3,681 research outputs found

    Smart Grid communications in high traffic environments

    Get PDF
    The establishment of a previously non-existent data class known as the Smart Grid will pose many difficulties on current and future communication infrastructure. It is imperative that the Smart Grid (SG), as the reactionary and monitory arm of the Power Grid (PG), be able to communicate effectively between grid controllers and individual User Equipment (UE). By doing so, the successful implementation of SG applications can occur, including support for higher capacities of Renewable Energy Resources. As the SG matures, the number of UEs required is expected to rise increasing the traffic in an already burdened communications network. This thesis aims to optimally allocate radio resources such that the SG Quality of Service (QoS) requirements are satisfied with minimal effect on pre-existing traffic. To address this resource allocation problem, a Lotka-Volterra (LV) based resource allocation and scheduler was developed due to its ability to easily adapt to the dynamics of a telecommunications environment. Unlike previous resource allocation algorithms, the LV scheme allocated resources to each class as a function of its growth rate. By doing so, the QoS requirements of the SG were satisfied, with minimal effect on pre-existing traffic. Class queue latencies were reduced by intelligent scheduling of periodic traffic and forward allocation of resources. This thesis concludes that the SG will have a large effect on the telecommunications environment if not successfully controlled and monitored. This effect can be minimized by utilizing the proposed LV based resource allocation and scheduler system. Furthermore, it was shown that the allocation of periodic SG radio channels was optimized by continual updates of the LV model. This ensured the QoS requirements of the SG are achieved and provided enhanced performance. Successful integration of SG UEs in a wireless network can pave the way for increased capacity of Renewable and Intermittent Energy Resources operating on the PG

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Incentives-Based Mechanism for Efficient Demand Response Programs

    Full text link
    In this work we investigate the inefficiency of the electricity system with strategic agents. Specifically, we prove that without a proper control the total demand of an inefficient system is at most twice the total demand of the optimal outcome. We propose an incentives scheme that promotes optimal outcomes in the inefficient electricity market. The economic incentives can be seen as an indirect revelation mechanism that allocates resources using a one-dimensional message space per resource to be allocated. The mechanism does not request private information from users and is valid for any concave customer's valuation function. We propose a distributed implementation of the mechanism using population games and evaluate the performance of four popular dynamics methods in terms of the cost to implement the mechanism. We find that the achievement of efficiency in strategic environments might be achieved at a cost, which is dependent on both the users' preferences and the dynamic evolution of the system. Some simulation results illustrate the ideas presented throughout the paper.Comment: 38 pages, 9 figures, submitted to journa

    Resource allocation technique for powerline network using a modified shuffled frog-leaping algorithm

    Get PDF
    Resource allocation (RA) techniques should be made efficient and optimized in order to enhance the QoS (power & bit, capacity, scalability) of high-speed networking data applications. This research attempts to further increase the efficiency towards near-optimal performance. RA’s problem involves assignment of subcarriers, power and bit amounts for each user efficiently. Several studies conducted by the Federal Communication Commission have proven that conventional RA approaches are becoming insufficient for rapid demand in networking resulted in spectrum underutilization, low capacity and convergence, also low performance of bit error rate, delay of channel feedback, weak scalability as well as computational complexity make real-time solutions intractable. Mainly due to sophisticated, restrictive constraints, multi-objectives, unfairness, channel noise, also unrealistic when assume perfect channel state is available. The main goal of this work is to develop a conceptual framework and mathematical model for resource allocation using Shuffled Frog-Leap Algorithm (SFLA). Thus, a modified SFLA is introduced and integrated in Orthogonal Frequency Division Multiplexing (OFDM) system. Then SFLA generated random population of solutions (power, bit), the fitness of each solution is calculated and improved for each subcarrier and user. The solution is numerically validated and verified by simulation-based powerline channel. The system performance was compared to similar research works in terms of the system’s capacity, scalability, allocated rate/power, and convergence. The resources allocated are constantly optimized and the capacity obtained is constantly higher as compared to Root-finding, Linear, and Hybrid evolutionary algorithms. The proposed algorithm managed to offer fastest convergence given that the number of iterations required to get to the 0.001% error of the global optimum is 75 compared to 92 in the conventional techniques. Finally, joint allocation models for selection of optima resource values are introduced; adaptive power and bit allocators in OFDM system-based Powerline and using modified SFLA-based TLBO and PSO are propose

    A Systematic Literature Review on Task Allocation and Performance Management Techniques in Cloud Data Center

