1,436 research outputs found

    A polynomial time primal network simplex algorithm for minimum cost flows

    Get PDF
    Cover title.Includes bibliographical references (p. 25-27).Supported by ONR. N00014-94-1-0099 Supported in part by a grant from the UPS foundation.by James B. Orlin

    A specialized interior-point algorithm for huge minimum convex cost flows in bipartite networks

    Get PDF
    Research Report UPC-DEIO DR 2018-01. November 2018The computation of the Newton direction is the most time consuming step of interior-point methods. This direction was efficiently computed by a combination of Cholesky factorizations and conjugate gradients in a specialized interior-point method for block-angular structured problems. In this work we apply this algorithmic approach to solve very large instances of minimum cost flows problems in bipartite networks, for convex objective functions with diagonal Hessians (i.e., either linear, quadratic or separable nonlinear objectives). After analyzing the theoretical properties of the interior-point method for this kind of problems, we provide extensive computational experiments with linear and quadratic instances of up to one billion arcs and 200 and five million nodes in each subset of the node partition. For linear and quadratic instances our approach is compared with the barriers algorithms of CPLEX (both standard path-following and homogeneous-self-dual); for linear instances it is also compared with the different algorithms of the state-of-the-art network flow solver LEMON (namely: network simplex, capacity scaling, cost scaling and cycle canceling). The specialized interior-point approach significantly outperformed the other approaches in most of the linear and quadratic transportation instances tested. In particular, it always provided a solution within the time limit and it never exhausted the 192 Gigabytes of memory of the server used for the runs. For assignment problems the network algorithms in LEMON were the most efficient option.Peer ReviewedPreprin

    Minimum-cost multicast over coded packet networks

    Get PDF
    We consider the problem of establishing minimum-cost multicast connections over coded packet networks, i.e., packet networks where the contents of outgoing packets are arbitrary, causal functions of the contents of received packets. We consider both wireline and wireless packet networks as well as both static multicast (where membership of the multicast group remains constant for the duration of the connection) and dynamic multicast (where membership of the multicast group changes in time, with nodes joining and leaving the group). For static multicast, we reduce the problem to a polynomial-time solvable optimization problem, and we present decentralized algorithms for solving it. These algorithms, when coupled with existing decentralized schemes for constructing network codes, yield a fully decentralized approach for achieving minimum-cost multicast. By contrast, establishing minimum-cost static multicast connections over routed packet networks is a very difficult problem even using centralized computation, except in the special cases of unicast and broadcast connections. For dynamic multicast, we reduce the problem to a dynamic programming problem and apply the theory of dynamic programming to suggest how it may be solved

    Network Flows

    Get PDF
    Not Availabl

    Quadratically-Regularized Optimal Transport on Graphs

    Full text link
    Optimal transportation provides a means of lifting distances between points on a geometric domain to distances between signals over the domain, expressed as probability distributions. On a graph, transportation problems can be used to express challenging tasks involving matching supply to demand with minimal shipment expense; in discrete language, these become minimum-cost network flow problems. Regularization typically is needed to ensure uniqueness for the linear ground distance case and to improve optimization convergence; state-of-the-art techniques employ entropic regularization on the transportation matrix. In this paper, we explore a quadratic alternative to entropic regularization for transport over a graph. We theoretically analyze the behavior of quadratically-regularized graph transport, characterizing how regularization affects the structure of flows in the regime of small but nonzero regularization. We further exploit elegant second-order structure in the dual of this problem to derive an easily-implemented Newton-type optimization algorithm.Comment: 27 page

    A faster strongly polynomial minimum cost flow algorithm

    Get PDF
    Includes bibliographical references.Supported in part by the Presidential Young Investigator Grant of the National Science Foundation. 8451517-ECS Supported in part by the Air Force Office of Scientific Research. AFOSR-88-0088 Supported in part by grants from Analog Devices, Apple Computers, Inc. and Prime Computer.James B. Orlin
    • …
    corecore