611 research outputs found

    Long-term stability of sequential Monte Carlo methods under verifiable conditions

    Full text link
    This paper discusses particle filtering in general hidden Markov models (HMMs) and presents novel theoretical results on the long-term stability of bootstrap-type particle filters. More specifically, we establish that the asymptotic variance of the Monte Carlo estimates produced by the bootstrap filter is uniformly bounded in time. On the contrary to most previous results of this type, which in general presuppose that the state space of the hidden state process is compact (an assumption that is rarely satisfied in practice), our very mild assumptions are satisfied for a large class of HMMs with possibly noncompact state space. In addition, we derive a similar time uniform bound on the asymptotic Lp\mathsf{L}^p error. Importantly, our results hold for misspecified models; that is, we do not at all assume that the data entering into the particle filter originate from the model governing the dynamics of the particles or not even from an HMM.Comment: Published in at http://dx.doi.org/10.1214/13-AAP962 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The Alive Particle Filter

    Full text link
    In the following article we develop a particle filter for approximating Feynman-Kac models with indicator potentials. Examples of such models include approximate Bayesian computation (ABC) posteriors associated with hidden Markov models (HMMs) or rare-event problems. Such models require the use of advanced particle filter or Markov chain Monte Carlo (MCMC) algorithms e.g. Jasra et al. (2012), to perform estimation. One of the drawbacks of existing particle filters, is that they may 'collapse', in that the algorithm may terminate early, due to the indicator potentials. In this article, using a special case of the locally adaptive particle filter in Lee et al. (2013), which is closely related to Le Gland & Oudjane (2004), we use an algorithm which can deal with this latter problem, whilst introducing a random cost per-time step. This algorithm is investigated from a theoretical perspective and several results are given which help to validate the algorithms and to provide guidelines for their implementation. In addition, we show how this algorithm can be used within MCMC, using particle MCMC (Andrieu et al. 2010). Numerical examples are presented for ABC approximations of HMMs

    Moderate deviations for particle filtering

    Full text link
    Consider the state space model (X_t,Y_t), where (X_t) is a Markov chain, and (Y_t) are the observations. In order to solve the so-called filtering problem, one has to compute L(X_t|Y_1,...,Y_t), the law of X_t given the observations (Y_1,...,Y_t). The particle filtering method gives an approximation of the law L(X_t|Y_1,...,Y_t) by an empirical measure \frac{1}{n}\sum_1^n\delta_{x_{i,t}}. In this paper we establish the moderate deviation principle for the empirical mean \frac{1}{n}\sum_1^n\psi(x_{i,t}) (centered and properly rescaled) when the number of particles grows to infinity, enhancing the central limit theorem. Several extensions and examples are also studied.Comment: Published at http://dx.doi.org/10.1214/105051604000000657 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Gradient free parameter estimation for hidden Markov models with intractable likelihoods

    Get PDF
    In this article we focus on Maximum Likelihood estimation (MLE) for the static model parameters of hidden Markov models (HMMs). We will consider the case where one cannot or does not want to compute the conditional likelihood density of the observation given the hidden state because of increased computational complexity or analytical intractability. Instead we will assume that one may obtain samples from this conditional likelihood and hence use approximate Bayesian computation (ABC) approximations of the original HMM. Although these ABC approximations will induce a bias, this can be controlled to arbitrary precision via a positive parameter , so that the bias decreases with decreasing . We first establish that when using an ABC approximation of the HMM for a fixed batch of data, then the bias of the resulting log- marginal likelihood and its gradient is no worse than O(n), where n is the total number of data-points. Therefore, when using gradient methods to perform MLE for the ABC approximation of the HMM, one may expect parameter estimates of reasonable accuracy. To compute an estimate of the unknown and fixed model parameters, we propose a gradient approach based on simultaneous perturbation stochastic approximation (SPSA) and Sequential Monte Carlo (SMC) for the ABC approximation of the HMM. The performance of this method is illustrated using two numerical examples
    corecore