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ABSTRACT

The thesis presents the main definitions and concepts of hidden Markov models (HMMs),
focusing on how they are built and the issues arising when scaling up to high-dimensional
settings. Novel approximate algorithms to compute filtering and smoothing distributions

are proposed, these improve the applicability of HMMs to large scale and overcome computational
problems.

Firstly, an approximate forward-filtering and backward-smoothing algorithm for Factorial
HMMs [Ghahramani and Jordan, 1997] is developed. The approximation involves discarding
likelihood factors according to a notion of locality in the factor graph associated with the emission
distribution. This allows the exponential-in-dimension cost of exact filtering and smoothing to
be avoided. The approximation accuracy, measured in a local total variation norm, is proved to
be “dimension-free” in the sense that as the overall dimension of the model increases the error
bounds do not necessarily degrade. This method can be applied to data with known spatial or
network structure, for instance in traffic models.

Secondly, an evolving in time Bayesian neural network called a Hidden Markov neural net-
work is proposed. The weights of a feed-forward neural network are modelled with the hidden
process of an HMM, whose observed process is given by the available data. An approximate
filtering algorithm is used to learn a variational approximation to the evolving in time filtering
distribution over the weights. Training is pursued through a sequential version of Bayes by Back-
prop [Blundell et al., 2015], which is enriched with a regularization technique called variational
DropConnect.

Finally, the thesis produces also a new method for inference in stochastic epidemic models,
which uses recursive multinomial approximations to filtering /smoothing distributions over
unobserved variables and thus circumvent likelihood intractability. The method applies to a class
of discrete-time finite-population compartmental models with partial, randomly under-reported
or missing count observations. The algorithm is tested on real and synthetic data.
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1
INTRODUCTION

S ince early appearance in the literature [Baum and Petrie, 1966, Baum et al., 1970] and

popularization in speech recognition [Rabiner, 1989], hidden Markov models (HMMs)

have been used to solve a broad range of problems, from texture recognition [Bose and

Kuo, 1994], to gene prediction [Stanke and Waack, 2003], and weather forecasting [Hughes

et al., 1999]. An HMM is a statistical model which explains patterns in observed data through a

hidden process. The unobserved process is a Markov chain, meaning that time step t depends on

time step t−1 only. The main challenge in HMMs is to compute the filtering and the smoothing

distributions, which are the probability of observing a state in the Markov chain at time t given

the data up to time t and the probability of observing a state in the Markov chain at time t given

all the data (marginal smoothing). These distributions can be then used to infer the parameters

of the HMM (e.g. EM algorithm). The main purpose of this thesis has been to overcome the

prohibitive computational cost of high-dimensional HMMs, by proposing approximate filtering

and smoothing algorithms.

This chapter is organised as an introduction to the main contributions of this thesis, which are

then developed in chapter 3, chapter 5 and chapter 6, with chapter 2 presenting the background

and chapter 4 collecting the proofs of the results in chapter 3. Chapter 3, chapter 5 and chapter 6

are submitted/published and summarized in the following papers:

ch. 3-4: L. Rimella and N. Whiteley. Exploiting locality in high-dimensional factorial hidden Markov

models. arXiv preprint arXiv:1902.01639, 2019;

ch. 5: L. Rimella and N. Whiteley. Dynamic Bayesian Neural Networks. arXiv preprint arXiv:2004.06963,

2020;

ch. 6: N. Whiteley and L. Rimella. Inference in stochastic epidemic models via multinomial

1



CHAPTER 1. INTRODUCTION

approximations. In International Conference on Artificial Intelligence and Statistics, pages

1297–1305. PMLR, 2021.

The implementation of the corresponding algorithms is open-source and available on the

Github page:

https://github.com/LorenzoRimella.

1.1 Exploiting locality in high-dimensional factorial hidden
Markov models

As already mentioned, an HMM is a statistical model which explains patterns in observed data in

terms of the evolution over time of a process that is not observed (latent process). Here, inference

is pursued by the computation of conditional distributions over the latent process, which are

called filtering and smoothing distributions, and generally obtained with a forward-filtering and a

backward-smoothing step through the data. Under a finite state-space setting, i.e. the unobserved

process takes values on a finite set, the cost of filtering-smoothing is cubic in the cardinality of

the state-space. This raises computational issues when scaling up to high-dimensional state-

spaces, for instance, if the state-space is the product form XM , with X finite set and M ∈N, the

computational cost of filtering-smoothing is exponential in M.

Variational inference Blei et al. [2017] consistently reduces the computational cost by intro-

ducing an approximation on the posterior distribution over the states of the hidden process. Even

though there are several strands of research into theoretical properties of variational methods for

some classes of statistical models, as surveyed recently by Blei et al. [2017], such as convergence

analysis for mixture models Wang and Titterington [2006], and consistency studies for stochastic

block models Celisse et al. [2012], Bickel et al. [2013], little seems to be known about the quality

of the approximation.

Boyen and Koller [1998, 1999] proposed and studied inference methods involving an approxi-

mation of posterior distributions by the product of their marginals. Particle filtering algorithms in

the same vein appeared in Ng et al. [2002], Brandao et al. [2006], Besada-Portas et al. [2009]. The

advantages of such approaches for finite state-space are the decomposition of a high-dimensional

problem to multiple lower-dimensional ones. For instance, a probability distribution π over XM

can be decomposed in M probability distributions over X if independence is assumed across the

components, i.e. π=⊗M
v=1π

v with πv marginal distribution of π over v, then π is not represented

as a vector with length card(X)M , but as M vectors with length card(X), which is cheaper

to store in memory. Moreover, if local dependencies are assumed in the HMM, approximating

filtering-smoothing distributions with the product of their marginals can be even proved to be

accurate [Rebeschini and Van Handel, 2015, Finke and Singh, 2017].

2

https://github.com/LorenzoRimella


1.2. DYNAMIC BAYESIAN NEURAL NETWORKS

Chapter 3 analyses high-dimensional HMMs with local structures and proposes an approx-

imate algorithm for filtering-smoothing, which can be proved to be accurate from a local total

variation norm perspective, which is essentially a total variation norm over the marginals.

Precisely, the algorithm applies to HMMs where the components of the latent process are inde-

pendent, i.e. the HMM is a factorial hidden Markov model [Ghahramani and Jordan, 1997], and

the data are generated from an emission distribution that factorises in such a way that each factor

depends only on a subset of the latent variables. Under this setting, the filtering distributions

are approximated by the product of their marginals, and each marginal is approximated by a

localized version where the factors of the emission distribution are selected in a mathematically

well-principled manner and some of them are thrown away. At this point, the resulting filtering

approximations can plug into the backward-smoothing and approximate smoothing distributions

can be inferred without any additional approximation. The proposed algorithm is called Graph

Filter-Smoother.

The first advantage of Graph Filter-Smoother concerns the computational cost. Indeed, the

algorithm depends linearly on the size of the state-space and exponentially on the local structures,

whose meaning is going to be clarified in section 3.3 of chapter 3. This fact is of particular interest

when the local dependencies remain unchanged while the overall size increases because in such a

scenario scaling-up to high dimensions results in a cheap linear increase in the computational cost.

Another pivotal point is the control over the quality of the approximation, indeed the proposed

algorithm can shrink the error over the approximations by tuning its parameters. However, there

is a trade-off between the quality of the approximation and computational cost, an higher quality

of the approximation is associated with an increase in the computational cost of the algorithm.

This is not necessarily a downside because it is found out experimentally that an equilibrium

between quality and cost is possible and it leads to satisfactory results. Finally, it is verified

empirically that the proposed approximation is suited to traffic flow predictions, and it could

be extended to any application with straightforward spatial dependencies, such as other traffic

models.

