1,607 research outputs found

    An approach for spasticity quantification based on the stretch reflex threshold

    Get PDF
    Spasticity is a common and complex motor disorder that affects more than 12 million persons in the world. There are several studies on spasticity quantification in the literature but there is still a need for measurement improvements. This paper presents the design of a mechatronic device for spasticity quantification, in joint of ankle, elbow and knees. This approach is based on the velocity dependent of the tonic stretch reflexes. The relevant variables, the measurement range and the adequate measurement systems are selected. The data acquisition system, board and software, are also defined and tested in laboratory. Next step consists of the system validation in clinical environment

    Biomedical device for spasticity quantification based on the velocity dependence of the stretch reflex threshold

    Get PDF
    Spasticity is a common and complex motor disorder that affects more than 12 million persons in the world. There are several studies on spasticity quantification in the literature but there is still a need for measurement improvements. This paper presents the validation, in clinical environment, of a mechatronic medical device, dedicated, and specially designed and constructed for spasticity quantification, in joint of ankle, elbow and knees. This approach is based on the velocity-dependent of the Stretch Reflex threshold. The relevant variables, the measurement range and the adequate measurement systems are indicated. The reliability of the developed mechatronic medical system is confirmed by data acquisition and analysis, following a systematic methodology, also presented in the paper

    A mechatronic device for spasticity quantification

    Get PDF
    Spasticity is a common and complex motor disorder that affects more than 12 million persons in the world. There are several studies on spasticity quantification in the literature but there is still a need for measurement improvements. This paper presents the design of a mechatronic device for spasticity quantification, in joint of ankle, elbow and knees. This approach is based on the velocity dependent of the tonic stretch reflexes. The relevant variables, the measurement range and the adequate measurement systems are selected. The data acquisition system, board and software, are also defined and tested in laboratory. The proposed system was tested in rehabilitation clinical environment and the corresponding results are presented in this article.The authors are grateful to Portuguese Research Centers Algoritmi and CT2M for financial support. The authors are also grateful to Fisimaia rehabilitation clinic in Maia and his patients

    Fatiguing Effects of Indirect Vibration Stimulation in Upper Limb Muscles- pre, post and during Isometric Contractions Superimposed on Upper Limb Vibration

    Get PDF
    © 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ , which permits unrestricted use, provided the original author and source are credited.Whole-body vibration and upper limb vibration (ULV) continue to gain popularity as exercise intervention for rehabilitation and sports applications. However, the fatiguing effects of indirect vibration stimulation are not yet fully understood. We investigated the effects of ULV stimulation superimposed on fatiguing isometric contractions using a purpose developed upper limb stimulation device. Thirteen healthy volunteers were exposed to both ULV superimposed to fatiguing isometric contractions (V) and isometric contractions alone Control (C). Both Vibration (V) and Control (C) exercises were performed at 80% of the maximum voluntary contractions. The stimulation used was 30 Hz frequency of 0.4 mm amplitude. Surface-electromyographic (EMG) activity of the Biceps Brachii, Triceps Brachii and Flexor Carpi Radialis were measured. EMG amplitude (EMGrms) and mean frequency (MEF) were computed to quantify muscle activity and fatigue levels. All muscles displayed significantly higher reduction in MEFs and a corresponding significant increase in EMGrms with the V than the Control, during fatiguing contractions (p < 0.05). Post vibration, all muscles showed higher levels of MEFs after recovery compared to the control. Our results show that near-maximal isometric fatiguing contractions superimposed on vibration stimulation lead to a higher rate of fatigue development compared to the isometric contraction alone in the upper limb muscles. Results also show higher manifestation of mechanical fatigue post treatment with vibration compared to the control. Vibration superimposed on isometric contraction not only seems to alter the neuromuscular function during fatiguing efforts by inducing higher neuromuscular load but also post vibration treatment.Peer reviewedFinal Published versio

    Quantitative evaluation for spasticity of calf muscle after botulinum toxin injection in patients with cerebral palsy: a pilot study

