13,645 research outputs found

    The ADS general-purpose optimization program

    Get PDF
    The mathematical statement of the general nonlinear optimization problem is given as follows: find the vector of design variables, X, that will minimize f(X) subject to G sub J (x) + or - 0 j=1,m H sub K hk(X) = 0 k=1,l X Lower I approx less than X sub I approx. less than X U over I i = 1,N. The vector of design variables, X, includes all those variables which may be changed by the ADS program in order to arrive at the optimum design. The objective function F(X) to be minimized may be weight, cost or some other performance measure. If the objective is to be maximized, this is accomplished by minimizing -F(X). The inequality constraints include limits on stress, deformation, aeroelastic response or controllability, as examples, and may be nonlinear implicit functions of the design variables, X. The equality constraints h sub k(X) represent conditions that must be satisfied precisely for the design to be acceptable. Equality constraints are not fully operational in version 1.0 of the ADS program, although they are available in the Augmented Lagrange Multiplier method. The side constraints given by the last equation are used to directly limit the region of search for the optimum. The ADS program will never consider a design which is not within these limits

    Computationally Efficient Trajectory Optimization for Linear Control Systems with Input and State Constraints

    Full text link
    This paper presents a trajectory generation method that optimizes a quadratic cost functional with respect to linear system dynamics and to linear input and state constraints. The method is based on continuous-time flatness-based trajectory generation, and the outputs are parameterized using a polynomial basis. A method to parameterize the constraints is introduced using a result on polynomial nonpositivity. The resulting parameterized problem remains linear-quadratic and can be solved using quadratic programming. The problem can be further simplified to a linear programming problem by linearization around the unconstrained optimum. The method promises to be computationally efficient for constrained systems with a high optimization horizon. As application, a predictive torque controller for a permanent magnet synchronous motor which is based on real-time optimization is presented.Comment: Proceedings of the American Control Conference (ACC), pp. 1904-1909, San Francisco, USA, June 29 - July 1, 201
    corecore