1.2 Dynamic Bayesian Neural Networks

When the data distribution evolves during training, most of the deep learning algorithms suffer

the “catastrophic forgetting” [McCloskey and Cohen, 1989, Ratcliff, 1990], which is the phe-

nomenon of not being able to integrate the new knowledge in the model without completely

remove what was learned before. Continual learning, which is a branch of machine learning

focusing on algorithms that are able to train on non-i.i.d. data, has mainly focused on overcoming

catastrophic forgetting [Kirkpatrick et al., 2017, Nguyen et al., 2017, Ritter et al., 2018] without

taking into account that sudden changes in the statistics of the data may be an intrinsic property

of the generating process itself. There is then a need for techniques that are capable to forget

3



CHAPTER 1. INTRODUCTION

and to evolve according to what the data requires. Also, creating neural networks with compu-

tational graphs connecting all the history of the data, such as in RNN/LSTM, usually ends up

in over/underflow issues, e.g. exploding/vanishing gradients (i.e. the backpropagation algorithm

output a long product of derivatives that can be either small or big), which motivates to model

the underlying weights as time-varying and so build an evolving-in-time neural network.

Several attempts to create dynamic neural networks have been made in Bayesian filtering

[Puskorius and Feldkamp, 1991, 1994, 2001, Shah et al., 1992, Feldkamp et al., 2003, Ollivier

et al., 2018] and continual learning [Nguyen et al., 2017, Kurle et al., 2019], by proposing time-

varying posterior distributions over the weights. However, the considered settings are generally

limited to simple mean-field variational approximations [Kurle et al., 2019] and none of them

has focused on modelling the weights as the latent process of an HMM.

Chapter 5 builds hidden Markov neural networks (HMNN), a novel hybrid between Bayesian

neural networks and HMM, where the latent process of the HMM outlines the evolution in time

of the weights of a neural network. On the one hand, the HMM prediction step allows to preserve

knowledge from the previous steps and at the same time to forget useless information. On the

other hand, the HMM correction step includes features from the new data granting both complete

modelling during training and online learning if needed. The filtering distribution, which is an

evolving-in-time posterior distribution over the weights, is not available in closed form, due to the

complexity of the non-linear layers of the neural network. It is then computed approximatively

through variational inference by minimizing Kullback-Leibler divergence criteria at each time

step and by propagating forward the previous approximation. A sequential version of the well-

known algorithm Bayes by Backprop [Blundell et al., 2015] is used to perform training, along

with a reformulation of the reparameterization trick for variational approximations that are

Gaussian mixtures.

HMNNs can adapt to the data and forget unnecessary information, making them particularly

suited to non-stationary time series. At test time, HMNNs show good performances on static

classification on MNIST, simple and complex concept drift, next frame forecasting in a video,

and compared favourably against multiple baselines. Another appealing feature of the proposed

algorithm is to regularize the neural network, i.e. avoid overfitting, through a variational ap-

proximation that is a product of Gaussian mixtures. Indeed, in Bayesian neural networks, the

regularization (i.e. penalizing the complexity of the neural network) is generally induced by the

prior choice and the variational approximation is chosen to be a product of Gaussians (mean-field

variational approximation). Choosing a product of mixtures as variational approximation makes

HMNNs also novel from a training perspective, indeed the reparameterization trick is modified

to train on mixtures.

4



1.3. INFERENCE IN STOCHASTIC EPIDEMIC MODELS VIA MULTINOMIAL
APPROXIMATIONS

1.3 Inference in Stochastic Epidemic models via Multinomial
Approximations

Compartmental models are used to predict multiple aspects of an epidemic, e.g. reproduction

number, and so guide the governments’ control measures to limit the spread of the disease [Brauer,

2008, O’Neill, 2010, Kucharski et al., 2020]. Due to the intractability of the likelihood function,

statistical inference for these models is a major computational challenge [Bretó, 2018]. Indeed,

likelihood computation involves summing over a prohibitively large number of configurations of

latent variables, representing counts of subpopulations in disease states. For this reason, inference

is generally approached with various form of stochastic simulations [Funk and King, 2020,

Kypraios et al., 2017, McKinley et al., 2018, Brown et al., 2018, 2016, Lekone and Finkenstädt,

2006, Murray et al., 2018, Stocks, 2019, Fasiolo et al., 2016], which, however, have several

downsides: a computational cost that depends on the number of simulations, which at the same

time controls the inference quality; a computational cost that increases with the total population

size, which is considerable in most of the epidemic applications; a large use of tuning parameters

that are difficult or computationally expensive to choose.

A new inference approach for compartmental models is designed in chapter 6. The key idea is

to reformulate a general compartmental model as an HMM and then propose an approximation for

the filtering and the smoothing distributions. To build up the approximate procedure, the first step

is to choose the approximation class. An intuitive choice is the class of multinomial distributions

because it models the counting of individuals over compartments. After that approximate filtering

and smoothing algorithms have to be defined to keep the approximation in the same class

during the computations. The outcome is an algorithm providing a collection of multinomial

approximations to the filtering and smoothing distributions where the number of trials is set

to the total population size, while the events’ probabilities, representing the probability of an

individual being in a chosen compartment, are obtained through recursions, on the same flavour

of the forward-backward algorithm.

The computational cost of the resulting procedure depends only on the compartmental size

and not on the total population size. This is a significant improvement to the scalability, given that

the compartmental size is generally several order of magnitude lower than the total population

size. Moreover, in contrast to ODE models, the multinomial approximation can account for

statistical variability in disease dynamics and allows approximate evaluation of the likelihood

function for model parameters without any stochastic simulation or algorithm tuning parameters.

In addition, the resulting marginal likelihood can be combined with MCMC or Expectation

Maximization techniques for parameters estimation. Finally, from an experimental point of

view, the algorithm shows to: recover the ground truth parameters in synthetic data scenarios

and compares favourably with different baselines [Lekone and Finkenstädt, 2006, Brown et al.,

2018, Chowell et al., 2004] and extend a method of Kucharski et al. [2020] for estimating the
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time-varying reproduction number of COVID-19 in Wuhan, China, from an ODE compartmental

model to a stochastic model.
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2
BACKGROUND

This chapter set the background that is necessary for the development of the research.

Section 2.1 introduces the main notation, hidden Markov models, factorial hidden Markov

models, the filtering-smoothing problem and parameter learning for hidden Markov mod-

els. Section 2.2 proposes alternative solutions to the filtering-smoothing problem, i.e. variational

Bayes and bootstrap particle filter-smoother. Section 2.3 introduces the key concepts behind

neural networks and Bayesian neural networks.

2.1 Hidden Markov Models

Throughout the thesis refer to (Ω,H ,P) as a background probability space, such that any

random variable X has to be thought of as mapping from the measurable space (Ω,H ), with its

distribution given by the image of P under X . The dependence on the background probability

space is dropped for simplicity. Further use the notation: δ· for the Dirac delta measure; IA(·)
as the indicator function over the set A; E[·] as the expected value and E[·|·] as the conditional

expected value, moreover, if a probability measure is specified as a pedex of the expectation

then the expectation is taken under the specified probability measure, for instance Eν[·] is the

expectation under ν; a0:t for the elements a0, . . . ,at of the sequence (at)t≥0.

2.1.1 Preliminaries

Let (S,S ) be a measurable space, with S being a Polish space and S being a σ-algebra on S.

Moreover, let (Y,Y ) be another measurable space, with Y being a Polish space and Y being a

σ-algebra on Y.