    Get PDF
    BACKGROUND: Cerebral palsy (CP) is the most common pediatric disease to cause motor disability. Two common symptoms in CP are spasticity and contracture. If this occurred in the ankle plantar flexors of children with CP, it will impair their gait and active daily living profoundly. Most children with CP receive botulinum toxin type A (BoNT-A) injection to reduce muscle tone, but a knowledge gap exists in the understanding of changes of neural and non-neural components of spasticity after injection. The purpose of this study was to determine if our device for quantitative modified Tardieu approach (QMTA) is a valid method to assess spasticity of calf muscles after botulinum toxin injection. METHODS: In this study, we intended to develop a device for quantitative measurement of spasticity in calf muscles based on the modified Tardieu scale (MTS) and techniques of biomedical engineering. Our QMTA measures the angular displacement and resistance of stretched joint with a device that is light, portable and can be operated similar to conventional approaches for MTS. The static (R2), dynamic (R1) and R2-R1 angles derived from the reactive signals collected by the miniature sensors are used to represent the non-neural and neural components of stretched spastic muscles. Four children with CP were recruited to assess the change in spasticity in their gastrocnemius muscles before and 4 weeks after BoNT-A injection. RESULTS: A simulated ankle model validated the performance of our device in measuring joint displacement and estimating the angle of catch. Data from our participants with CP showed that R2 and R2-R1 improved significantly after BoNT-A administration. It indicates both neural and non-neural components of the spastic gastrocnemius muscles improved at four weeks after BoNT-A injection in children with CP. CONCLUSION: Our device for QMTA can objectively measure the changes in spasticity of the gastrocnemius muscle in children with cerebral palsy after BoNT-A injection

    On the use of low-cost computer peripherals for the assessment of motor dysfunction in Parkinson’s disease – Quantification of bradykinesia using target tracking tasks

    Get PDF
    The potential of computer games peripherals to measure the motor dysfunction in Parkinson’s diseases is assessed. Of particular interest is the quantification of bradykinesia. Previous studies used modified or custom haptic interfaces, here an unmodified force feedback joystick and steering wheel are used with a laptop. During testing an on screen cursor moves in response to movements of the peripheral, the user has to track a continuously moving target (pursuit tracking), or move to a predetermined target (step tracking). All tasks use movement in the horizontal axis, allowing use of joystick or steering wheel. Two pursuit tracking tasks are evaluated, pseudo random movement, and a swept frequency task. Two step tracking tasks are evaluated, movement between two or between two of five fixed targets. Thirteen patients and five controls took part on a weekly basis. Patients were assessed for bradykinesia at each session using standard clinical measures. A range of quantitative measures was developed to allow comparison between and within patients and controls using ANOVA. Both peripherals are capable of discriminating between controls and patients, and between patients with different levels of bradykinesia. Recommendations for test procedures and peripherals are given

    A review of the effectiveness of lower limb orthoses used in cerebral palsy

    Get PDF
    To produce this review, a systematic literature search was conducted for relevant articles published in the period between the date of the previous ISPO consensus conference report on cerebral palsy (1994) and April 2008. The search terms were 'cerebral and pals* (palsy, palsies), 'hemiplegia', 'diplegia', 'orthos*' (orthoses, orthosis) orthot* (orthotic, orthotics), brace or AFO

    Development of an equipment to detect and quantify muscular spasticity

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia BiomédicaSpasticity consists of a muscular tonus alteration caused by a flawed central nervous system which results in a hypertonic phenomenon. The presence of spasticity is normally noticeable by the appearance of a denoted velocity dependent “rigidity” throughout the passive mobilization of an affected limb which can be a potential source of constraints in subject independency by negatively affecting the accomplishment of daily basic tasks. Spasticity treatment usually comprises high cost methods and materials. There is also a strict relation between the spasticity grade and the dose that has to be applied to attain the desired effective result. These two facts justify the need for a more precise equipment to detect and quantify muscular spasticity. In the present days, three main groups of spasticity quantification methods coexist: the clinical scales, electrophysiological measurements and the biomechanical measurements. The most used ones are the clinical scales, especially the Modified Ashworth Scale. These scales quantify spasticity based on the perception of muscular response sensed by an operator. In a different field of approach, many instruments have been built to quantify biomechanical magnitudes that have shown direct relation with spasticity. Unfortunately, most of these instruments had either inappropriate size for clinical use, weak result correlation both inter and intra-subject, or a noticeable result dependence on the operator. The objective of this project was to create a reliable method for spasticity detection and quantification that could: be of easy and fast application, have no need for a specialized operator, be portable and present good repeatability and independency from the operator in the produced results. The resulting prototype, named SpastiMed, is a motorized and electronically controlled device which through analysis of the produced signal presented irrefutable proof of its capacity to detect and possibly quantify spasticity while gathering the important characteristics mentioned
    corecore