network weights and bias terms, as shown figure 6.1, coded into the best 

, 
dyt, pro are the factors related to chromosome Zbest. Next, Pt, projectj , rt, projectj jecti 

projectj , and PO, projectj is the corresponding asset evaluation with 

T 
g jectj PO, project, 

(a) =E it 
(1 

- 91 ) (Ct (41Yt, 
projectj + at (a)Pt, 

pro + 452 - bt (a)rt, 
projecti 

t=l 

+45 aT I 
(a)PT, 

projectj 

PO, projectj 

T 
=1 1-1 + at (a)pt, 

projectj + 8, + 81 [(1 
- 9, ) (c, (a)dyt, 

projectj 
bt Wrt, 

projectj 
t=l 

+gT- I aT (a)PT, 
projectj - 

(7.6.3) 

Figure 7.3 compares the fitness function in the single-level and two-level 

evolution. Notice that the parameter ýINCEND =0.0015 of the final objective F12 in 
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step xvii in the implementation of the two-level exploratory algorithm is chosen equal to 

the parameter 4ýj, = 0.0015 in the fitness function, and E12 involves a single 

chromosome rather then a subpopulation of chromosomes. Therefore, the final 

objective in the two-level exploratory algorithm is equivalent to the objective 

throughout the single-level algorithm. Furthermore, in the first part and in the final part 

in figure 7.3, both algorithms work with the complete training set. Notice that in the 

first part, single-level evolution progresses slowly, while two-level evolution exploits 

the flexibility of discarding unpromising subpopulations and well outperforms, though 

working on the same full set. The intermediate parts in the figure indicate the track of 

the two-level algorithm through subtasks of decreasing and then increasing complexity. 

Though visualised with the fitness function over the corresponding training subset, each 

intermediate part stops when the relevant objective -F is reached rather than when 

100% fitness is reached. Thus each intermediate part completes with a different fitness 

value, and the next one starts with another fitness value as it involves a different subset. 

On the other hand, the fitness of single-level evolution progresses smoothly as the 

objective and the training set are constant. 

Exploring the divide- and-conquer approach, the algorithm suggested here 

automatically partitions the set and discovers the efficient decomposition sequence, 

according to the intrinsic complexity of the subtasks. The algorithm also performs 

efficient training over the subtasks. Then, exploring the incremental approach, the 

algorithm merges the identified subtasks following the efficient sequence in reverse. 

The subsets involve in each part of the graphics as well as the number of generations at 

which each part completes are indicated in figure 7.3. Thus the final part in the figure is 
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reached in a superior position in comparison to single level evolution. Our algorithm 

completes successfully the training and in 148 243 generations reaches 100% fitness, 

which is 100% functionality, over the full set, of the network encoded in the best 

chromosome. On the other hand, the standard algorithm approaches 4633% fitness 

after 500 000 and the stalling effect prevents further progress. 

LL 
z 
z 
LL 
cc 

decomposition part 
0 so 

projects project project 2,3, 
1,2,3,4,5,6 154,6 

, -rr-, 

r--, 

22 

6 projects 3 23 3 1,2,3, 
2,3,4 4'4,5,6 46 two-level evolution r 

single-level evolution 

*It 01 "1 
ýo (Y) 

C, 
Cr" 

CY) 4 P.. V- V- 

Generations 

Figure 7.3: Performance of single-level and two-level evolution 

w black line: two-level evolution solves the overall problem in 148 243 
generations; 

green line: single-level evolution makes initial progress and then stalls. 
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Once the ftizzy network is trained, it is validated on project7 and project8 

from table 7.1, which has not been included in the training set. The results for the 

corresponding network errors ýprqject7 West) and ýprqject8 West) are calculated 

from formulas 7.6.1,7.6.2,7.6.3 and presented in table 7.19. Both errors are below 

0.001 , which indicates a good approximating capability of the network. 

Table 7.19: Validating: Asset evaluation effor 

period / company 
GOODWIN 

project: ýproiect West 
MARKS & SPENCER 

project: ýprqiect Ubest 

July-December, 1999, project7: 0.0091 project8: 0.0024 

Consequently, we can apply the network to predict the risk measure for projeag that 

has not been included in the training set or the validating set. The result in table 7.20 

shows that the network prediction 9IFNN, 
projectg approximates the risk 9ýprqjectq 

- 

Table 7.20: Predicting: Risk measure 

period / company 
DIXONS GROUP 

project: 91 FNN, project 

DIXONS GROUP 
project: SRproject 

July-December, 1999 projectg 0.880 projectg 0.858 

Finally, consider the agent-dependent threshold 91,, 
g, t. If the threshold is set at 

SRagent -: -- 0- 9 then projeag will be accepted. Alternatively, if 91agent = 0.8 then 

projeag will be rejected as quite risky. 
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7.5 Conclusion 

The empirical results demonstrate decisively that the two-level exploratory algorithm 

successfully copes with the complex task of training a fuzzy risk classifier. To position 

the problem, the complexity and the achieved result, we provide a comparison with 

relevant approaches in Table 7.21. 

