4 research outputs found

    Treewidth, crushing, and hyperbolic volume

    Get PDF
    We prove that there exists a universal constant cc such that any closed hyperbolic 3-manifold admits a triangulation of treewidth at most cc times its volume. The converse is not true: we show there exists a sequence of hyperbolic 3-manifolds of bounded treewidth but volume approaching infinity. Along the way, we prove that crushing a normal surface in a triangulation does not increase the carving-width, and hence crushing any number of normal surfaces in a triangulation affects treewidth by at most a constant multiple.Comment: 20 pages, 12 figures. V2: Section 4 has been rewritten, as the former argument (in V1) used a construction that relied on a wrong theorem. Section 5.1 has also been adjusted to the new construction. Various other arguments have been clarifie

    LIPIcs

    Get PDF
    Motivated by fixed-parameter tractable (FPT) problems in computational topology, we consider the treewidth tw(M) of a compact, connected 3-manifold M, defined to be the minimum treewidth of the face pairing graph of any triangulation T of M. In this setting the relationship between the topology of a 3-manifold and its treewidth is of particular interest. First, as a corollary of work of Jaco and Rubinstein, we prove that for any closed, orientable 3-manifold M the treewidth tw(M) is at most 4g(M)-2, where g(M) denotes Heegaard genus of M. In combination with our earlier work with Wagner, this yields that for non-Haken manifolds the Heegaard genus and the treewidth are within a constant factor. Second, we characterize all 3-manifolds of treewidth one: These are precisely the lens spaces and a single other Seifert fibered space. Furthermore, we show that all remaining orientable Seifert fibered spaces over the 2-sphere or a non-orientable surface have treewidth two. In particular, for every spherical 3-manifold we exhibit a triangulation of treewidth at most two. Our results further validate the parameter of treewidth (and other related parameters such as cutwidth or congestion) to be useful for topological computing, and also shed more light on the scope of existing FPT-algorithms in the field

    A polynomial time algorithm to compute quantum invariants of 3-manifolds with bounded first Betti number

    No full text
    In this article, we introduce a fixed parameter tractable algorithm for computing the Turaev-VIRO invariants TV , using the dimension of the first homology group of the manifold as parameter. This is, to our knowledge, the first parameterised algorithm in computational 3-manifold topology using a topological parameter. The computation of TV is known to be #P-hard in general; using a topological parameter provides an algorithm polynomial in the size of the input triangulation for the extremely large family of 3-manifolds with first homology group of bounded rank. Our algorithm is easy to implement and running times are comparable with running times to compute integral homology groups for standard libraries of triangulated 3- manifolds. The invariants we can compute this way are powerful: in combination with integral homology and using standard data sets we are able to roughly double the pairs of 3-manifolds we can distinguish. We hope this qualifies TV to be added to the short list of standard properties (such as orientability, connectedness, Betti numbers, etc.) that can be computed ad-hoc when first investigating an unknown triangulation
    corecore