110,898 research outputs found

    Design and Performance of a Practical Variable-Temperature Scanning Tunneling Potentiometry System

    Full text link
    We have constructed a scanning tunneling potentiometry system capable of simultaneously mapping the transport-related electrochemical potential of a biased sample along with its surface topography. Combining a novel sample biasing technique with a continuous current-nulling feedback scheme pushes the noise performance of the measurement to its fundamental limit - the Johnson noise of the STM tunnel junction. The resulting 130 nV voltage sensitivity allows us to spatially resolve local potentials at scales down to 2 nm, while maintaining angstrom scale STM imaging, all at scan sizes of up to 15 um. A mm-range two-dimensional coarse positioning stage and the ability to operate from liquid helium to room temperature with a fast turn-around time greatly expand the versatility of the instrument. By performing studies of several model systems, we discuss the implications of various types of surface morphology for potentiometric measurements.Comment: 16 pages, 17 figures, accepted to Review of Scientific Instruments v2 - minor changes: cleaned up figures/figure caption

    A design for testability study on a high performance automatic gain control circuit.

    Get PDF
    A comprehensive testability study on a commercial automatic gain control circuit is presented which aims to identify design for testability (DfT) modifications to both reduce production test cost and improve test quality. A fault simulation strategy based on layout extracted faults has been used to support the study. The paper proposes a number of DfT modifications at the layout, schematic and system levels together with testability. Guidelines that may well have generic applicability. Proposals for using the modifications to achieve partial self test are made and estimates of achieved fault coverage and quality levels presente

    A conjugate gradient algorithm for the astrometric core solution of Gaia

    Full text link
    The ESA space astrometry mission Gaia, planned to be launched in 2013, has been designed to make angular measurements on a global scale with micro-arcsecond accuracy. A key component of the data processing for Gaia is the astrometric core solution, which must implement an efficient and accurate numerical algorithm to solve the resulting, extremely large least-squares problem. The Astrometric Global Iterative Solution (AGIS) is a framework that allows to implement a range of different iterative solution schemes suitable for a scanning astrometric satellite. In order to find a computationally efficient and numerically accurate iteration scheme for the astrometric solution, compatible with the AGIS framework, we study an adaptation of the classical conjugate gradient (CG) algorithm, and compare it to the so-called simple iteration (SI) scheme that was previously known to converge for this problem, although very slowly. The different schemes are implemented within a software test bed for AGIS known as AGISLab, which allows to define, simulate and study scaled astrometric core solutions. After successful testing in AGISLab, the CG scheme has been implemented also in AGIS. The two algorithms CG and SI eventually converge to identical solutions, to within the numerical noise (of the order of 0.00001 micro-arcsec). These solutions are independent of the starting values (initial star catalogue), and we conclude that they are equivalent to a rigorous least-squares estimation of the astrometric parameters. The CG scheme converges up to a factor four faster than SI in the tested cases, and in particular spatially correlated truncation errors are much more efficiently damped out with the CG scheme.Comment: 24 pages, 16 figures. Accepted for publication in Astronomy & Astrophysic

    Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity

    Get PDF
    A novel, simple, and inexpensive calibration scheme for a continuous-wave difference frequency spectrometer is presented, based on the stabilization of an open transfer cavity by locking onto the output of a polarization stabilized HeNe laser. High frequency, acoustic fluctuations of the transfer cavity length are compensated with a piezoelectric transducer mounted mirror, while long term drift in cavity length is controlled by thermal feedback. A single mode Ar+ laser, used with a single mode ring dye laser in the difference frequency generation of 2–4 µm light, is then locked onto a suitable fringe of this stable cavity, achieving a very small long term drift and furthermore reducing the free running Ar+ linewidth to about 1 MHz. The dye laser scan provides tunability in the difference frequency mixing process, and is calibrated by marker fringes with the same stable cavity. Due to the absolute stability of the marker cavity, precise frequency determination of near infrared molecular transitions is achieved via interpolation between these marker fringes. It is shown theoretically that the residual error of this scheme due to the dispersion of air in the transfer cavity is quite small, and experimentally that a frequency precision on the order of 1 MHz per hour is routinely obtained with respect to molecular transitions. Review of Scientific Instruments is copyrighted by The American Institute of Physics
    • …
    corecore