    Full text link
    As cloud computing usage grows, cloud data centers play an increasingly important role. To maximize resource utilization, ensure service quality, and enhance system performance, it is crucial to allocate tasks and manage performance effectively. The purpose of this study is to provide an extensive analysis of task allocation and performance management techniques employed in cloud data centers. The aim is to systematically categorize and organize previous research by identifying the cloud computing methodologies, categories, and gaps. A literature review was conducted, which included the analysis of 463 task allocations and 480 performance management papers. The review revealed three task allocation research topics and seven performance management methods. Task allocation research areas are resource allocation, load-Balancing, and scheduling. Performance management includes monitoring and control, power and energy management, resource utilization optimization, quality of service management, fault management, virtual machine management, and network management. The study proposes new techniques to enhance cloud computing work allocation and performance management. Short-comings in each approach can guide future research. The research's findings on cloud data center task allocation and performance management can assist academics, practitioners, and cloud service providers in optimizing their systems for dependability, cost-effectiveness, and scalability. Innovative methodologies can steer future research to fill gaps in the literature

    Energy and performance-optimized scheduling of tasks in distributed cloud and edge computing systems

    Get PDF
    Infrastructure resources in distributed cloud data centers (CDCs) are shared by heterogeneous applications in a high-performance and cost-effective way. Edge computing has emerged as a new paradigm to provide access to computing capacities in end devices. Yet it suffers from such problems as load imbalance, long scheduling time, and limited power of its edge nodes. Therefore, intelligent task scheduling in CDCs and edge nodes is critically important to construct energy-efficient cloud and edge computing systems. Current approaches cannot smartly minimize the total cost of CDCs, maximize their profit and improve quality of service (QoS) of tasks because of aperiodic arrival and heterogeneity of tasks. This dissertation proposes a class of energy and performance-optimized scheduling algorithms built on top of several intelligent optimization algorithms. This dissertation includes two parts, including background work, i.e., Chapters 3–6, and new contributions, i.e., Chapters 7–11. 1) Background work of this dissertation. Chapter 3 proposes a spatial task scheduling and resource optimization method to minimize the total cost of CDCs where bandwidth prices of Internet service providers, power grid prices, and renewable energy all vary with locations. Chapter 4 presents a geography-aware task scheduling approach by considering spatial variations in CDCs to maximize the profit of their providers by intelligently scheduling tasks. Chapter 5 presents a spatio-temporal task scheduling algorithm to minimize energy cost by scheduling heterogeneous tasks among CDCs while meeting their delay constraints. Chapter 6 gives a temporal scheduling algorithm considering temporal variations of revenue, electricity prices, green energy and prices of public clouds. 2) Contributions of this dissertation. Chapter 7 proposes a multi-objective optimization method for CDCs to maximize their profit, and minimize the average loss possibility of tasks by determining task allocation among Internet service providers, and task service rates of each CDC. A simulated annealing-based bi-objective differential evolution algorithm is proposed to obtain an approximate Pareto optimal set. A knee solution is selected to schedule tasks in a high-profit and high-quality-of-service way. Chapter 8 formulates a bi-objective constrained optimization problem, and designs a novel optimization method to cope with energy cost reduction and QoS improvement. It jointly minimizes both energy cost of CDCs, and average response time of all tasks by intelligently allocating tasks among CDCs and changing task service rate of each CDC. Chapter 9 formulates a constrained bi-objective optimization problem for joint optimization of revenue and energy cost of CDCs. It is solved with an improved multi-objective evolutionary algorithm based on decomposition. It determines a high-quality trade-off between revenue maximization and energy cost minimization by considering CDCs’ spatial differences in energy cost while meeting tasks’ delay constraints. Chapter 10 proposes a simulated annealing-based bees algorithm to find a close-to-optimal solution. Then, a fine-grained spatial task scheduling algorithm is designed to minimize energy cost of CDCs by allocating tasks among multiple green clouds, and specifies running speeds of their servers. Chapter 11 proposes a profit-maximized collaborative computation offloading and resource allocation algorithm to maximize the profit of systems and guarantee that response time limits of tasks are met in cloud-edge computing systems. A single-objective constrained optimization problem is solved by a proposed simulated annealing-based migrating birds optimization. This dissertation evaluates these algorithms, models and software with real-life data and proves that they improve scheduling precision and cost-effectiveness of distributed cloud and edge computing systems

    Resource Allocation using Genetic Algorithm in Multimedia Wireless Networks

    Get PDF
    Resource allocations in wireless networks is a very challenging task, at one hand wireless networks have scarce resources and suffers from many limitations. At the other hand, typical resource allocation problems requires extensive amount of computations and are usually NP-hard problems. Hence, there is dire need for effective and feasible solutions. Resource allocation problems are concerned in distributing the available network’s resources to all active users in a fair way. Although fairness is hard to define, this work considers the fairness aspects for both, the users and the network operator (service provider). Bio-inspired algorithm are used in many context to provide simple and effective solution tochallenging problems. This works employs Genetic Algorithm to provide effective solution to resource allocation problem for multimedia allocation in wireless networks. The performance of the proposed solution is evaluated using simulation. The obtained simulation results show that the proposed solutionachieved better performance
    • …
    corecore