Table 7.21: Problem complexity: Comparison 

author J. Buckley A. Serguieva et J. Buckley P. Liu [1031 A. Serguieva et 
et al. [44] al. [P3, P4] et al. [46] al. [P6, P7] 

year 1997 2000 1999 2001 2002 
network crisp network crisp network crisp network fuzzy network fuzzy network 

with sign with sign with sign 
restriction on the restriction on the restriction on 

weights weights the weights 
number of 2 36 18 
inputs 
technical approximating a approximating a approximating approximating approximating 
problem single-variable or muli(36)-variable a multi- single-variable multi(I 8)- 

maximum a two- fuzzy function variable fuzzy fuzzy-valued variable fuzzy- 
variable fuzzy function (no function valued function 

function indication of 
the number for 

which a 
network was 

trained) 
training backpropagation modified fast single-level not addressed two-level 
algorithm Levenberg- evolutionary evolutionary 

Marrquart training: training: 
backpropagation optimisation of optimisation of 
to accommodated network network weights 

for the sign weights and guidance of 
restrictions the learning 

process 
empirical not used not used not used not used database of 35 
data assets over 25 

years 
data not used not used not used not used identified and 
heuristics used as part of 

the training 
algorithm 

real- not addressed fuzzy asset not addressed not addressed designing and 
world evaluation training a fuzzy 

problem asset risk 
classifier 
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The implementation of the algorithm verifies some of its characteristics and 

helps identify further ones. In evolving neural networks, an argument against crossover 

has a reasonable place. However, the flexibility of discarding unpromising and keeping 

favourable subpopulations at different steps in the decomposition part of the algorithm 

works toward preserving learned features and still exploring the search space 

intensively. The performance of the decomposition part proves its ability of partitioning 

the overall problem and of efficient training over the subtasks to sufficiently low error 

limits. On the other hand, the incremental part starts with the final favourable 

subpopulations evolved in the decomposition part, and do not discard subpopulations 

from this point on. The implementation managed to keep the same effor limit ýINC 

through all incremental steps while enlarging the training set and reducing the size of 

the averaged subpopulations, until ýINCEND is reached over the complete training set 

and on the best chromosome only. We consider using recombination based on the 

mutation operator only, as a way to improve further the efficiency of the incremental 

part. 

The algorithm also employs a number of parameters in the dynamic objective 

function. They have been chosen after some preliminary experiments. The parameter 

ýINCEND relates to the desired final accuracy of the best chromosome over the 

complete training set, and therefore it is reasonable that this is set in advance. However, 

the rest of the parameters depend on the size and the characteristics of the training set as 

well as on the random population initialization. Then, it is logical that they are 

discovered automatically. This is considered as a point for future work. Another focus 
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for further research is embedding our algorithm into a broader algorithm for ensemble 

training. The ensemble should be trained simultaneously and interactively using 

negative correlation learning [148]. Notice that we use a small training set, and the 

validation and prediction is performed on assets representing the same companies 

involved in the training set, however evaluated in different periods. This is not to 

depreciate the significance of the results and the advantages of the two-level exploratory 

algorithm. Training a fuzzy network to approximate a fuzzy-valued function is a 

considerably complex problem. Also, the same companies perform differently in 

different periods, and this is one of the characteristics that constitute the problem of 

asset risk. Still we have somewhat restrained ourselves from involving the whole 

complexity of the problem. It is expected that the proved generalization abilities of 

cooperative neural network ensembles [ 148] will allow the development of the risk 

classifier in that direction. 

The soft classifier described in Chapter 6 and the current Chapter 7 represents 

an approach to the problem of asset pricing and risk analysis. A logical extension of the 

study is to consider the developed classifier within a framework of different approaches 

to the same problem, i. e. a knowledge representation framework for the domain of asset 

pricing and risk analysis. This is the subject in the next Chapter. 
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Chapter 8: Further Research and Conclusions 

8.1 Intelligent System: Knowledge Representation Framework 

The fuzzy asset evaluation technique introduced in Chapter 2, the measures of asset risk 

and robustness formulated in Chapter 3, the alternative asset ranking procedure 

developed in Chapter 4, and the soft risk classifier designed in Chapter 5 and Chapter 6 

and trained in Chapter 6 and Chapter 7, all these will be involved in the knowledge 

representation module of an intelligent system in asset pricing and risk analysis. Two 

modes of operation are considered, as an intelligent tutoring system and as a decision 

support system. We adopt the view that knowledge is better represented and 

communicated through a variety of models, each providing explanation or solution from 

a different perspective. Thus further models will be introduced to expand the domain 

representation module. 

