405 research outputs found

    An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration

    Get PDF
    We empirically evaluate an undervolting technique, i.e., underscaling the circuit supply voltage below the nominal level, to improve the power-efficiency of Convolutional Neural Network (CNN) accelerators mapped to Field Programmable Gate Arrays (FPGAs). Undervolting below a safe voltage level can lead to timing faults due to excessive circuit latency increase. We evaluate the reliability-power trade-off for such accelerators. Specifically, we experimentally study the reduced-voltage operation of multiple components of real FPGAs, characterize the corresponding reliability behavior of CNN accelerators, propose techniques to minimize the drawbacks of reduced-voltage operation, and combine undervolting with architectural CNN optimization techniques, i.e., quantization and pruning. We investigate the effect of environmental temperature on the reliability-power trade-off of such accelerators. We perform experiments on three identical samples of modern Xilinx ZCU102 FPGA platforms with five state-of-the-art image classification CNN benchmarks. This approach allows us to study the effects of our undervolting technique for both software and hardware variability. We achieve more than 3X power-efficiency (GOPs/W) gain via undervolting. 2.6X of this gain is the result of eliminating the voltage guardband region, i.e., the safe voltage region below the nominal level that is set by FPGA vendor to ensure correct functionality in worst-case environmental and circuit conditions. 43% of the power-efficiency gain is due to further undervolting below the guardband, which comes at the cost of accuracy loss in the CNN accelerator. We evaluate an effective frequency underscaling technique that prevents this accuracy loss, and find that it reduces the power-efficiency gain from 43% to 25%.Comment: To appear at the DSN 2020 conferenc

    An experimental study of reduced-voltage operation in modern FPGAs for neural network acceleration

    Get PDF
    We empirically evaluate an undervolting technique, i.e., underscaling the circuit supply voltage below the nominal level, to improve the power-efficiency of Convolutional Neural Network (CNN) accelerators mapped to Field Programmable Gate Arrays (FPGAs). Undervolting below a safe voltage level can lead to timing faults due to excessive circuit latency increase. We evaluate the reliability-power trade-off for such accelerators. Specifically, we experimentally study the reduced-voltage operation of multiple components of real FPGAs, characterize the corresponding reliability behavior of CNN accelerators, propose techniques to minimize the drawbacks of reduced-voltage operation, and combine undervolting with architectural CNN optimization techniques, i.e., quantization and pruning. We investigate the effect ofenvironmental temperature on the reliability-power trade-off of such accelerators. We perform experiments on three identical samples of modern Xilinx ZCU102 FPGA platforms with five state-of-the-art image classification CNN benchmarks. This approach allows us to study the effects of our undervolting technique for both software and hardware variability. We achieve more than 3X power-efficiency (GOPs/W ) gain via undervolting. 2.6X of this gain is the result of eliminating the voltage guardband region, i.e., the safe voltage region below the nominal level that is set by FPGA vendor to ensure correct functionality in worst-case environmental and circuit conditions. 43% of the power-efficiency gain is due to further undervolting below the guardband, which comes at the cost of accuracy loss in the CNN accelerator. We evaluate an effective frequency underscaling technique that prevents this accuracy loss, and find that it reduces the power-efficiency gain from 43% to 25%.The work done for this paper was partially supported by a HiPEAC Collaboration Grant funded by the H2020 HiPEAC Project under grant agreement No. 779656. The research leading to these results has received funding from the European Union’s Horizon 2020 Programme under the LEGaTO Project (www.legato-project.eu), grant agreement No. 780681.Peer ReviewedPostprint (author's final draft

    Multi-Softcore Architecture on FPGA

    Get PDF
    To meet the high performance demands of embedded multimedia applications, embedded systems are integrating multiple processing units. However, they are mostly based on custom-logic design methodology. Designing parallel multicore systems using available standards intellectual properties yet maintaining high performance is also a challenging issue. Softcore processors and field programmable gate arrays (FPGAs) are a cheap and fast option to develop and test such systems. This paper describes a FPGA-based design methodology to implement a rapid prototype of parametric multicore systems. A study of the viability of making the SoC using the NIOS II soft-processor core from Altera is also presented. The NIOS II features a general-purpose RISC CPU architecture designed to address a wide range of applications. The performance of the implemented architecture is discussed, and also some parallel applications are used for testing speedup and efficiency of the system. Experimental results demonstrate the performance of the proposed multicore system, which achieves better speedup than the GPU (29.5% faster for the FIR filter and 23.6% faster for the matrix-matrix multiplication)

    Hardware Accelerator Design for Machine Learning

    Get PDF
    Machine learning is widely used in many modern artificial intelligence applications. Various hardware platforms are implemented to support such applications. Among them, graphics processing unit (GPU) is the most widely used one due to its fast computation speed and compatibility with various algorithms. Field programmable gate arrays (FPGA) show better energy efficiency compared with GPU when computing machine learning algorithm at the cost of low speed. Finally, various application specific integrated circuit (ASIC) architecture is proposed to achieve the best energy efficiency at the cost of less reconfigurability which makes it suitable for special kinds of machine learning algorithms such as a deep convolutional neural network. Finally, analog computing shows a promising methodology to compute large-sized machine learning algorithm due to its low design cost and fast computing speed; however, due to the requirement of the analog-to-digital converter (ADC) in the analog computing, this kind of technique is only applicable to low computation resolution, making it unsuitable for most artificial intelligence (AI) applications
    • …
    corecore