7



CHAPTER 2. BACKGROUND

Definition 2.1. The bivariate discrete time stochastic process (X t,Yt)t≥0, with (X t)t≥0 unob-

served, on the state space (S×Y,S ⊗Y ) is called hidden Markov model if there exists transition

kernels P :S×S → [0,1] and G :S×Y → [0,1] such that:

E[ f (X t+1,Yt+1)|X0:t,Y0:t]=
∫

f (x, y)G(x,d y)P(X t,dx), for any t ≥ 0

and a probability measure λ0 on S such that:

E[ f (X0,Y0)]=
∫

f (x, y)G(x,d y)λ0(dx),

for every bounded and measurable function f :S×Y→ R. Under this framework, λ0 is named

initial measure, P is called transition kernel and G is referred to as the emission kernel.

In the HMM literature, (X t)t≥0 is referred to as the hidden process with state-space S, while

(Yt)t≥0 is the observed process, or simply observations. The initial measure λ0 is also called

initial distribution and it represents the distribution of X0, i.e. X0 ∼ λ0. At the same time, the

transition kernel P gives the distribution of X t+1|X t, i.e. X t+1|X t ∼ P(X t, ·) and the emission

kernel G provides the distribution of Yt|X t, i.e. Yt|X t ∼G(X t, ·), which is often referred to as the

emission distribution of the HMM.

The conditional independence relation in an HMM can be represented with a directed acyclic

graph, which can be found in Figure 2.1. In this thesis there are frequent references to measure

theory and the main results in chapter 3 requires a deeper formalization of HMMs. So in the

same vein of Rebeschini and Van Handel [2015], van Handel [2008] one can propose a more

formal definition of HMM.

X0

Y0

. . . X t−1

Yt−1

X t

Yt

X t+1

Yt+1

. . .

Figure 2.1: A directed acyclic graph representing the conditional independence structure of an
HMM.

The finite dimensional distributions of the HMM (X t,Yt)t≥0 are completely determined by the

initial distribution λ0, the transition kernel P and the emission kernel G, indeed for any bounded

and measurable function f and for any t ≥ 0:

(2.1) E[ f (X0:t,Y0:t)]=
∫

f (x0:t, y0:t)G(xt,d yt)P(xt−1,dxt) . . .G(x0,d y0)λ0(dx0).

8



2.1. HIDDEN MARKOV MODELS

Further assume that there exists p :S×S→R+ and a measure ψ over S such that:

(2.2)
∫
IA(z)P(x,dz)=

∫
IA(z)p(x, z)ψ(dz), for any x ∈S and A ∈S ,

in this case p is called transition density and ψ is called reference measure. Moreover, assume

non degenerate observations, meaning that there exists g :S×Y→R+ and a measure φ over Y

such that:

(2.3)
∫
IA(y)G(x,d y)=

∫
IA(y)g(x, y)φ(d y), for any x ∈S and A ∈Y ,

in such scenario g is referred to as the emission density and φ is called reference measure.

Under assumptions (2.2) and (2.3), (2.1) has a simpler form, i.e. for any bounded and measur-

able function f and for any t ≥ 0:

E[ f (X0:t,Y0:t)]=
∫

f (x0:t, y0:t)g(xt, yt)p(xt−1, xt) . . . g(x0, y0)φ(d yt)ψ(dxt) . . .φ(d y0)λ0(dx0),

Factorial hidden Markov models In this thesis, there is a particular focus on a class of

HMMs called factorial hidden Markov models (FHMMs) [Ghahramani and Jordan, 1997]. Start

by defining the measurable space (XV ,X V ) indexed by the finite set V , where XV is the product

space×v∈V X and X V is the product σ-algebra
⊗

v∈V X . Under this framework one can write

x = (xv)v∈V for any chosen x ∈XV and A = (Av)v∈V for any chosen A ∈X V . An FHMM is an HMM

on the state space (XV ×Y,X V ×Y ) where each component of the unobserved Markov chain

evolves independently from the others, or equivalently for any v ∈V , selected component of the

Markov chain, X v
t is conditionally independent of all other variables given X v

t−1. A directed acyclic

graph showing the conditional independence structure of an FHMM is shown in Figure 2.2.

X v
0

Y0

. . . X v
t−1

Yt−1

X v
t

Yt

X v
t+1

Yt+1

. . .

X w
t−1X w

0
. . . X w

t X w
t+1

. . .

. . . . . . . . . . . .

Figure 2.2: A directed acyclic graph representing the conditional independence structure of an
FHMM.

Formally, an FHMM can be defined by assuming a product form for the transition kernel, or

equally a factorization of the transition density.
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Definition 2.2. The hidden Markov model (X t,Yt)t≥0 with initial measure λ0, transition kernel

P and emission kernel G, is called factorial hidden Markov model (FHMM) if P is such that:

P(x, ·)= ⊗
v∈V

Pv(xv, ·) for any x ∈XV ,

where Pv :X×X → [0,1] is a transition kernel on (X,X ) for any v ∈ V . Moreover, the product

form of P is reflected as a factorization on the transition density p:

p(x, z)= ∏
v∈V

pv(xv, zv) ∀x, z ∈XV ,

with pv :X×X→R+ for any v ∈V .

For the rest of the thesis, an HMM (X t,Yt)t≥0, or an FHMM, as in definition 2.1, or definition

2.2, is going to be identify through its initial distribution λ0, transition density p and emission

density g, so assumptions (2.2) and (2.3) are taken as granted.

Unless specified differently (X t,Yt)t≥0 is an HMM with initial distribution λ0, transition

density p and emission density g.

2.1.2 Filtering and Smoothing distributions

Given a time horizon T ∈ N and an observation history (yt)t=0,...,T , i.e. the realization of the

stochastic process (Yt)t=0,...,T , two conditional distributions can be defined for each time step

t ∈ {0, . . . ,T}:

• the conditional distribution of X t given the realized observations (y1, . . . , yt), i.e. the distri-

bution of X t|Y0:t = y0:t, called filtering distribution, and

• the conditional distribution of X t given all the observations (y1, . . . , yT ), i.e. the distribution

of X t|Y0:T = y0:T , named smoothing distribution.

Both the filtering and the smoothing distribution at time t ∈ {0, . . . ,T} are probability measures

on S, and they are going to be denoted with πt and πt|T , respectively.

Filtering distribution Filtering can be conducted with a forward pass through the data, with

a recursive application of two operations: “prediction” step and “correction” step.

Definition 2.3. Given a time horizon T ∈N and an observation history (yt)t=0,...,T the filtering

distribution is defined recursively as the probability measure πt:

(2.4) π0 :=λ0, πt :=Ftπt−1, Ft :=CtP, t ∈ {1, . . . ,T},

where given the probability measure µ on S the prediction operator P and the correction operator

Ct are defined as:

(2.5) Pµ(A) :=
∫
IA(x)p(z, x)µ(dz)ψ(dx), Ctµ(A) :=

∫
IA(x)g(x, yt)µ(dx)∫

g(x, yt)µ(dx)
, A ∈S .

10



2.1. HIDDEN MARKOV MODELS

As already anticipated, it is clear from the above definition that: P performs a transition

from µ through the Markov transition kernel P, while Ct can be understood as applying a Bayes’

update to the prior µ through the likelihood function g(x, yt).

Smoothing distribution Amongst various smoothing algorithms, this thesis focuses on the

forward-filtering and backward-smoothing method presented by Kitagawa [1987], which involves

a backward in time recursion performed after filtering.

Definition 2.4. Given a time horizon T ∈N, an observation history (yt)t=0,...,T and the filtering

distributions (πt)t=0,...,T , the smoothing distribution is defined recursively as the probability

measure πt|T :

(2.6) πT|T :=πT , πt|T :=Rπtπt+1|T , t ∈ {T −1, . . . ,0},

where given the probability measures µ,ν on S the operator Rνµ is defined as:

Rνµ(A) :=
∫ ∫

IA(x)p(x, z)ν(dx)∫
p(x̃, z)ν(dx̃)

µ(dz), A ∈S .