The first task is to identify the types of relations involved in representing 

problem-solving knowledge. The variety of problem-solving information is appreciated 

through the types described in Figure 8.1. Structural knowledge captures taxonomic 

and compositional dependencies. Taxonomic knowledge communicates type-subtype 

subordination and inheritance of properties between objects. Any subtype object will 

inherit the general type characteristics and attached problems, however they can be 

further specified. Compositional relations provide information about the elements of an 

object. Next, behavioural. knowledge is accounted for by a number of relational types, 

where the strength of dependencies increases from temporal and co-occurrence, through 

correlational and enablement, to teleological and causal relations. 
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----------------- I 
Causal 

Teleological 
Taxonomic 

Enablement 

Compositional 

Correlational 
I S. I 

Co-occurrence 

Temporal 

--------------------------------------------------- 

Figure 8.1: Classification of problem-solving knowledge 

Causal knowledge aims at cause-effect dependencies among variables. Teleological 

dependencies focus on a goal and pull the conditions that will bring that goal. 

Enablement knowledge reveals that one event capacitates another event, and there exists 

a prerequisite relation between them. Still the relation is not as strong as the preceding 

two types, and does not imply that any of the events is the driving or the dragging force 

for the other. Correlation suggests observed dependencies between events but not 

responsibility of the one for causing the other. Correlational models are mostly used in 
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data mining or short-term predictions. Co-occurrence relations focus on observed 

coexistence of events at a particular moment or over a time period, without necessarily 

involving any sounder connection between them. Temporal information describes time 

sequencing of events involved in a procedure or algorithm. The time sequencing may 

be derived from a theory or heuristics, or the reason of the sequencing may not be of 

interest. Thus we have adopted domain description through problem-solving 

knowledge, and problem-solving knowledge representation through various types of 

relations. 

The next task is to apply various modelling techniques to represent the 

relations. Logic, rules, causal networks, Petri nets and equations are considered, while 

the list of techniques is not restricted. We expand the domain to include, in addition to 

the problems introduced in the previous Chapters, ftu-ther problems, such as examining 

the effect on asset evaluation of the risk that a company may become a takeover target, 

estimating the risk that the company may become a takeover target, examining the 

effect on asset evaluation of the risk of failure, estimating the risk of failure, as well as 

investigating the effect of the risk of failure and the takeover risk on the overall asset 

risk measure. Then, alternative descriptions are considered for each domain problem at 

more or at less detailed levels of compositional knowledge, e. g. asset evaluation 

including a greater or a smaller number of pricing factors, or estimating the pricing 

factors risk-of-failure and takeover-risk using different number of financial ratios. The 

problems are also arranged in different classes of taxonomy knowledge, e. g. asset 

classification is in the highest taxonomy class, estimating the overall asset risk is in a 
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lower class, asset evaluation is in yet a lower class, then comes estimating different 

pricing factors, etc. Finally, the type of behavioural knowledge is considered and the 

strength of the involved relations. For example, a financial ratio may be included in 

estimating the risk of takeover either due to a management theory suggesting the causal 

effect of the ratio on the risk, or because some correlation has been discovered through 

data mining. Once all alternative descriptions of a problem have been elaborated, then 

each description is modelled through appropriate modelling techniques. Moreover the 

same description may be modelled with different techniques. We further consider a soft 

modification of each model to allow for handling imprecise information. This involves 

soft extensions of the modelling techniques. Thus, the set of modelling techniques is 

expanded with multi-valued logic, fuzzy rules, probabilistic causal networks, interval 

and fuzzy interval timed Petri nets, fuzzy equations and neural networks approximating 

their solutions. As a result we built a domain of about thirty different models. 

The next important task is to suggest a domain structure. It will be based on 

the knowledge types from figure 8.1. In addition, the modelling phase has emphasised 

the exploitation of the tolerance to imprecision while representing the same problem. 

This will effectively introduce a new dimension of relations, and we assume the 

following relational types in the imprecision dimension, as specified in [32,33]: equal, 

possibilistic, veristic, probabilistic, probability value, usuality, random set, fuzzy 

random set and fuzzy graph. Therefore, the models can be arranged within the multiple- 

model multi-dimensional structure in figure 8.2. 
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C, 

Figure 8.2: Multiple-constraint multi -perspective domain representation 
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Furthermore, in order to express the wealth of information along the imprecision line of 

relations, the concept of generalised constraint is introduced in [32,33] as a 

generalisation of the notion of model. 

istype 

type (-= f eq, po, ve, pr, pv, us, rs, fs, fg I 

eq : equal 
po: possibilistic 
ve : veristic 
pr: probabilistic 
pv: probability value 
us: usuality 
rs random set 
fs random fuzzy set 
fg fuzzy graph 

(8.1) 

is a constrained variable, R is a modelled constraining relation, istype is a variable 

copula defining the way in which R constrains Y, and type is an indexing variable 

standing for the relational type. Thus, the introduction of the new perspective 

transforms the multi-model space into a multi-constraint domain representation. We 

will consider 'StYffinWrecision = istype and qPeimprecision =type in definition (8.1), and to 

keep up with the idea that the positions along the different perspectives are associated 

with corresponding relational types, the models along the other three perspectives are 

reformulated as in (8.2). 

