18 research outputs found

    Optimal Oblivious Routing in Polynomial Time

    Get PDF
    A recent seminal result of Räcke is that for any network there is an oblivious routing algorithm with a polylog competitive ratio with respect to congestion. Unfortunately, Räcke's construction is not polynomial time. We give a polynomial time construction that guarantee's Räcke's bounds, and more generally gives the true optimal ratio for any network

    Distributed Connectivity Decomposition

    Full text link
    We present time-efficient distributed algorithms for decomposing graphs with large edge or vertex connectivity into multiple spanning or dominating trees, respectively. As their primary applications, these decompositions allow us to achieve information flow with size close to the connectivity by parallelizing it along the trees. More specifically, our distributed decomposition algorithms are as follows: (I) A decomposition of each undirected graph with vertex-connectivity kk into (fractionally) vertex-disjoint weighted dominating trees with total weight Ω(klogn)\Omega(\frac{k}{\log n}), in O~(D+n)\widetilde{O}(D+\sqrt{n}) rounds. (II) A decomposition of each undirected graph with edge-connectivity λ\lambda into (fractionally) edge-disjoint weighted spanning trees with total weight λ12(1ε)\lceil\frac{\lambda-1}{2}\rceil(1-\varepsilon), in O~(D+nλ)\widetilde{O}(D+\sqrt{n\lambda}) rounds. We also show round complexity lower bounds of Ω~(D+nk)\tilde{\Omega}(D+\sqrt{\frac{n}{k}}) and Ω~(D+nλ)\tilde{\Omega}(D+\sqrt{\frac{n}{\lambda}}) for the above two decompositions, using techniques of [Das Sarma et al., STOC'11]. Moreover, our vertex-connectivity decomposition extends to centralized algorithms and improves the time complexity of [Censor-Hillel et al., SODA'14] from O(n3)O(n^3) to near-optimal O~(m)\tilde{O}(m). As corollaries, we also get distributed oblivious routing broadcast with O(1)O(1)-competitive edge-congestion and O(logn)O(\log n)-competitive vertex-congestion. Furthermore, the vertex connectivity decomposition leads to near-time-optimal O(logn)O(\log n)-approximation of vertex connectivity: centralized O~(m)\widetilde{O}(m) and distributed O~(D+n)\tilde{O}(D+\sqrt{n}). The former moves toward the 1974 conjecture of Aho, Hopcroft, and Ullman postulating an O(m)O(m) centralized exact algorithm while the latter is the first distributed vertex connectivity approximation

    Set covering with our eyes closed

    Get PDF
    Given a universe UU of nn elements and a weighted collection S\mathscr{S} of mm subsets of UU, the universal set cover problem is to a priori map each element uUu \in U to a set S(u)SS(u) \in \mathscr{S} containing uu such that any set XUX{\subseteq U} is covered by S(X)=\cup_{u\in XS(u). The aim is to find a mapping such that the cost of S(X)S(X) is as close as possible to the optimal set cover cost for XX. (Such problems are also called oblivious or a priori optimization problems.) Unfortunately, for every universal mapping, the cost of S(X)S(X) can be Ω(n)\Omega(\sqrt{n}) times larger than optimal if the set XX is adversarially chosen. In this paper we study the performance on average, when XX is a set of randomly chosen elements from the universe: we show how to efficiently find a universal map whose expected cost is O(logmn)O(\log mn) times the expected optimal cost. In fact, we give a slightly improved analysis and show that this is the best possible. We generalize these ideas to weighted set cover and show similar guarantees to (nonmetric) facility location, where we have to balance the facility opening cost with the cost of connecting clients to the facilities. We show applications of our results to universal multicut and disc-covering problems and show how all these universal mappings give us algorithms for the stochastic online variants of the problems with the same competitive factors

    Finding effective support-tree preconditioners

    Full text link
    In 1995, Gremban, Miller, and Zagha introduced support-tree preconditioners and a parallel algorithm called support-tree conjugate gradient (STCG) for solving linear systems of the form Ax = b, where A is an n × n Laplacian matrix. A Laplacian is a symmetric matrix in which the off-diagonal entries are non-positive, and the row and column sums are zero. A Laplacian A with 2m non-zeros can be interpreted as an undirected positively-weighted graph G with n vertices and m edges, where there is an edge between two nodes i and j with weight c((i, j)) = −Ai,j = −Aj,i if Ai,j = Aj,i < 0. Gremban et al. showed experimentally that STCG performs well on several classes of graphs commonly used in scientific computations. In his thesis, Gremban also proved upper bounds on the number of iterations required for STCG to converge for certain classes of graphs. In this paper, we present an algorithm for finding a preconditioner for an arbitrary graph G = (V, E) with n nodes, m edges, and a weight function c> 0 on the edges, where w.l.o.g., mine∈E c(e) = 1. Equipped with this preconditioner, STCG requires O(log 4 n · � ∆/α) iterations, where α = min U⊂V,|U|≤|V |/2 c(U, V \U)/|U | is the minimum edge expansion of the graph, and ∆ = maxv∈V c(v) is the maximum incident weight on any vertex. Each iteration requires O(m) work and can be implemented in O(log n) steps in parallel, using only O(m) space. Our results generalize to matrices that are symmetric and diagonally-dominant (SDD).
    corecore