As explained at the beginning of the paragraph, at time t the operator Rπt is including the

information deriving from yt+1, . . . , yT into the filtering distribution πt through the application of

the non-homogeneous Markov transition kernel p(x, z)πt(dx)/
∫

p(x̃, z)πt(dx̃) to πt+1|T . Hence, Rν
shows how to compute a reverse kernel to apply backward in time.

Note that the operator Rν can be modified to output joint distributions, indeed given a time

index t, a time horizon T, a probability measure µ on×T
t̃=t+1S and a probability measure ν on S

then the operator:

Rjoint
ν µ(A) :=

∫ ∫
IA(x, z)p(x, z)ν(dx)∫

p(x̃, z)ν(dx̃)
µ(dz), A ∈S ⊗

T⊗
t̃=t+1

S ,

gives a probability measure on×T
t̃=tS. A backward application of R joint

ν can then provide the joint

smoothing distribution π0:T|T , i.e. the conditional distribution of X0:T given Y0:T = y0:T .

Unless specified differently, set a time horizon T ∈N and an observation history (yt)t=0,...,T .

Curse of dimensionality and computational issues If the state-space S is continuous,

solving recursions (2.4) and (2.6) is complicated or not even possible, unless some restrictive

assumptions are taken, as for the Kalman filter [Welch et al., 1995]. Alternatively, sequential

Monte Carlo methods (SMC) [Doucet et al., 2000], see subsection 2.2.2, provides samples from the

filtering and smoothing distributions without need of a closed-form solution. Even though this

is generally easy to implement when scaling up to high dimensions the curse of dimensionality

becomes a considerable issue [Rebeschini and Van Handel, 2015], more details about the curse

of dimensionality follows at the end of subsection 2.2.2. If the state-space S is discrete, all the

integrals are going to be substituted with sums, the reference measure ψ becomes the counting

11
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measure, the transition density is a transition matrix and all the probability measures become

simply probability vectors. Under this setting, recursions (2.4) and (2.6) form the well-known

forward-backward algorithm, which computes filtering and smoothing distributions in close-form

by solving some straightforward linear algebra operations at a cost of O (card(S)3). However, if

the cardinality of S is big the whole procedure becomes unfeasible from a computational point of

view.

2.1.3 Statistical inference

The next question is how to compute λ0, p and g when unknown. This thesis considers a λ0

with a density of parametric form and a p and a g with parametric forms, such us exponential

families, whose parameters can be ideally inferred from the observations of the HMM. Let then

θ? be the collection of parameters found: in the density of λ0, in the transition density p and in

the emission density g, and call the parameter space (Θ,T ), with T σ-algebra on Θ. Note that

λ0, p and g are then dependent on θ?, and it would be desirable referring to them with λθ
?

0 , pθ
?
,

gθ
?
, however to make the notation lighter the θ? apex is avoided.

Bayesian inference Assume that θ? has prior λθ with λθ probability measure over Θ. For

any bounded and measurable function f one can write:

E[ f (θ?, X0:T ,Y0:T )]

=
∫

f (θ, x0:T , y0:T )g(xT , yT )p(xT−1, xT ) . . . g(x0, y0)φ(d yT )ψ(dxT ) . . .φ(d y0)λ0(dx0)λθ(dθ),

which can be used to estimate the posterior distribution over θ? and so extract an estimate for

θ?. For instance, given the prior λθ and the observation history (yt)t=0,...,T , an estimate for θ? can

be given by θ̂B
T := E[θ?|Y0:T = y0:T ]. The posterior distribution of θ? given the data is needed to

compute an estimate for θ?, however this can be done through filtering as in (2.4) by expanding

the hidden process of the HMM. Indeed, consider (X̃ t,Yt)t≥0 as the stochastic process X̃ t = (θ?, X t)

for any t ≥ 0, then (X̃ t,Yt)t≥0 is still an HMM and all the procedures in subsection 2.1.1 apply.

Even though computing the posterior distribution over θ? is theoretically simple, in practice

the computational issues and the curse of dimensionality mentioned in subsection 2.1.1 are still

present. As an alternative, one can employ Markov chain Monte Carlo methods [Cappé et al.,

2006] to sample from high-dimensional probability distributions, however, this is beyond the

scope of this thesis.

Maximum likelihood and EM Consider now a frequentist scenario and so assume that θ? is

not random. In this case, the hope is to find the maximum likelihood estimate θ̂MLE
T for a given

observation history (yt)0:T as:

(2.7) θ̂MLE
T := argmax

θ∈Θ
L(θ; y0:T ),

12
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where:

L(θ; y0:T ) :=
∫

g(x0, y0)λ0(dx0)
T∏

t=1

∫
g(xt, yt)p(xt−1, xt)πt−1(dxt−1)ψ(dxt),

with πt the filtering distribution as in definition 2.3. However, it does not exist an algorithm that

fulfils (2.7) when Θ is infinite, and even exploring a finite but large Θ might be computationally

unfeasible. To this end, the expectation-maximization (EM) algorithm, also called Baum-Welch

algorithm for discrete state-space HMMs, is widely used.

Precisely, let the joint density of X0:T ,Y0:T given the parameters θ be:

L(θ; x0:T , y0:T ) := g(x0, y0)λ0(dx0)
T∏

t=1
g(xt, yt)p(xt−1, xt), for any xt ∈XV , yt ∈Y with t = 0, . . . ,T,

and let the function QT (θ,θ′) for the given observation history (yt)t=0,...,T be:

QT (θ,θ′) := E[
log(L(θ; X0:T ,Y0:T ))|Y0:T = y0:T ,θ′

]
,

where E[·|·,θ′] is the conditional expectation under the parameters θ′. Then the EM algorithm

proceeds as follows:

E-step: compute the joint smoothing π0:T|T (this might be different depending on the form of QT )

under the parameter θ′;

M-step: set θ′ to argmaxθ∈ΘQT (θ,θ′).

The EM algorithm recursively finds combinations of parameters θ that are associated with

higher likelihood. Indeed, the expectation step consists of computing the joint smoothing distribu-

tion, which is then used in the maximization step to maximize a target function that guarantees

the motion to regions with higher likelihood, see Lemma 2.1 [van Handel, 2008]. Note that to

maximize QT , a close form solution for its gradient is needed, which is straightforward if λ0 has

a density that belongs to an exponential family and p, g belong to exponential families as well.

Lemma 2.1. For a given observation history (yt)t=0,...,T , if:

θ′′ = argmax
θ∈Θ

QT (θ,θ′)

then L(θ′′; y0:T )≥ L(θ′; y0:T ).

Proof. The proof can be found in van Handel [2008] page 85 Lemma 6.10. �

To conclude, remark that the EM algorithm still needs the joint smoothing distribution which

requires recursion (2.4) and a more sophisticated version of (2.6), i.e. a recursion build on the

operator R joint
ν , meaning that the computational cost and the curse of dimensionality still appear,

as explained in subsection 2.1.1.
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2.2 Alternatives to classic filtering and smoothing

As mentioned in subsection 2.1.1, filtering and smoothing distributions might be difficult to

compute or computationally unfeasible. This section analyses some approximate approaches to

the filtering and smoothing problem.

2.2.1 Variational inference

Variational inference [Blei et al., 2017] approximates the target posterior distribution with a

parametric distribution picked up from a class of distributions by minimizing Kullback-Leibler

divergence criteria. This significantly reduces the computational cost and provides approximate

solutions for complicated posterior distributions.

