15,652 research outputs found

    Convexity in source separation: Models, geometry, and algorithms

    Get PDF
    Source separation or demixing is the process of extracting multiple components entangled within a signal. Contemporary signal processing presents a host of difficult source separation problems, from interference cancellation to background subtraction, blind deconvolution, and even dictionary learning. Despite the recent progress in each of these applications, advances in high-throughput sensor technology place demixing algorithms under pressure to accommodate extremely high-dimensional signals, separate an ever larger number of sources, and cope with more sophisticated signal and mixing models. These difficulties are exacerbated by the need for real-time action in automated decision-making systems. Recent advances in convex optimization provide a simple framework for efficiently solving numerous difficult demixing problems. This article provides an overview of the emerging field, explains the theory that governs the underlying procedures, and surveys algorithms that solve them efficiently. We aim to equip practitioners with a toolkit for constructing their own demixing algorithms that work, as well as concrete intuition for why they work

    Contrast in Multipath Interference and Quantum Coherence

    Full text link
    We develop a rigorous connection between statistical properties of an interference pattern and the coherence properties of the underlying quantum state. With explicit examples, we demonstrate that even for inaccurate reconstructions of interference patterns properly defined statistical moments permit a reliable characterization of quantum coherence.Comment: 10 page

    Sum-Rate Maximization in Two-Way AF MIMO Relaying: Polynomial Time Solutions to a Class of DC Programming Problems

    Full text link
    Sum-rate maximization in two-way amplify-and-forward (AF) multiple-input multiple-output (MIMO) relaying belongs to the class of difference-of-convex functions (DC) programming problems. DC programming problems occur as well in other signal processing applications and are typically solved using different modifications of the branch-and-bound method. This method, however, does not have any polynomial time complexity guarantees. In this paper, we show that a class of DC programming problems, to which the sum-rate maximization in two-way MIMO relaying belongs, can be solved very efficiently in polynomial time, and develop two algorithms. The objective function of the problem is represented as a product of quadratic ratios and parameterized so that its convex part (versus the concave part) contains only one (or two) optimization variables. One of the algorithms is called POlynomial-Time DC (POTDC) and is based on semi-definite programming (SDP) relaxation, linearization, and an iterative search over a single parameter. The other algorithm is called RAte-maximization via Generalized EigenvectorS (RAGES) and is based on the generalized eigenvectors method and an iterative search over two (or one, in its approximate version) optimization variables. We also derive an upper-bound for the optimal values of the corresponding optimization problem and show by simulations that this upper-bound can be achieved by both algorithms. The proposed methods for maximizing the sum-rate in the two-way AF MIMO relaying system are shown to be superior to other state-of-the-art algorithms.Comment: 35 pages, 10 figures, Submitted to the IEEE Trans. Signal Processing in Nov. 201

    Robust computation of linear models by convex relaxation

    Get PDF
    Consider a dataset of vector-valued observations that consists of noisy inliers, which are explained well by a low-dimensional subspace, along with some number of outliers. This work describes a convex optimization problem, called REAPER, that can reliably fit a low-dimensional model to this type of data. This approach parameterizes linear subspaces using orthogonal projectors, and it uses a relaxation of the set of orthogonal projectors to reach the convex formulation. The paper provides an efficient algorithm for solving the REAPER problem, and it documents numerical experiments which confirm that REAPER can dependably find linear structure in synthetic and natural data. In addition, when the inliers lie near a low-dimensional subspace, there is a rigorous theory that describes when REAPER can approximate this subspace.Comment: Formerly titled "Robust computation of linear models, or How to find a needle in a haystack

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    Finding a low-rank basis in a matrix subspace

    Full text link
    For a given matrix subspace, how can we find a basis that consists of low-rank matrices? This is a generalization of the sparse vector problem. It turns out that when the subspace is spanned by rank-1 matrices, the matrices can be obtained by the tensor CP decomposition. For the higher rank case, the situation is not as straightforward. In this work we present an algorithm based on a greedy process applicable to higher rank problems. Our algorithm first estimates the minimum rank by applying soft singular value thresholding to a nuclear norm relaxation, and then computes a matrix with that rank using the method of alternating projections. We provide local convergence results, and compare our algorithm with several alternative approaches. Applications include data compression beyond the classical truncated SVD, computing accurate eigenvectors of a near-multiple eigenvalue, image separation and graph Laplacian eigenproblems

    A Sparse Multi-Scale Algorithm for Dense Optimal Transport

    Full text link
    Discrete optimal transport solvers do not scale well on dense large problems since they do not explicitly exploit the geometric structure of the cost function. In analogy to continuous optimal transport we provide a framework to verify global optimality of a discrete transport plan locally. This allows construction of an algorithm to solve large dense problems by considering a sequence of sparse problems instead. The algorithm lends itself to being combined with a hierarchical multi-scale scheme. Any existing discrete solver can be used as internal black-box.Several cost functions, including the noisy squared Euclidean distance, are explicitly detailed. We observe a significant reduction of run-time and memory requirements.Comment: Published "online first" in Journal of Mathematical Imaging and Vision, see DO
    • 

    corecore