735 research outputs found

    hp-Version discontinuous Galerkin finite element methods for semilinear parabolic problems

    Get PDF
    We consider the hp-version interior penalty discontinuous Galerkin finite element method (hp-DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp--DGFEM on shape--regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non--symmetric versions of DGFEM

    Discontinuous Galerkin Methods for Mass Transfer through Semi-Permeable Membranes

    Get PDF
    A discontinuous Galerkin (dG) method for the numerical solution of initial/boundary value multi-compartment partial differential equation (PDE) models, interconnected with interface conditions, is presented and analysed. The study of interface problems is motivated by models of mass transfer of solutes through semi-permeable membranes. More specifically, a model problem consisting of a system of semilinear parabolic advection-diffusion-reaction partial differential equations in each compartment, equipped with respective initial and boundary conditions, is considered. Nonlinear interface conditions modelling selective permeability, congestion and partial reflection are applied to the compartment interfaces. An interior penalty dG method is presented for this problem and it is analysed in the space-discrete setting. The a priori analysis shows that the method yields optimal a priori bounds, provided the exact solution is sufficiently smooth. Numerical experiments indicate agreement with the theoretical bounds and highlight the stability of the numerical method in the advection-dominated regime

    High order discontinuous Galerkin methods on surfaces

    Get PDF
    We derive and analyze high order discontinuous Galerkin methods for second-order elliptic problems on implicitely defined surfaces in R3\mathbb{R}^{3}. This is done by carefully adapting the unified discontinuous Galerkin framework of Arnold et al. [2002] on a triangulated surface approximating the smooth surface. We prove optimal error estimates in both a (mesh dependent) energy norm and the L2L^2 norm.Comment: 23 pages, 2 figure

    Discontinuous Galerkin Methods for the Biharmonic Problem on Polygonal and Polyhedral Meshes

    Get PDF
    We introduce an hphp-version symmetric interior penalty discontinuous Galerkin finite element method (DGFEM) for the numerical approximation of the biharmonic equation on general computational meshes consisting of polygonal/polyhedral (polytopic) elements. In particular, the stability and hphp-version a-priori error bound are derived based on the specific choice of the interior penalty parameters which allows for edges/faces degeneration. Furthermore, by deriving a new inverse inequality for a special class {of} polynomial functions (harmonic polynomials), the proposed DGFEM is proven to be stable to incorporate very general polygonal/polyhedral elements with an \emph{arbitrary} number of faces for polynomial basis with degree p=2,3p=2,3. The key feature of the proposed method is that it employs elemental polynomial bases of total degree Pp\mathcal{P}_p, defined in the physical coordinate system, without requiring the mapping from a given reference or canonical frame. A series of numerical experiments are presented to demonstrate the performance of the proposed DGFEM on general polygonal/polyhedral meshes

    A fully discrete framework for the adaptive solution of inverse problems

    Get PDF
    We investigate and contrast the differences between the discretize-then-differentiate and differentiate-then-discretize approaches to the numerical solution of parameter estimation problems. The former approach is attractive in practice due to the use of automatic differentiation for the generation of the dual and optimality equations in the first-order KKT system. The latter strategy is more versatile, in that it allows one to formulate efficient mesh-independent algorithms over suitably chosen function spaces. However, it is significantly more difficult to implement, since automatic code generation is no longer an option. The starting point is a classical elliptic inverse problem. An a priori error analysis for the discrete optimality equation shows consistency and stability are not inherited automatically from the primal discretization. Similar to the concept of dual consistency, We introduce the concept of optimality consistency. However, the convergence properties can be restored through suitable consistent modifications of the target functional. Numerical tests confirm the theoretical convergence order for the optimal solution. We then derive a posteriori error estimates for the infinite dimensional optimal solution error, through a suitably chosen error functional. This estimates are constructed using second order derivative information for the target functional. For computational efficiency, the Hessian is replaced by a low order BFGS approximation. The efficiency of the error estimator is confirmed by a numerical experiment with multigrid optimization

    A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes

    Full text link
    In this work, we develop and analyze a Hybrid High-Order (HHO) method for steady non-linear Leray-Lions problems. The proposed method has several assets, including the support for arbitrary approximation orders and general polytopal meshes. This is achieved by combining two key ingredients devised at the local level: a gradient reconstruction and a high-order stabilization term that generalizes the one originally introduced in the linear case. The convergence analysis is carried out using a compactness technique. Extending this technique to HHO methods has prompted us to develop a set of discrete functional analysis tools whose interest goes beyond the specific problem and method addressed in this work: (direct and) reverse Lebesgue and Sobolev embeddings for local polynomial spaces, LpL^{p}-stability and Ws,pW^{s,p}-approximation properties for L2L^{2}-projectors on such spaces, and Sobolev embeddings for hybrid polynomial spaces. Numerical tests are presented to validate the theoretical results for the original method and variants thereof
    • ā€¦
    corecore