Before describing the actual variational inference procedure it is essential to introduce the

definition of Kullback-Leibler (KL) divergence. Given two probability measures µ and ν on XV

define the KL-divergence between µ and ν as:

(2.8) KL(µ||ν) :=
∫

log
(

dµ
dν

(x)
)

dµ
dν

(x)ν(dx),

where dµ/dν is the Radon-Nikodym derivative of µ with respect to ν, with the convention that

0log(0)= 0. In order to have (2.8) well-defined µ needs to be absolutely continuous with respect to

ν. A simpler version of (2.8) can be obtained by considering a common reference measure. Let h(·)
and q(·) be the probability density (or mass) functions of the probability distributions µ and ν

with respect to the reference measure ψ on XV , i.e.:∫
IA(x)µ(dx)=

∫
IA(x)h(x)ψ(dx), and∫

IA(x)ν(dx)=
∫
IA(x)q(x)ψ(dx), for any x ∈XV and A ∈X V ,

then the KL divergence can be reformulated as:

KL(q||h) :=
∫

log
(

q(x)
h(x)

)
q(x)ψ(dx).

Now, given a target probability measure µ with probability density h(·) with respect to the

reference measure ψ and the class of probability density functions Q with respect to the same

reference measure, the variational approximation of h(·) is:

q? := argmin
q∈Q

KL(q||h).

Variational inference for HMM and limitations Given an HMM with known initial distri-

bution, transition density and emission density, the joint smoothing distribution π0:T|T , i.e. the

conditional distribution of X0, . . . , XT given the observations y0, . . . , yT , can be approximated with

variational inference at a low computational cost, for example in FHMMs the computational
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Figure 2.3: Example of variational inference where the target is a bivariate Gaussian, in black,
and the variational approximation is picked from the class of bivariate Gaussian with diagonal
covariance matrix (product of independent Gaussians), in red, also called mean-field approxima-
tion.

complexity of variational inference is a low-order polynomial in state dimension [Ghahramani

and Jordan, 1997]. However, there are no theoretical guarantees on the quality of the variational

approximation besides that it is minimizing the KL-divergence between the distributions, and at

the same time, this approach is not online, meaning that given new data the whole optimization

has to be rerun from scratch.

2.2.2 Particle Filter and Smoother

If XV is continuous it is not usually possible to compute filtering and smoothing distributions

in closed form, hence it is frequent to use Monte Carlo approximations. This section reviews

straightforward particle filter and smoother for HMMs, more details can be found in Doucet et al.

[2000], Andrieu et al. [2010].

Before starting, assume that the horizon T, the initial distribution λ0, the transition density

p and the emission density g are known. At the same time, assume that the probability measure

λ0 has density λ0 (use the same notation). Moreover, assume also that it is possible to sample

from λ0 and from p(x, ·) for any x ∈XV .

Bootstrap particle filter As for recursion (2.4), the bootstrap particle filter performs a forward

step through the observation history (yt)t=0,...,T and proposes a sequential importance sampling

providing samples from the filtering distributions. Start by sampling N particles (xk
0 )k=1,...,N :

xk
0 ∼λ0, for k = 1, . . . , N,
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hence (xk
0 )k=1,...,N is a sample from the initial distribution. Then compute the weights (wk

0 )k=1,...,N :

wk
0 = g(xk

0 , y0)∑N
k̃=1

g(xk̃
0 , y0)

, for k = 1, . . . , N

Notice that by the law of large numbers:

π0 ≈
N∑

k=1
wk

0δxk
0
=: π̂0,

hence by resampling:

x̂k
0 ∼

N∑
k=1

wk
0δxk

0
, for k = 1, . . . , N,

surely (x̂k
0 )k=0,...,N is a sample from the filtering distribution π0, which conclude the initial step.

The procedure for a general step can be recursively formulated as follows. Start by sampling

N particles (xk
t )k=1,...,N from the kernel:

xk
t ∼ p(x̂k

t , ·), for k = 1, . . . , N,

hence (xk
t )k=1,...,N is a sample from the one step ahead predictive distribution. Then compute the

weights (wk
t )k=1,...,N :

wk
t = g(xk

t , yt)∑N
k̃=1

g(xk̃
t , yt)

, for k = 1, . . . , N.

Notice that by the law of large numbers:

πt ≈
N∑

k=1
wk

t δxk
t
=: π̂t,

hence by resampling:

x̂k
t ∼

N∑
k=1

wk
t δxk

t
, for k = 1, . . . , N,

surely (x̂k
t )k=0,...,N is a sample from the filtering distribution πt. A detailed description of the steps

can be found in algorithm 1, where D(·, (wk)k=1,...,N ) is the categorical distribution on {1, . . . , N}

with probabilities parameters (wk)k=1,...,N subjected to
∑N

k=1 wk = 1. The output ((xk
t )k=1,...,N )t=0,...,T

of algorithm 1 is a collection of samples from the filtering distributions. Note that the bootstrap

particle filter also output the set of ancestors ((Ak
t )k=1,...,N )t=1,...,T−1 and the final collection of

weights (wk
T )k=1,...,N , these are used in the particle smoother.

Remark that it is not always possible to sample from λ0 and p. In that case, one can fix a

proposal distribution q (which can also depend on the data), sample from this distribution and

correct the weights according to this procedure.
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Algorithm 1 Bootstrap particle filter
Require: T; (yt)t=0,...,T ;λ0; p; g; N

1: Sample xk
0 ∼λ0 for k = 1, . . . , N

2: Compute wk
0 = g(xk

0 ,y0)∑N
k̃=1

g(xk̃
0 ,y0)

for k = 1, . . . , N

3: Resample x̂k
0 = xAk

0
0 with Ak

0 ∼ D
(
·,

(
wk̃

0

)
k̃=1,...,N

)
for k = 1, . . . , N

4: for t = 1, . . . ,T do
5: Sample xk

t ∼ p(x̂k
t−1, ·) for k = 1, . . . , N

6: Compute wk
t = g(xk

t ,yt)∑N
k̃=1

g(xk̃
t ,yt)

for k = 1, . . . , N

7: Resample x̃k
t = x

Ak
t−1

t with Ak
t ∼ D

(
·,

(
wk̃

t

)
k̃=1,...,N

)
for k = 1, . . . , N

return ((Ak
t )k=1,...,N )t=0,...,T−1, (wk

T )k=1,...,N and ((xk
t )k=1,...,N )t=0,...,T

Particle smoother As for recursion (2.6), the particle smoother is performing a backward step

through the data and provides samples from the joint smoothing distribution π0:T|T . The key

step is to be able to track back the parent node of each particle. Indeed, the particle smoother

starts by sampling indexes from D(·, (wk
T )k=1,...,N ) and then it traces back the parent nodes up to

the time step 0, to provide a sample from the joint smoothing [Doucet et al., 2000, Andrieu et al.,

2010]. The full procedure is available in algorithm 2.

Algorithm 2 Particle smoother

Require: ((xk
t )k=1,...,N )t=0,...,T ; (wk

T )k=1,...,N ; ((Ak
t )k=1,...,N )t=1,...,T−1, ; Ñ

1: Sample P i
T ∼ D

(
·,(wi

T
)

i=1,...,N

)
for each i = 1, . . . , Ñ

2: Set xi
T|T = x

P i
T

T for i = 1, . . . , Ñ
3: for t = T −1, . . . ,0 do
4: Set P i

t = A
P i

t+1
t and xi

t|T = xP i
t

t for i = 1, . . . , Ñ
return ((xi

t|T )i=1,...,Ñ )t=0,...,T

It is worthed to mention that there exist particle smoother algorithms designed to overcome

path degeneracy at a computational cost that grows quadratically with the number of particles

(e.g FFBSa [Godsill et al., 2004] and FFBSm [Del Moral et al., 2010]), this becomes a considerable

issue when a big number of particles is needed, see the following section.

