20,504 research outputs found

    Early Warning Analysis for Social Diffusion Events

    Get PDF
    There is considerable interest in developing predictive capabilities for social diffusion processes, for instance to permit early identification of emerging contentious situations, rapid detection of disease outbreaks, or accurate forecasting of the ultimate reach of potentially viral ideas or behaviors. This paper proposes a new approach to this predictive analytics problem, in which analysis of meso-scale network dynamics is leveraged to generate useful predictions for complex social phenomena. We begin by deriving a stochastic hybrid dynamical systems (S-HDS) model for diffusion processes taking place over social networks with realistic topologies; this modeling approach is inspired by recent work in biology demonstrating that S-HDS offer a useful mathematical formalism with which to represent complex, multi-scale biological network dynamics. We then perform formal stochastic reachability analysis with this S-HDS model and conclude that the outcomes of social diffusion processes may depend crucially upon the way the early dynamics of the process interacts with the underlying network's community structure and core-periphery structure. This theoretical finding provides the foundations for developing a machine learning algorithm that enables accurate early warning analysis for social diffusion events. The utility of the warning algorithm, and the power of network-based predictive metrics, are demonstrated through an empirical investigation of the propagation of political memes over social media networks. Additionally, we illustrate the potential of the approach for security informatics applications through case studies involving early warning analysis of large-scale protests events and politically-motivated cyber attacks

    TiDeH: Time-Dependent Hawkes Process for Predicting Retweet Dynamics

    Full text link
    Online social networking services allow their users to post content in the form of text, images or videos. The main mechanism driving content diffusion is the possibility for users to re-share the content posted by their social connections, which may then cascade across the system. A fundamental problem when studying information cascades is the possibility to develop sound mathematical models, whose parameters can be calibrated on empirical data, in order to predict the future course of a cascade after a window of observation. In this paper, we focus on Twitter and, in particular, on the temporal patterns of retweet activity for an original tweet. We model the system by Time-Dependent Hawkes process (TiDeH), which properly takes into account the circadian nature of the users and the aging of information. The input of the prediction model are observed retweet times and structural information about the underlying social network. We develop a procedure for parameter optimization and for predicting the future profiles of retweet activity at different time resolutions. We validate our methodology on a large corpus of Twitter data and demonstrate its systematic improvement over existing approaches in all the time regimes.Comment: The manuscript has been accepted in the 10th International AAAI Conference on Web and Social Media (ICWSM 2016

    From Micro to Macro: Uncovering and Predicting Information Cascading Process with Behavioral Dynamics

    Full text link
    Cascades are ubiquitous in various network environments. How to predict these cascades is highly nontrivial in several vital applications, such as viral marketing, epidemic prevention and traffic management. Most previous works mainly focus on predicting the final cascade sizes. As cascades are typical dynamic processes, it is always interesting and important to predict the cascade size at any time, or predict the time when a cascade will reach a certain size (e.g. an threshold for outbreak). In this paper, we unify all these tasks into a fundamental problem: cascading process prediction. That is, given the early stage of a cascade, how to predict its cumulative cascade size of any later time? For such a challenging problem, how to understand the micro mechanism that drives and generates the macro phenomenons (i.e. cascading proceese) is essential. Here we introduce behavioral dynamics as the micro mechanism to describe the dynamic process of a node's neighbors get infected by a cascade after this node get infected (i.e. one-hop subcascades). Through data-driven analysis, we find out the common principles and patterns lying in behavioral dynamics and propose a novel Networked Weibull Regression model for behavioral dynamics modeling. After that we propose a novel method for predicting cascading processes by effectively aggregating behavioral dynamics, and propose a scalable solution to approximate the cascading process with a theoretical guarantee. We extensively evaluate the proposed method on a large scale social network dataset. The results demonstrate that the proposed method can significantly outperform other state-of-the-art baselines in multiple tasks including cascade size prediction, outbreak time prediction and cascading process prediction.Comment: 10 pages, 11 figure
    • …
    corecore