6,705 research outputs found

    Large Rapidity Gap Processes in Proton-Nucleus Collisions

    Full text link
    The cross sections for a variety of channels of proton-nucleus interaction associated with large gaps in rapidity are calculated within the Glauber-Gribov theory. We found inelastic shadowing corrections to be dramatically enhanced for such events. We employ the light-cone dipole formalism which allows to calculate the inelastic corrections to all orders of the multiple interaction. Although Gribov corrections are known to make nuclear matter more transparent, we demonstrate that in some instances they lead to an opaqueness. Numerical calculations are performed for the energies of the HERA-B experiment, and the RHIC-LHC colliders.Comment: 19 page

    Nuclear Transparency to Intermediate-Energy Protons

    Get PDF
    Nuclear transparency in the (e,e'p) reaction for 135 < Tp < 800 MeV is investigated using the distorted wave approximation. Calculations using density-dependent effective interactions are compared with phenomenological optical potentials. Nuclear transparency is well correlated with proton absorption and neutron total cross sections. For Tp < 300 MeV there is considerable sensitivity to the choice of optical model, with the empirical effective interaction providing the best agreement with transparency data. For Tp > 300 MeV there is much less difference between optical models, but the calculations substantially underpredict transparency data and the discrepancy increases with A. The differences between Glauber and optical model calculations are related to their respective definitions of the semi-inclusive cross section. By using a more inclusive summation over final states the Glauber model emphasizes nucleon-nucleon inelasticity, whereas with a more restrictive summation the optical model emphasizes nucleon-nucleus inelasticity; experimental definitions of the semi-inclusive cross section lie between these extremes.Comment: uuencoded gz-compressed tar file containing revtex and bbl files and 5 postscript figures, totalling 31 pages. Uses psfi

    A linked cluster expansion for the calculation of the semi-inclusive A(e,e'p)X processes using correlated Glauber wave functions

    Full text link
    The distorted one-body mixed density matrix, which is the basic nuclear quantity appearing in the definition of the cross section for the semi-inclusive A(e,e'p)X processes, is calculated within a linked-cluster expansion based upon correlated wave functions and the Glauber multiple scattering theory to take into account the final state interaction of the ejected nucleon. The nuclear transparency for 16O and 40Ca is calculated using realistic central and non-central correlations and the important role played by the latter is illustrated.Comment: 18 pages, RevTeX, 3 ps figures. Final version, to appear in Phys. Rev.

    Diffraction in QCD

    Full text link
    This lecture presents a short review of the main features of diffractive processes and QCD inspired models. It includes the following topics: (1) Quantum mechanics of diffraction: general properties; (2) Color dipole description of diffraction; (3) Color transparency; (4) Soft diffraction in hard reactions: DIS, Drell-Yan, Higgs production; (5) Why Pomerons interact weakly; (6) Small gluonic spots in the proton; (7) Diffraction near the unitarity bound: the Goulianos-Schlein "puzzle"; (8) Diffraction on nuclei: diffractive Color Glass; (9) CGC and gluon shadowing.Comment: Based on the lecture given by B.K. at I LAWHEP, Porto Alegre, Brazil, December 1-3, 200

    Saturation Physics in Ultra High Energy Cosmic Rays: Heavy Quark Production

    Get PDF
    In this work we estimate the heavy quark production in the interaction of ultra high energy cosmic rays in the atmosphere, considering that the primary cosmic ray is a proton or a photon. At these energies the saturation momentum Q_{sat}^2 stays above the hard scale \mu_c^2=4m_c^2, implying charm production probing the saturation regime. In particular, we show that the ep HERA data presents a scaling on \tau_c = (Q^2+\mu_c^2)/Q_{sat}^2. We derive our results considering the dipole picture and the Color Glass Condensate formalism, which one shows to be able to describe the heavy quark production in photon-proton and proton-proton collisions. Nuclear effects are considered in computation of cross sections for scattering on air nuclei. Implications on the flux of prompt leptons at the earth are analyzed and a large suppression is predicted.Comment: 18 pages, 10 figures, 2 tables. Version to be published in JHE
    corecore