Curse of dimensionality As already mentioned in subsection 2.1.1, algorithm 1 suffers

the curse of dimensionality when scaling up to high dimension, meaning that the quality of

the approximations (π̂t)t≥0 deteriorates with the dimension card(V ) of the underlying states-

space XV [Bengtsson et al., 2008, Rebeschini and Van Handel, 2015]. Precisely, the bootstrap

particle filter can approximate the filtering distributions only if the number of particles N grows

exponentially in the dimension card(V ), more details can be found in Snyder et al. [2008], Bickel

et al. [2008]. Tempering based methods [Marinari and Parisi, 1992] can tackle high-dimensional
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state-spaces in particle filters [Godsill and Clapp, 2001], but they are generally restricted to a

low-dimensional observation space.

2.3 Neural networks

This section is a short overview of neural networks and Bayesian neural networks for supervised

learning. Neural network (NN) is the most popular model in machine learning and it has shown

outstanding performances in several fields. Supervised learning is a branch of machine learning

where the data consists of an input x and an output y, with the aim of finding a map from the

input onto the output. There are several other branches of machine learning where NNs are the

state of art, however, this thesis focuses on the role of NNs in supervised learning only. In this

section, use the notation wT for the transpose of the matrix w.

2.3.1 Feedforward neural networks

Feedforward neural networks, or multilayer perceptrons, are complicated functions obtained by

the composition of linear and non-linear maps [LeCun et al., 2015, Goodfellow et al., 2016].

A feed-forward neural network can be generally represented as

y? = f (x;w),

where x is the input, w are the parameters and y? is the output of the NN (this is going to

be compared with the actual output y). To be more precise, f is the result of a composition of

multiple functions, and it takes the form of a chain where each element is a layer of the NN. The

number of elements in the chain gives the depth of the NN, which is denoted by D. Hence:

(2.9) f = f (D) ◦ . . . f (1).

Each element of the chain is obtained by the composition of a linear function, represented by

a matrix, with a non-linear function, called activation [Leshno et al., 1993, Ramachandran et al.,

2017]. The elements of the matrix representing the linear function are called weights of the NN

and they are the parameters of the NN. Then for i = 1, . . . ,D:

(2.10) f (i) = a(i) ◦ l(i)

with l(i) linear function and a(i) elementwise application of the activation function. Precisely,

for a given input x, let h(i−1) be the output of f (i−1) ◦ · · · ◦ f (1)(x) then:

f (i)
(
h(i−1)

)
= a(i)

((
w(i)

)T
h(i−1)

)
,

where w(i) is the matrix of weights associated to layer i. Note that under this notation w =
(w(1), . . . ,w(D)). Remark that some bias terms are generally present, but for the sake of simplicity
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are not reported in the above formulation. After the application of the linear function, the length

of the output is called width of the layer, with the constraint that the width of the final layer

has to be the same as the dimension of the actual output y, i.e. the output of the NN y? has to

be a vector with the same length of y (remark that if y is categorical it is possible to switch to

a one-hot encoding format). After the elementwise application of the activation function, each

element of the output is called hidden unit or neuron of the NN.

The final step consists of relating the NN output y? with the actual output y, this is done by

the loss function `, which is usually interpreted as a negative log-likelihood over (x, y) given the

parameters w.

Given all the building blocks of an NN, the next question is how to learn the best combination

of weights, or, from a machine learning perspective, how to train. The statistical intuition is that

w are being selected as close as possible to the maximum likelihood estimator by minimizing the

sum of the losses over the data, i.e. given the data (xi, yi)i=1,...,n the sum of the losses over the

data is:

L
(
(xi, yi)i=1,...,n;w

)
:=

n∑
i=1

` (yi, f (xi;w)) .

Indeed, the loss in (x, y) has the interpretation of negative log-likelihood at (x, y), meaning that

minimizing L((xi, yi)i=1,...,n;w) is equivalent to maximise the log-likelihood of the model. However,

it is not possible to compute the minimum in closed form, due to the non-linear layers of the NN.

Even though the form of the NN is complex, given a set of weights w computing the gradient

of L((xi, yi)i=1,...,n;w) is simple because of the form of (2.9) and (2.10). Precisely, the gradient

can be computed by backpropagation [Hecht-Nielsen, 1992], which is simply the chain rule for

derivatives.

Once the gradient ∇wL of L((xi, yi)i=1,...,n;w) is available, the weights can be updated according

to any gradient descent technique (e.g. vanilla gradient descent, ADAM, etc.), for instance given

the learning rate l a vanilla gradient descent step is:

w = w− l∇wL.

The above procedure is then iterated until convergence, and the final combination of weights

represent the trained neural network.

Remark that often computing the gradient on all the available data is too expensive, hence

to reduce the computational cost, only a subset of the data is considered, this subset is called

minibatch.

2.3.2 Bayesian neural networks

In a feedforward neural network, the weights are scalars and obtained through an optimization

procedure. However, pointwise estimates of the weights do not provide any uncertainty quan-

tification and might be a consistent limitation for the NN use. A Bayesian approach to NNs
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[Graves, 2011, Kingma and Welling, 2013, Kingma et al., 2015, Blundell et al., 2015] can avoid

overconfidence and so provide ways to access uncertainty. Under a Bayesian setting, the weights

in the NN become random variables, and the aim is then to compute the conditional distribution

of the weights given the data, i.e. the posterior distribution over the weights.

Consider an NN as in subsection 2.3.1, but with random weights:

Y? = f (x;W),

where x is the input, W is the random vector of weights and Y? is the corresponding random

output. Moreover, given the distribution p0 over the weights’ space, assume

W ∼ p0.

Then given the data (xi, yi)i=1,...,n the log-posterior over the weights log p(W |y1, . . . , yn) is given

by:

(2.11) log p(W |y1, . . . , yn)= const.−L((xi, yi)i=1,...,n;W)+ log p0(W).

Unfortunately, the above posterior distribution cannot be computed easily, because it is not only

high-dimensional (number of weights) and continuous (each weight takes value in R), but it also

does not have a closed-form solution for any non-trivial architecture of the NN.

One can apply variational inference, see section 2.2.1, to approximate the posterior distribu-

tion over the weights of the NN [Graves, 2011, Kingma and Welling, 2013, Kingma et al., 2015,

Blundell et al., 2015]. Hence given the the data (xi, yi)i=1,...,n, the posterior distribution over the

weights p(·|y1, . . . , yn) and the variational class Q then p(·|y1, . . . , yn) can be approximated as:

(2.12) q? := argmin
q∈Q

KL(q||p(·|y1, . . . , yn))= argmin
q∈Q

Eq [log q(W)− log p(W |y1, . . . , yn)] .

The above can be also reformulate as an evidence lower bound (ELBO) by applying the Bayes

rule to p(W |y1, . . . , yn) as in (2.11):

(2.13) Eq [log q(W)− log p(W |y1, . . . , yn)]=KL(q||p0)+Eq
[
L((xi, yi)i=1,...,n;W)

]=−ELBO(q).

The latest form is more convenient because it involves evaluating an expectation on known

quantities: prior, NN output, variational approximation. The final step consists of solving (2.12)-

(2.13) and so find the best variational approximation for the posterior distribution over the

weights. This requires estimating the gradient of (2.13), which is not trivial and can be done by

the reparameterization trick, more details can be found in [Graves, 2011, Kingma and Welling,

2013, Kingma et al., 2015, Blundell et al., 2015] and later in chapter 5.
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3
EXPLOITING LOCALITY IN HIGH-DIMENSIONAL FACTORIAL HIDDEN

MARKOV MODELS

This chapter presents a novel low-cost algorithm called the Graph Filter-Smoother, which

computes approximate filtering and smoothing distributions for high-dimensional FH-

MMs with factorizable emission density. Sections 3.1, 3.2 introduce the background, the

main problem and the notation. Section 3.3 explains how to overcome the prohibitive compu-

tational cost of filtering-smoothing algorithms by Graph Filter-Smoother, along with the main

theoretical results. The proposed algorithm is indeed supported by mathematical proofs inspired

by the work Rebeschini and Van Handel [2015], which are available in chapter 4. The chapter

ends with some synthetic data experiments and a real-world application to traffic flow prediction,

see section 3.4. As already mentioned, a significant part of this chapter has been submitted to

publication and it is available in Rimella and Whiteley [2019].