istypegenerality 

typegenerality E: - Ite; co; cl; en; tl; cal 

te : temporal 
co: cooccurrence 
cl : correlational 
en : enablement 
tl : teleo log ical 

ca : causal 

(8.2a) 
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Y istype.,,,, 
pe 

R (8.2b) 

- Itaxonomy classesl tyPescope ý: 

Y istyperesolution R (8.2c) 
typeresolution c fcompositional levels) 

The perspective of generality unfolds along the behavioural types of knowledge, where 

weaker relations - i. e. temporal and co-occurrence - involve specific knowledge as used 

in procedures, while stronger relations - e. g. teleological and causal - rely on more 

abstract domain principles. Scope corresponds to taxonomic knowledge, suggesting 

that a higher taxonomy class is consistent with a broader problem scope. Resolution 

aligns compositional relations, where a detailed compositional level communicates 

increased resolution. Then, we can introduce with (8.3) the description of a generalised 

constraint in the structured domain. 

Y istyperesolution tyPescope typegeneralit), typeimprecision R (8.3) 

typeresolidion c- fcompositional levels) 
typescope Ef taxonomy classes) 

type - Ite; co; cl; en; tl; cal generality 
E= 

-I eq; po; ve; pr; pv; us; rs; fs; fg tYPeintprecision Eý 

In figure 8.2, a cuboid indicates the position of constraints with identical identifiers 

along the three dimensions, and then each cuboid expands in the imprecision dimension. 

The generalised constraints along this fourth dimension are able to represent perception 

based information, which is particularly important in the domain of asset pricing and 

risk analysis, where knowledge no longer starts from the estimation of financial 
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variables in terms of certainty or probability but in the perception of concepts inherent 

or surrounding the investment process, whose character is not principally measurable. 

On the one hand, the multiple-constraint multi-dimensional space allows 

investigating a domain problem from different perspectives, and thus a greater 

flexibility in communicating the problem or solving the problem. On the other hand, 

the developed domain structure facilitates the diagnosis of student knowledge - in the 

tutoring mode - and the analysis of decision-maker preferences - in the decision 

support mode of the intelligent system. Cognitive diagnosis or preference analysis is 

performed through generalised constraint propagation. The formulation of the 

antecedent part and the consequent part of the cognitive-diagnosis rule or the 

preference- analysis rule involves domain generalised constraints - following the user 

choices and thus the trajectory through the domain space - as well as further generalised 

constraints explicitating perceptions of student-understanding requirements or 

perceptions of preference categories. Anticipating that cognitive diagnosis and 

preference analysis will involve such perceptions and knowing of the ability of 

generalised constraints to explicitate perception based information, those were the 

reasons to describe the domain through generalised constraints. Thus the diagnostic 

rule or the preference rule, involving both domain information and preference or 

diagnostic information, can be formulated uniformly through generalised constraints. 

The introduction of generalised constraints to domain description, however, is 

beneficial in its own right, as they are capable of representing all three modes of 

information granulation - singular, crisp granular (c-granular) or qualitative, and fuzzy 

granular (f-granular). All these modes are involved in the description of the domain of 

asset risk analysis. 
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student's perceptions of 
domain knowledge relevant 

explicitation through referral to the instantiated to the problem being solved 
domain framework and the corresponding 

questions in the consequent part 
domain framework 

directly selected from the 
instantiated domain and applied relates to the student 

to solve a domain problem 

anticedent part 

choice-based subset of generalised constraints 

perception-based subset of generalised constraints 

perception -based subset of generalised constraints 

choice-based subset of generalised constraints 

consequent part 

directly selecte( orn the 

relates to the tutor 
instantiated domain framework as 
the solution of a domain problem 

domain framework* -------- j, translation through referral to the 
instantiated domain framework and the 
explicit questions provided by the tutor 

tutor's perceptions of tolerable/intolerable 
deviation from correct knowledge directly or 

indirectly invoved in the problem being solved 

Figure 8.3: Formulation of the cognitive diagnosis rule 

In summary, the intelligent systems will be able to offer the most appropriate 

choice of generalised constraint to solve a user-defined problem, matching the 

characteristics of the problem with the position of the constraint in the multi-perspective 

space. In addition, the system will be capable of analysing user characteristics. The 

fonnulation of the user-analysis rule involves perception based diagnostic or preference 

infon-nation. This perception based information is explicitated into generalised 

constraints while using the developed domain as an explanatory database. The analysis 
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itself is performed as generalised constraint propagation. Both explicitation of 

perception based information and generalised constraint propagation involve the 

computational theory of perceptions [32,33], which is still being developed and 

suggested as a computational inference engine complementary to qualitative reasoning 

approaches in artificial intelligence. Figure 8.3 visualises the formulation of the 

cognitive diagnosis rule. Generalised constraint propagation provides for the valued 

explanatory element in cognitive analysis. Within a range of fon-nulations of the 

diagnostic rule, this approach will comfortably achieve the diagnostic objectives. 

