44,242 research outputs found

    A Middleware for the Internet of Things

    Full text link
    The Internet of Things (IoT) connects everyday objects including a vast array of sensors, actuators, and smart devices, referred to as things to the Internet, in an intelligent and pervasive fashion. This connectivity gives rise to the possibility of using the tracking capabilities of things to impinge on the location privacy of users. Most of the existing management and location privacy protection solutions do not consider the low-cost and low-power requirements of things, or, they do not account for the heterogeneity, scalability, or autonomy of communications supported in the IoT. Moreover, these traditional solutions do not consider the case where a user wishes to control the granularity of the disclosed information based on the context of their use (e.g. based on the time or the current location of the user). To fill this gap, a middleware, referred to as the Internet of Things Management Platform (IoT-MP) is proposed in this paper.Comment: 20 pages, International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 201

    FAIR: Forwarding Accountability for Internet Reputability

    Full text link
    This paper presents FAIR, a forwarding accountability mechanism that incentivizes ISPs to apply stricter security policies to their customers. The Autonomous System (AS) of the receiver specifies a traffic profile that the sender AS must adhere to. Transit ASes on the path mark packets. In case of traffic profile violations, the marked packets are used as a proof of misbehavior. FAIR introduces low bandwidth overhead and requires no per-packet and no per-flow state for forwarding. We describe integration with IP and demonstrate a software switch running on commodity hardware that can switch packets at a line rate of 120 Gbps, and can forward 140M minimum-sized packets per second, limited by the hardware I/O subsystem. Moreover, this paper proposes a "suspicious bit" for packet headers - an application that builds on top of FAIR's proofs of misbehavior and flags packets to warn other entities in the network.Comment: 16 pages, 12 figure

    Data Confidentiality in Mobile Ad hoc Networks

    Full text link
    Mobile ad hoc networks (MANETs) are self-configuring infrastructure-less networks comprised of mobile nodes that communicate over wireless links without any central control on a peer-to-peer basis. These individual nodes act as routers to forward both their own data and also their neighbours' data by sending and receiving packets to and from other nodes in the network. The relatively easy configuration and the quick deployment make ad hoc networks suitable the emergency situations (such as human or natural disasters) and for military units in enemy territory. Securing data dissemination between these nodes in such networks, however, is a very challenging task. Exposing such information to anyone else other than the intended nodes could cause a privacy and confidentiality breach, particularly in military scenarios. In this paper we present a novel framework to enhance the privacy and data confidentiality in mobile ad hoc networks by attaching the originator policies to the messages as they are sent between nodes. We evaluate our framework using the Network Simulator (NS-2) to check whether the privacy and confidentiality of the originator are met. For this we implemented the Policy Enforcement Points (PEPs), as NS-2 agents that manage and enforce the policies attached to packets at every node in the MANET.Comment: 12 page

    Flexible Session Management in a Distributed Environment

    Full text link
    Many secure communication libraries used by distributed systems, such as SSL, TLS, and Kerberos, fail to make a clear distinction between the authentication, session, and communication layers. In this paper we introduce CEDAR, the secure communication library used by the Condor High Throughput Computing software, and present the advantages to a distributed computing system resulting from CEDAR's separation of these layers. Regardless of the authentication method used, CEDAR establishes a secure session key, which has the flexibility to be used for multiple capabilities. We demonstrate how a layered approach to security sessions can avoid round-trips and latency inherent in network authentication. The creation of a distinct session management layer allows for optimizations to improve scalability by way of delegating sessions to other components in the system. This session delegation creates a chain of trust that reduces the overhead of establishing secure connections and enables centralized enforcement of system-wide security policies. Additionally, secure channels based upon UDP datagrams are often overlooked by existing libraries; we show how CEDAR's structure accommodates this as well. As an example of the utility of this work, we show how the use of delegated security sessions and other techniques inherent in CEDAR's architecture enables US CMS to meet their scalability requirements in deploying Condor over large-scale, wide-area grid systems

    Hidden and Uncontrolled - On the Emergence of Network Steganographic Threats

    Full text link
    Network steganography is the art of hiding secret information within innocent network transmissions. Recent findings indicate that novel malware is increasingly using network steganography. Similarly, other malicious activities can profit from network steganography, such as data leakage or the exchange of pedophile data. This paper provides an introduction to network steganography and highlights its potential application for harmful purposes. We discuss the issues related to countering network steganography in practice and provide an outlook on further research directions and problems.Comment: 11 page
    • …
    corecore