3.1 Introduction and literature review

As explained in subsection 2.1.1 of chapter 2, the influential paper Ghahramani and Jordan [1997]

introduced the class of Factorial hidden Markov models (FHMMs), in which the hidden Markov

chain is a multivariate process, with a-priori independent coordinates. This structure provides

a rich modelling framework to capture complex statistical patterns in data sequences and it is

particularly suited to applications with straightforward local dependencies. Unfortunately, as

briefly mentioned in subsection 2.1.2 of chapter 2, the computational cost of computing filtering

and smoothing distributions is an issue to scalability of FHMMs. Indeed, the computational

cost of the matrix-vector operations underlying the well known forward-backward algorithm,

which computes conditional distributions over hidden states given data, and in turn the Baum-
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CHAPTER 3. EXPLOITING LOCALITY IN FHMM

Welch algorithm to perform maximum-likelihood estimation of static parameters, typically grows

exponentially with the dimension of the underlying state-space.

Ghahramani and Jordan [1997] derived a variant of the forward-backward algorithm which

achieves a degree of efficiency by exploiting the structure of FHMMs, but the exponential-in-

dimension scaling of cost cannot be avoided. Ghahramani and Jordan [1997] also proposed two

families of variational methods for FHMMs, which allow approximate solution of the smoothing

problem: computing conditional distributions over hidden states given past and future data. This

allows approximate maximum likelihood parameter estimation via an expectation-maximization

(EM) algorithm. The attractive feature of these variational approximations is, in typical FHMMs,

that their computational complexity is a low-order polynomial in state dimension. However,

little seems to be known about their performance in the context of FHMMs from a theoretical

point of view, other than the fact that by construction they minimize a Kullback-Liebler diver-

gence criterion. Moreover, analysis specifically for FHMMs appears to be lacking, and, to the

author’s knowledge, there are currently no detailed mathematical studies of how variational

approximation errors for FHMMs scale with dimension, data record length, model parameters

etc.

This chapter focuses on a class of FHMMs whose emission distribution has a factorial struc-

ture and proposes approximate inference algorithms called the Graph Filter and Graph Smoother.

In some ways, the Graph Filter and Smoother are similar in spirit to variational methods: they

involve constructing approximate posterior distributions over hidden states which factorize

across dimension. However, unlike variational methods, they do not involve minimization of a

Kullback-Liebler divergence criterion and avoid the fixed-point iterations or other optimization

procedures which variational methods typically involve. Instead, the Graph Filter and Smoother

exploit the factorial structure of the emission distribution as expressed through a factor graph

and perform approximation through localization – discarding likelihood factors in a principled

manner with respect to graph distance. Another contrast between the variational methods of

Ghahramani and Jordan [1997] and the Graph Filter and Smoother is that the latter share the

recursive-in-time structure of the forward-backward algorithm. The forward pass, which conducts

the task of filtering, can therefore be used for prediction in online settings. Variational methods

for FHMMs work in a batch setting, suitable for offline data analysis.

Boyen and Koller [1998, 1999], proposed and studied inference methods in Dynamic Bayesian

Networks which involve recursively approximating belief-state distributions by the product

of their marginals and then propagating the result to the next time step. Particle filtering

algorithms in the same vein appeared in Ng et al. [2002], Brandao et al. [2006] and Besada-Portas

et al. [2009]. Ground-breaking theoretical work of Rebeschini and Van Handel [2015] proved

that similar algorithms can be used to conduct particle filtering efficiently in high-dimensions,

using techniques based on the Dobrushin Comparison theorem [see for instance Georgii, 2011].

Subsequently, Rebeschini and van Handel [2014] refined their analysis through generalized
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Dobrushin comparison theorems. Finke and Singh [2017] extended these ideas from particle

filtering to particle smoothing and studied dimension-independence of the asymptotic Monte

Carlo variance. However, the algorithms proposed by Rebeschini and Van Handel [2015] and

Finke and Singh [2017] do not apply to FHMMs, indeed they require observations that are

conditionally independent across dimension given the signal.

3.1.1 Contributions

This chapter introduces Graph Filter-Smoother, which provides approximate filtering and smooth-

ing distributions for high-dimensional discrete state-space FHMMs and avoids the exponential-

in-dimension computational cost of the forward-backward algorithm. Remark that Graph Filter-

Smoother does not use any particle filter /smoother, but it generates approximations of the

filtering and smoothing distribution in finite FHMMs. The main advantages of using Graph

Filter-Smoother are summarized in the following.

• It is composed by a simple forward recursion approximating each filtering distribution

with a product of approximated marginal distributions, derived from a localized emission

distribution, see subsection 3.3.1, and a backward recursion which does not require any

further approximation.

• The computational cost of the proposed method does not depend exponentially on the

overall dimension, it varies according to the form of the emission distribution and it can be

controlled through some tuning parameters.

• The local total variation distance between the derived approximations and the filtering

/smoothing distributions is bounded above. The bounds do not degrade with the dimension

and they can be controlled with tuning parameters.

• Experimentally, it is significantly cheaper than running the low-cost filtering-smoothing

algorithm for FHMMs proposed by Ghahramani and Jordan [1997].

• In a synthetic data scenario, it is shown to better recover the ground truth parameters

compared to the variational methods proposed by Ghahramani and Jordan [1997].

• It can be used in applications with straightforward spatial structures. In particular, it is

applied to underground traffic modelling where flows in-out stations are influenced by the

surrounding lines, which are further assumed to be independent of each other.

3.2 Preliminaries

Consider an HMM with unobserved Markov chain (X t)t∈{0,...,T}, observed process (Yt)t∈{1,...,T}

and a time horizon of length T ∈ N. The state-space of (X t)t∈{0,...,T} is of product form, hence
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X t = (X v
t )v∈V ∈XV , where X and V be finite sets, and write L := card(X) and M := card(V ). Each

(Yt)t∈{1,...,T} is valued in a set Y which could be a discrete set, Rd or some subset thereof.

Use λ0(x) for the probability mass function of X0 (initial distribution), p(x, z) for the transition

probability of (X t)t∈{0,...,T} from x to z (transition kernel), and g(x, y) for the conditional probability

mass or density function of Yt given X t (emission distribution).

For any U ⊆ V and x = (xv)v∈V ∈ XV the shorthand xU = (xv)v∈U is used. Similarly, for any

probability mass function µ on XV its marginal associated with U is denoted by µU . When K is

any partition of the set V , µ is said to factorize with respect to K if:

µ(x)= ∏
K∈K

µK (xK ), x ∈XV ,

and in this situation the shorthand is used:

µ= ⊗
K∈K

µK .

The total variation distance between probability mass functions on XV , say µ and ν, is denoted

by:

‖µ−ν‖ := sup
A∈σ(XV )

|µ(A)−ν(A)|,

with the obvious overloading of notation µ(A)=∑
x∈A µ(x) and where σ(XV ) is the power set of XV .

When working on the marginals of µ,ν it will be convenient to denote the local total variation

(LTV) distance associated with U ⊆V ,

‖µ−ν‖U := sup
A∈σ(XU )

|µU (A)−νU (A)|.

Further assume that (X t)t∈{0,...,T}, (Yt)t∈{1,...,T} is an FHMM as in definition 2.2, and so:

(3.1) p(x, z)= ∏
v∈V

pv(xv, zv), x, z ∈XV

where each pv(xv, zv) is a transition probability on X.