However, the propagation becomes more complex when the rule involves 

heterogeneous constraints, which is it includes generalised constraints of various 

relational type in the imprecision dimension. Then we may want to involve 

evolutionary computing, slipping into a subexplanatory zone. The argument is that it 

will work within exactly the same reasonably explained cognitive- analysis framework, 

though bringing the results more efficiently. 

Analysing user characteristics, in any of the two operational modes of the 

intelligent system, works toward improving the quality of tutoring or improving the 

efficiency of decision support, both in the domain of asset evaluation and risk analysis. 

Also, the computational theory of perceptions employed here is part of the soft 

computing paradigm. Thus in this Chapter, we continue developing the basic idea of 

this thesis, which is the implementation and the synergetic fusion of soft computing 

approaches to the benefit of the domain of asset risk analysis. 
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8.2 Conclusions 

The motivation in this thesis is to reformulate asset evaluation and risk analysis within 

the soft computing paradigm. We start with introducing a procedure applicable to fuzzy 

evaluation of various crisp asset pricing models. The evaluation is performed through 

processing a wide range of pricing factor imprecision and relaxing assumptions on 

market behaviour. Thus the solution is inclusive rather than exclusive, and provides a 

basis for further analysis. As part of this analysis, two measures are formulated 

focusing on different characteristics of the assets, the risk of overvaluation and the 

robustness toward further imprecision. Those two measures are used as a point of 

departure in developing an asset ranking technique. Assets are initially ordered in 

relation to the risk values and then their positions are adjusted according to the 

robustness values. For those with relatively close risk measures, assets with a 

qualitatively higher robustness measure are ranked higher. Thus the final ranking 

informs agents about attractive less risky and highly robust assets. This conclusion is 

the basis for building an asset classifier discriminating between assets in accordance 

with agent-dependent thresholds for the risk and the robustness values. We focus on 

training the module that discriminates between the risk values, i. e. training a risk 

classifier. This involves training a fuzzy neural network, which is a complex problem 

that can not be accomplished by single-level evolution. Alternatively, we design a two- 

level algorithm that successfully trains the network using a dynamic objective function. 

The number of decomposition levels, the partitioning into 
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subtasks at each decomposition level, the number and size of the subtasks in each 

partitioning, i. e. the efficient decomposition sequence is automatically identified, while 

exploiting the flexibility to discard unpromising and keep favourable subpopulations 

throughout the decomposition steps. The incremental part follows in reverse the 

efficient sequence and merges the subtasks toward optimizing the overall solution. We 

also suggest directions for further improvements in the algorithm. Considering the 

programming stage, we use Matlab 6.5 and its toolboxes. Particularly, for configuration 

of the crisp network we use the neural network toolbox, and for the network training we 

choose the fastest backpropagation algorithm available in the toolbox and modify the 

source code to accommodate for the sign restrictions on the network weights. On the 

other hand, we program the fuzzy network and the evolutionary training algorithms, as 

there are no helpful functions available in the toolboxes. 

Finally, the suggested asset evaluation procedure, the formulated risk and 

robustness measures, the developed asset ranking technique and the trained risk 

classifier, along with further models, are all included in a domain representation in asset 

pricing and risk analysis. A knowledge representation framework is designed based on 

multiple models positioned within a multiperspective domain, where different relational 

types unfold along the different dimensions. The imprecision perspective has a special 

role and introduces the transformation of the multimodel space into a multiple 

constraint domain. The developed knowledge representation framework will be 

embedded into an intelligent system in asset pricing and risk analysis. This may operate 
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as an intelligent tutoring system or as a decision support system. In both modes, the 

system will be able to analise user characteristics, either student understanding or 

decision-maker preferences, and this works toward improving the quality of tutoring or 

the efficiency of decision support in the area asset risk analysis. The analysis is 

facilitated by the introduced domain representation framework, and employs 

generalized constraint propagation, which relates to the computational theory of 

perceptions. Thus we have exploit the fusion of various soft techniques, from fuzzy 

logic, through neural networks and evolutionary algorithms, to the computational theory 

of perception to achieve synergetic results in handling complex problems to the benefit 

of the area of asset risk analysis. 
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Antoaneta Serguieva 

LL 

E 

E 

Share Price, E/100 

Figure A1.8b: BRITISH AMERICAN TOBACCO - 
evaluated fuzzy share price 

0 
t5 
LL 

Share Price, 9-/100 

Figure A1.9b: BUNZL - 
evaluated fuzzy share price 

0 
C. ) 
C 

LL 

.0 E 11 i 

Share Price, 9-1100 

Figure A1.10b: COATS VIYELLA - 
evaluated fuzzy share price 

C 0 

t C 

LL 
C1 

CD 
n 

Share Price, E/100 

Figure A 1.11 b: DIXONS GROUP - 
evaluated fuzzy share price 

May 2004 



Appendix A I: Fuzzified Data and Evaluated Fuzzy Share Price by Company 171 

c 0 
t5 

Dividend per Share, E/1 00 
Figure A1.12a: GOODWIN - fuzzified data 

c 0 

LL 

0- 

0) 

E 
a) 

Dividend per Share, f-/l 00 
Figure A1.13a: GREAT UNIVERSAL STORES - 

fuzzified data 

c 0 

LL 
0. 

