475 research outputs found

    Visual Comfort Assessment for Stereoscopic Image Retargeting

    Full text link
    In recent years, visual comfort assessment (VCA) for 3D/stereoscopic content has aroused extensive attention. However, much less work has been done on the perceptual evaluation of stereoscopic image retargeting. In this paper, we first build a Stereoscopic Image Retargeting Database (SIRD), which contains source images and retargeted images produced by four typical stereoscopic retargeting methods. Then, the subjective experiment is conducted to assess four aspects of visual distortion, i.e. visual comfort, image quality, depth quality and the overall quality. Furthermore, we propose a Visual Comfort Assessment metric for Stereoscopic Image Retargeting (VCA-SIR). Based on the characteristics of stereoscopic retargeted images, the proposed model introduces novel features like disparity range, boundary disparity as well as disparity intensity distribution into the assessment model. Experimental results demonstrate that VCA-SIR can achieve high consistency with subjective perception

    Weakly- and Self-Supervised Learning for Content-Aware Deep Image Retargeting

    Full text link
    This paper proposes a weakly- and self-supervised deep convolutional neural network (WSSDCNN) for content-aware image retargeting. Our network takes a source image and a target aspect ratio, and then directly outputs a retargeted image. Retargeting is performed through a shift map, which is a pixel-wise mapping from the source to the target grid. Our method implicitly learns an attention map, which leads to a content-aware shift map for image retargeting. As a result, discriminative parts in an image are preserved, while background regions are adjusted seamlessly. In the training phase, pairs of an image and its image-level annotation are used to compute content and structure losses. We demonstrate the effectiveness of our proposed method for a retargeting application with insightful analyses.Comment: 10 pages, 11 figures. To appear in ICCV 2017, Spotlight Presentatio

    Real-time content-aware video retargeting on the Android platform for tunnel vision assistance

    Get PDF
    As mobile devices continue to rise in popularity, advances in overall mobile device processing power lead to further expansion of their capabilities. This, coupled with the fact that many people suffer from low vision, leaves substantial room for advancing mobile development for low vision assistance. Computer vision is capable of assisting and accommodating individuals with blind spots or tunnel vision by extracting the necessary information and presenting it to the user in a manner they are able to visualize. Such a system would enable individuals with low vision to function with greater ease. Additionally, offering assistance on a mobile platform allows greater access. The objective of this thesis is to develop a computer vision application for low vision assistance on the Android mobile device platform. Specifically, the goal of the application is to reduce the effects tunnel vision inflicts on individuals. This is accomplished by providing an in-depth real-time video retargeting model that builds upon previous works and applications. Seam carving is a content-aware retargeting operator which defines 8-connected paths, or seams, of pixels. The optimality of these seams is based on a specific energy function. Discrete removal of these seams permits changes in the aspect ratio while simultaneously preserving important regions. The video retargeting model incorporates spatial and temporal considerations to provide effective image and video retargeting. Data reduction techniques are utilized in order to generate an efficient model. Additionally, a minimalistic multi-operator approach is constructed to diminish the disadvantages experienced by individual operators. In the event automated techniques fail, interactive options are provided that allow for user intervention. Evaluation of the application and its video retargeting model is based on its comparison to existing standard algorithms and its ability to extend itself to real-time. Performance metrics are obtained for both PC environments and mobile device platforms for comparison

    Forensic research on detecting seam carving in digital images

    Get PDF
    Digital images have been playing an important role in our daily life for the last several decades. Naturally, image editing technologies have been tremendously developed due to the increasing demands. As a result, digital images can be easily manipulated on a personal computer or even a cellphone for many purposes nowadays, so that the authenticity of digital images becomes an important issue. In this dissertation research, four machine learning based forensic methods are presented to detect one of the popular image editing techniques, called ‘seam carving’. To reveal seam carving applied to uncompressed images from the perspective of energy distribution change, an energy based statistical model is proposed as the first work in this dissertation. Features measured global energy of images, remaining optimal seams, and noise level are extracted from four local derivative pattern (LDP) domains instead of from the original pixel domain to heighten the energy change caused by seam carving. A support vector machine (SVM) based classifier is employed to determine whether an image has been seam carved or not. In the second work, an advanced feature model is presented for seam carving detection by investigating the statistical variation among neighboring pixels. Comprised with three types of statistical features, i.e., LDP features, Markov features, and SPAM features, the powerful feature model significantly improved the state-of-the-art accuracy in detecting low carving rate seam carving. After the feature selection by utilizing SVM based recursive feature elimination (SVM-RFE), with a small amount of features selected from the proposed model the overall performance is further improved. Combining above mentioned two works, a hybrid feature model is then proposed as the third work to further boost the accuracy in detecting seam carving at low carving rate. The proposed model consists of two sets of features, which capture energy change and neighboring relationship variation respectively, achieves remarkable performance on revealing seam carving, especially low carving rate seam carving, in digital images. Besides these three hand crafted feature models, a deep convolutional neural network is designed for seam carving detection. It is the first work that successfully utilizes deep learning technology to solve this forensic problem. The experimental works demonstrate their much more improved performance in the cases where the amount of seam carving is not serious. Although these four pieces of work move the seam carving detection ahead substantially, future research works with more advanced statistical model or deep neural network along this line are expected

    Improved content aware scene retargeting for retinitis pigmentosa patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this paper we present a novel scene retargeting technique to reduce the visual scene while maintaining the size of the key features. The algorithm is scalable to implementation onto portable devices, and thus, has potential for augmented reality systems to provide visual support for those with tunnel vision. We therefore test the efficacy of our algorithm on shrinking the visual scene into the remaining field of view for those patients.</p> <p>Methods</p> <p>Simple spatial compression of visual scenes makes objects appear further away. We have therefore developed an algorithm which removes low importance information, maintaining the size of the significant features. Previous approaches in this field have included <it>seam carving</it>, which removes low importance seams from the scene, and <it>shrinkability </it>which dynamically shrinks the scene according to a generated importance map. The former method causes significant artifacts and the latter is inefficient. In this work we have developed a new algorithm, combining the best aspects of both these two previous methods. In particular, our approach is to generate a <it>shrinkability </it>importance map using as seam based approach. We then use it to dynamically shrink the scene in similar fashion to the <it>shrinkability </it>method. Importantly, we have implemented it so that it can be used in real time without prior knowledge of future frames.</p> <p>Results</p> <p>We have evaluated and compared our algorithm to the <it>seam carving </it>and image <it>shrinkability </it>approaches from a content preservation perspective and a compression quality perspective. Also our technique has been evaluated and tested on a trial included 20 participants with simulated tunnel vision. Results show the robustness of our method at reducing scenes up to 50% with minimal distortion. We also demonstrate efficacy in its use for those with simulated tunnel vision of 22 degrees of field of view or less.</p> <p>Conclusions</p> <p>Our approach allows us to perform content aware video resizing in real time using only information from previous frames to avoid jitter. Also our method has a great benefit over the ordinary resizing method and even over other image retargeting methods. We show that the benefit derived from this algorithm is significant to patients with fields of view 20° or less.</p
    corecore