5 research outputs found

    Comparison of different approaches to multistage lot sizing with uncertain demand

    Get PDF
    We study a new variant of the classical lot sizing problem with uncertain demand where neither the planning horizon nor demands are known exactly. This situation arises in practice when customer demands arriving over time are confirmed rather lately during the transportation process. In terms of planning, this setting necessitates a rolling horizon procedure where the overall multistage problem is dissolved into a series of coupled snapshot problems under uncertainty. Depending on the available data and risk disposition, different approaches from online optimization, stochastic programming, and robust optimization are viable to model and solve the snapshot problems. We evaluate the impact of the selected methodology on the overall solution quality using a methodology-agnostic framework for multistage decision-making under uncertainty. We provide computational results on lot sizing within a rolling horizon regarding different types of uncertainty, solution approaches, and the value of available information about upcoming demands

    A perfect information lower bound for robust lot-sizing problems

    No full text
    Robust multi-stage linear optimization is hard computationally and only small problems can be solved exactly. Hence, robust multi-stage linear problems are typically addressed heuristically through decision rules, which provide upper bounds for the optimal solution costs of the problems. We investigate in this paper lower bounds inspired by the perfect information relaxation used in stochastic programming. Specifically, we study the uncapacitated robust lot-sizing problem, showing that different versions of the problem become tractable whenever the non-anticipativity constraints are relaxed. Hence, we can solve the resulting problem efficiently, obtaining a lower bound for the optimal solution cost of the original problem. We compare numerically the solution time and the quality of the new lower bound with the dual affine decision rules that have been proposed by Kuhn et al. (Math Program 130:177–209, 2011).SCOPUS: ar.jDecretOANoAutActifinfo:eu-repo/semantics/publishe

    A perfect information lower bound for robust lot-sizing problems

    No full text
    Robust multi-stage linear optimization is hard computationally and only small problems can be solved exactly. Hence, robust multi-stage linear problems are typically addressed heuristically through decision rules, which provide upper bounds for the optimal solution costs of the problems. We investigate in this paper lower bounds inspired by the perfect information relaxation used in stochastic programming. Specifically, we study the uncapacitated robust lot-sizing problem, showing that different versions of the problem become tractable whenever the non-anticipativity constraints are relaxed. Hence, we can solve the resulting problem efficiently, obtaining a lower bound for the optimal solution cost of the original problem. We compare numerically the solution time and the quality of the new lower bound with the dual affine decision rules that have been proposed by Kuhn et al. (Math Program 130:177–209, 2011).SCOPUS: ar.jDecretOANoAutActifinfo:eu-repo/semantics/publishe

    Operational Decision Making under Uncertainty: Inferential, Sequential, and Adversarial Approaches

    Get PDF
    Modern security threats are characterized by a stochastic, dynamic, partially observable, and ambiguous operational environment. This dissertation addresses such complex security threats using operations research techniques for decision making under uncertainty in operations planning, analysis, and assessment. First, this research develops a new method for robust queue inference with partially observable, stochastic arrival and departure times, motivated by cybersecurity and terrorism applications. In the dynamic setting, this work develops a new variant of Markov decision processes and an algorithm for robust information collection in dynamic, partially observable and ambiguous environments, with an application to a cybersecurity detection problem. In the adversarial setting, this work presents a new application of counterfactual regret minimization and robust optimization to a multi-domain cyber and air defense problem in a partially observable environment
    corecore