Z 

LD 
9) 
-0 E 
G) 
m 

Dividend per Share, f-/l 00 
Figure A1.14a: HANSON - fuzzified data 

c 0 
t5 
c D 

(D 

E 
(D 
m 

Dividend per Share, E/l 00 
Figure A1.15a: INCHCAPE - fuzzified data 

LL 

CL 

jo E 

Share Price, E/100 

Figure Al. l2b: GOODWIN - 
evaluated fuzzy share price 

C 
0 

t5 
LL 

Cx 

CD 

E 
CD 

Share Price, 9-/100 

Figure Al. 13b: GREAT UNIVERSAL STORES - 
evaluated fuzzy share price 

C 0 

t5 
LL 

E 

Share Price, U100 
Figure A1.14b: HANSON - 
evaluated fuzzy share price 

t5 
LL 

CL 

E 

Share Price, WOO 

Figure Al. l5b: INCHCAPE - 
evaluated fuzzy share price 

Antoaneta Serguieva May 2004 



Appendix Al: Fuzzified Data and Evaluated Fuzzy Share Price by Company 172 

c 0 

LL 

.0 

w 

Dividend per Share, E/1 00 

Figure A1.16a: LEX SERVICE - fuzzified data 

0 
C 

LL 

C). 

(3) 
jo 

E 
QD 

Share Price, E/100 

Figure A1.16b: LEX SERVICE - 
evaluated fuzzy share price 

C 
0 

C 
:3 

LL 
a- LL 

CL 
!E 
12 'F 
(D 

E E 

'7ý 

Dividend per Share, E/1 00 Share Price, V100 

Figure A1.17a: MARKS & SPENCER - Figure A1.17b: MARKS & SPENCER - 
fuzzified data evaluated fuzzy share price 

C 
.0 2 
C: 
:3 

LL 

. t5 
C 0 -- LL 

E E 

Dividend per Share, FJ1 00 Share Price, 9-/100 

Figure A1.18a: NORTHERN FOODS - Figure A1.18b: NORTHERN FOODS - 
fuzzified data evaluated fuzzy share price 

r_ 
0 

LL 

m 

Dividend per Share, F-/l 00 
Figure A1.19a: PELKINGTON - fuzzified data 
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Figure A1.24b: SMITH (WH) GROUP - 
evaluated fuzzy share price 

0 

t5 
C 
LL 
CL 

E 

Share Price, WOO 

Figure A1.25b: SMITHS INDUSTREES - 
evaluated fuzzy share price 

Dividend per Share, f-/l 00 

Figure A1.27a: TATE &LYLE - fuzzified data 

Antoaneta Serguieva 

0 
t5 
=3 

LL 

E 

Share Price, E/100 

Figure A 1.26b: TARMAC - 
evaluated fuzzy share price 

C 0 

LL 
CL 

E 

Share Price, E/100 

Figure A1.27b: TATE &LYLE - 
evaluated fuzzy share price 

May 2004 



Appendix A I: Fuzzified Data and Evaluated Fuzzy Share Price by Company 175 

c 

a- 
Z 

2 

rT 

Dividend per Share, E/1 00 
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Figure A1.35a: WOLSELEY - fuzzified data 
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Appendix A. 2: Evaluated Risk Measure by Company 
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evaluated risk 9ý =0 
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Figure A2.31: UNELEVER 
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Figure A2.33: WHITBREAD 
evaluated risk 91 = 0.765 
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Figure A2.32: UNITED BISCUITS HOLDINGS 
evaluated risk 91 =0 
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Figure 4.1.34: WIMIPEY (GEORGE) 
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Figure A2.35: WOLSELEY 
evaluated risk 91 =0 
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Appendix A3: Fuzzified Data and Evaluated Robustness by Company 

under a Broader Range of Imprecision 
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Figure A3.3b: BENTALLS - 
evaluated robustness A=0.706 
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Figure A3.4a: BLUE CIRCLE INDUSTRIES - 
fuzzified data under a broader range of imprecision 
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Figure A3.5a: BOC GROUP - fuzzified data 
under a broader range of imprecision 
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Figure A3.6a: BOOTS CO. - fuzzified data 

under a broader range of imprecision 
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Figure A3.7a: BP AMOCO - fuzzified data 

under a broader range of imprecision 
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Figure A3.4b: BLUE CIRCLE INDUSTRIES - 
evaluated robustness A=I 
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evaluated robustness A=I 
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Figure A3.6b: BOOTS Co. - 
no robustness measure is assigned 
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Figure A3.7b: BP AMOCO - 
evaluated robustness A= 0.471 
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Figure A3.8a: BRITISH AMERICAN TOBACCO - 
fuzzified data under a broader range of imprecision 
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Figure A3.9a: BUNZL - fuzzified data 

under a broader range of imprecision 
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Figure A3.10a: COATS VIYELLA - 
fuzzified data under a broader range of imprecision 
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Figure A3.11a: DIXONS GROUP - 
fuzzified data under a broader range of imprecision 
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Figure A3.8b: BRITISH AMERICAN TOBACCO 
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Figure AM 1b: DIXONS GROUP - 
evaluated robustness A=0.943 
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Figure A3.12a: GOODWIN - fuzzified data 

under a broader range of imprecision 
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Figure A3.13a: GREAT UNIVERSAL STORES - 
fuzzified data under a broader range of imprecision 
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Figure A3.14a: HANSON - fuzzified data 

under a broader range of imprecision 
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Figure A3.15a: INCHCAPE - fuzzified data 

under a broader range of imprecision 
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Figure A3.12b: GOODWIN - 
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Figure A3.13b: GREAT UNIVERSAL STORES - 
evaluated robustness A= 0.990 
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Figure A3.14b: HANSON - 
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Figure A3.15b: INCHCAPE - 
no robustness measure is assigned 
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Figure A3.16a: LEX SERVICE - 
fuzzified data under a broader range of imprecision 
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Figure A3.17a: MARKS & SPENCER - 
fuzzified data under a broader range of imprecision 
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Figure A3.16b: LEX SERVICE - 
evaluated robustness A=I 
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Figure A3.17b: MARKS & SPENCER - 
evaluated robustness A=0.989 
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Figure A3.18a: NORTHERN FOODS - 
fuzzified data under a broader range of imprecision 
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Figure A3.18b: NORTHERN FOODS - 
evaluated robustness A=0.796 
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Figure A3.19a: PULKINGTON - 
fuzzified data under a broader range of imprecision 
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Figure A3.19b: PULKINGTON - 
evaluated robustness A= 0.257 
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Figure A3.20a: RANK GROUP - 
fuzzified data under a broader range of imprecision 
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Figure A3.21a: RMC GROUP - 
fuzzified data under a broader range of imprecision 
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Figure A3.20b: RANK GROUP - 
evaluated robustness A=0.761 
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Figure A3.21b: RMC GROUP - 
evaluated robustness A= 0.936 
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Figure A3.22a: SAINSBURY (J) - 
fuzzified data under a broader range of imprecision 
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Figure A3.22b: SAINSBURY (J) - 
no robustness measure is assigned 
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Figure A3.23a: SCOTTISH & NEWCASTLE - 
fuzzified data under a broader range of imprecision 
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Figure A3.23b: SCOTTISH & NEWCASTLE - 
evaluated robustness A= 0.813 
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Figure A3.24a: SMITH (WH) GROUP - 
fuzzified data under a broader range of imprecision 
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Figure A3.25a: SMITHS INDUSTREES - 
fuzzified data under a broader range of imprecision 
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Figure A3.26a: TARMAC - 
fuzzified data under a broader range of imprecision 
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Figure A3.24b: SMITH (WH) GROUP - 
evaluated robustness A= 0.995 
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Figure A3.25b: SMITHS INDUSTRIES - 
evaluated robustness A= 0.945 
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Figure A3.26b: TARMAC - 
evaluated robustness A=I 
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Figure A3.27a: TATE & LYLE - 
fuzzified data under a broader range of imprecision 
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Figure A3.27b: TATE & LYLE - 
evaluated robustness A= 0.522 
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Figure A3.28a: TAYLOR WOODROW - 
fuzzified data under a broader range of imprecision 
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Figure A3.28b: TAYLOR WOODROW - 
evaluated robustness A=0.956 
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Figure A3.29a: TI GROUP - 
fuzzified data under a broader range of imprecision 
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Figure A3.29b: TI GROUP - 
evaluated robustness A= 0.437 
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Figure A3.30a: TRANSPORT DEVELOPMENT GROUP - 
fuzzified data under a broader range of imprecision 
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Figure A3.30b: TRANSPORT DEVELOPMENT GRC 
evaluated robustness A= 0.339 
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Figure A3.31a: UNELEVER - 
fuzzified data under a broader range of imprecision 
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Figure A3.31b: UNILEVER - 
no robustness measure is assigned 
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Figure A3.32a: UNITED BISCUITS HOLDINGS - 
fuzzified data under a broader range of imprecision 
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Figure A3.33a: WHITBREAD - 
fuzzified data under a broader range of imprecision 
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Figure A3.33b: WHITBREAD - 
evaluated robustness A= 0.959 
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Figure A3.34a: WHAPEY (GEORGE) - 
fuzzified data under a broader range of imprecision 
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Figure A3.35a: WOLSELEY - 
fuzzified data under a broader range of imprecision 
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Figure A3.32b: UNITED BISCUITS HOLDINGS - 
evaluated robustness A=I 
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Figure A3.34b: WINVEY (GEORGE) - 
no robustness measure is assigned 
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Figure A3.35b: WOLSELEY - 
evaluated robustness A=I 
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Appendix A4: Evaluated Risk and Robustness Measures by Company 

under Time-Varying Return 
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Figure A4.1: BBA GROUP - evaluated 
risk and robustness under time-varying rate: 

913 = 0.696 and A=0.549 
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Figure A4.3: BOC GROUP - evaluated 
risk and robustness under time-varying rate: 
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Figure A4.5: COATS VIYELLA - evaluated 
risk and robustness under time-varying rate: 

9ý3=0 and A=] 
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Figure A4.2: BLUE CIRCLE INDUSTRIES - 
evaluated risk and robustness under time- 

varying rate: 913 =0 and A=I 
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Figure A4.4: BP AMOCO - evaluated 
risk and robustness under time-varying rate: 

913 = 0.904 and A=0.096 
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Figure A4.6: GOODWIN -evaluated 
risk and robustness under time-varying rate: 

9ý3 = 0.925 and A=0.496 
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Figure A4.7: HANSON - evaluated 
risk and robustness under time-varying rate: 

913 = 0.673 and A=0.834 
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Figure A4.9: NORTHERN FOODS - 
risk and robustness under time-varying rate: 

913 = 0.656 and A=0.683 
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Figure A4.1 1: RMC GROUP -evaluated 
risk and robustness under time-varying rate: 

9ý3 = 0.739 and A=0.740 
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Figure A4.8: LEX SERVICE - evaluated 
risk and robustness under time-varying rate: 

913=0 and A=] 

0.919 

= 0.769 
C: 64- IX2 
0 

C: 
:3 

LL 

q line 

E 
(D 

0 0.026 

Log Share Price 

Figure A4.10: PELKINGTON -evaluated 
risk and robustness under time-varying rate: 

913 =0.919 and A =0.107 
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Figure A4.12: SCOTTISH & NEWCASTLE - 
evaluated risk and robustness under time- 

varying rate: 913 = 0.775 and A=0.712 
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Figure A4.13: SMITHS INDUSTRIES - evaluated 
risk and robustness under time-varying rate: 

9ý3 = 0.959 and A=0.625 
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Figure A4.15: TATE & LYLE - evaluated 
risk and robustness under time-varying rate: 

913 = 0.778 and A= 0.412 
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Figure A4.17: TRANSPORT DEVELOPMENT GROUP - 

evaluated risk and robustness under time-varying rate: 
913 = 0.736 and A= 0.264 
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Figure A4.14: TARMAC -evaluated 

risk and robustness under time-varying rate: 
913=0 and A=] 

0 
c0 0 

C: 
=3 

LL 

(D 
n 
E 
(D 

f- q hne 

<- 913 ý 0.664 

912 ý 0.563 

91, =0 

Log Share Price 

Figure A4.16: TI GROUP - evaluated 
risk and robustness under time- varying rate: 

913 = 0.664 and A=0.336 
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Figure A4.18: UNITED BISCUITS HOLDINGS - 
evaluated risk and robustness under time-varying rate: 

913=0 and A=] 
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Figure A4.19: WOLSELEY -evaluated 
risk and robustness under time-varYing rate: 

913 = 0.092 and A= 0.908 
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Appendix A5-, Support of the Evaluated Logarithmic Fuzzy Asset Price by Company 

Table A5.1: Support of the evaluated logarithmic asset price by company* 

company I Po pIU o 

BASS 6.38 6.79 
BBA GROUP 5.72 6.03 
BENTALLS 4.20 4.45 
BLUE CIRCLE INDUSTRIES 5.58 6.06 
BOC GROUP 6.66 7.21 
BOOTS CO. 6.03 6.58 
BPAMOCO -%oll 6.32 
BRITISH AMERICAN TOBACCO 5.59 6.31 
BUNZL 5.34 5.74 
COATS VIYELLA 3.68 4.13 
DIXONS GROUP 6.71 7.01 
GOODWIN 4.13 4.43 
GREAT UNIVERSAL STORES 5.4 6.37 
HANSON 5.84 6.19 
INCHCAPE 5.49 6.57 
LEX SERVICE 5.61 6.31 
MARKS & SPENCER 5.41 5.99 
NORTHERN FOODS 4.57 5.04 
PILKINGTON 4.24 4.83 
RANK GROUP 5.39 5.9 
RMC GROUP 6.36 6.87 
SAINSBURY (J) 5.68 5.97 
SCOTTISH & NEWCASTLE 5.80 6.46 
SMITH (Vv'H) GROUP 5.44 6.32 
SMITHS INDUSTRIES 6.47 6.67 
TARMAC 5.92 6.44 
TATE & LYLE 5.87 6.06 

TAYLOR WOODROW 4.57 5.01 

TI GROUP 5.87 6.22 

TRANSPORT DEVELOPMENT GROUP 5.25 5.58 

UNILEVER 5.70 6.03 

UNITED BISCUITS HOLDINGS 5.30 5.75 

WHITBREAD 6.01 6.73 

WIMPEY (GEORGE) 4.49 5.07 

WOLSELEY 5.77 6.15 
* The fuzzy price is evaluated at t=0 in January 1999, over a 12-month hor, zon for the pr, cing factors. 
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