Consider now a factorial structure of the likelihood function x 7→ g(x, y). Let F be a finite set

and let G = (V ,F,E) be a factor graph associated with x 7→ g(x, y), that is a bi-partite graph with

vertex sets V ,F and edge set E such that g(x, y) can be written in terms of factors:

(3.2) g(x, y)= ∏
f ∈F

g f (xN( f ), y), x ∈XV , y ∈Y,

where N(·) is the neighbourhood function,

(3.3) N(w) := {w′ ∈V ∪F : (w,w′) ∈ E}, w ∈V ∪F.

In applications each observation y will typically be multivariate and each likelihood factor

g f (xN( f ), y) may depend on y only through some subset of its constituent variates, but the details
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X t

Yt

X1
t X2

t X3
t X4

t X5
t

f1 f2 f3 f4

Figure 3.1: An example of factor graph for a fixed time step t of an FHMM where V = {1,2,3,4,5}
and F = { f1, f2, f3, f4}. So g(x, y)= g1((x1, x2), y)g2((x1, x2, x3), y)g3((x3, x4), y)g4((x4, x5), y)

will be model specific, and they are not introduced at this stage. Remark that equations (3.1) and

(3.2) are the mathematical formalization of “local structures” , indeed equation (3.1) says that

each component of the hidden variable is evolving independently, while equation (3.2) stands

that the emission distribution can be decomposed in pieces that can be built locally.

The filtering and smoothing distributions of the FHMM described in this section can be

computed by the forward-backward algorithm given that the state-space is finite and discrete.

The computational cost of doing so is O (TL2M) and it can be reduced to O (TMLM+1) if the

low-cost forward-backward algorithm by Ghahramani and Jordan [1997] is used. However, the

exponential in the dimension term cannot be avoided, making the computation of the filtering

and smoothing distributions unfeasible.

3.3 Approximate filtering and smoothing

To introduce the approximate filtering and smoothing techniques – called the Graph Filter and

Graph Smoother – consider the filtering and smoothing recursions, (2.4) and (2.6), and fix any

partition K of V . Suppose that one has already obtained an approximation to πt−1, call it π̃t−1,

which factorizes with respect to K . Then due to (3.1), Pπ̃t−1, also factorizes with respect to

K . However CtPπ̃t−1 does not factorize with respect to K in general. Section 3.3.1 defines an

approximation to the Bayes update operator Ct, denoted C̃m
t , where m is a parameter, such that

π̃t := C̃m
t Pπ̃t−1 does factorize with respect K .

Once (π̃t)t∈{0,...,T} have been computed in this manner, a sequence of approximate smoothing

distributions (π̃t|T )t∈{0,...,T} will be obtained by setting π̃T|T := π̃T and then π̃t−1|T :=Rπ̃t π̃t|T , for

t = T,T −1, . . . ,0. Due to (3.1) and the fact that (π̃t)t∈{0,...,T} each factorizes with respect to K , it

follows that (π̃t|T )t∈{0,...,T} also factorizes with respect to K .

The key ingredient in all of this is finding a way to approximate the action of the Bayes

update operator Ct in an accurate but computationally inexpensive manner. The next objective is

to introduce the details of how to do so.
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3.3.1 Approximate Bayes updates via localization and factorization

Let d : (V ∪F)2 →R+ be the graph distance on G , meaning that d(w,w′) is the number of edges in

a shortest path between w and w′. Augmenting the definition of the neighborhood function (3.3),

define, for any J ⊆V ,

Nr
v(J) := {v′ ∈V such that ∃v ∈ J with d(v,v′)≤ 2r+2},

Nr
f (J) := { f ∈ F such that ∃v ∈ J with d(v, f )≤ 2r+1}.

Then for a given probability mass function µ on XV , a partition of V denoted K and m ≥ 0 define:

C̃m,K
t µ(xK ) :=

∑
z∈XV :zK=xK

∏
f ∈Nm

f (K) g f (zN( f ), yt)µ(z)∑
z∈XV

∏
f ∈Nm

f (K) g f (zN( f ), yt)µ(z)
, xK ∈XK ,K ∈K ,(3.4)

C̃m
t µ := ⊗

K∈K

C̃m,K
t µ.(3.5)

Note the dependence of C̃m
t on K is not shown in the notation.

To see the motivation for (3.4)-(3.5), observe from the definition of the Bayes update operator

(2.5) and factorial likelihood function (3.2) that the marginal distribution of Ctµ associated with

some K ∈K is given by:

(3.6) (Ctµ)K (xK ) :=
∑

z∈XV :zK=xK
∏

f ∈F g f (zN( f ), yt)µ(z)∑
z∈XV

∏
f ∈F g f (zN( f ), yt)µ(z)

, xK ∈XK .

The definition (3.4)-(3.5) thus embodies two ideas: localization, in that C̃m,K
t µ is an approximation

to the exact marginal (Ctµ)K obtained by replacing the likelihood function
∏

f ∈F g f (zN( f ), yt) in

(3.6) by the “local-to-K” product
∏

f ∈Nm
f (K) g f (zN( f ), yt); and factorization, in that C̃m

t µ factorizes

with respect to K by construction. Figure 3.2 illustrates sub-graphs of G associated with each of

the neighborhoods Nm
f (K), K ∈K .

It is important to note that the factorization idea alone is not enough: computing the marginal

distribution (Ctµ)K has a cost which is exponential in M in general for likelihoods of the form

(3.2), even when µ factorizes with respect to K . So taking
⊗

K∈K (Ctµ)K as an approximation to

Ctµ would offer no computational advantage. This distinguishes the setup in this chapter from

the one in [Rebeschini and Van Handel, 2015, Finke and Singh, 2017], discussed in section 3.1,

and it is the reason motivating the introduction of localization through the parameter m.

More detailed consideration of the complexity of computing C̃m
t µ is given after proposition 3.1,

which quantifies the approximation error associated with C̃m
t and is one of the building blocks in

the overall analysis of the approximate filtering and smoothing method.

In order to state proposition 3.1 some further definitions are needed. Firstly, introduce the
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X1 X2 X3 X4 X5

X1 X2 X3

f1 f2

X1 X2 X3 X4

f1 f2 f3

X3 X4 X5

f2 f3

X4 X5

f4

f1 f2 f3 f4

Figure 3.2: An example of sub-graphs associated with the neighbourhoods Nm
f (K), K ∈K , when

V = {1,2,3,4,5}, F = { f1, f2, f3, f4}, K = {{1,2}, {3}, {4}, {5}} and m = 0.

following attributes of the factor graph G .

d(J, J′) :=min
w∈J

min
w′∈J′ d(w,w′), J, J′ ⊆V ∪F,(3.7)

nK := 1
2

max
v∈V

d(K ,v), K ∈K ,

n := max
K∈K

nK ,

Υ :=max
v∈V

card(N(v)),

Υ(2) :=max
v∈V

card(N0
v (v)),

Υ̃ := max
v,v′∈V

card(N(v)∩N(v′)).(3.8)

Note the dependence of n on K is not shown in the notation. The interpretation of the above

attributes of the factor graph is simple:

• d(J, J′) is the minimal distance between the elements of two sets in the factor graph;

• nK is the maximal distance between elements in K and outside K ;

• n is the maximal nK associated to the partition K ;

• Υ is the maximal number of factors in F connected to a component in V ;

• Υ(2) is the maximal number of components in V which are distant 2 from a component in V ;
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• Υ̃ is the maximal number of common factors in F connected to two components in V ;

Secondly, given a probability mass function µ on XV and a random variable X ∼µ, denote by

µv
x the conditional distribution of X v given {XV\v = xV\v}, and define

Cµ

v,v′ := 1
2

sup
x,z∈XV :xV\v′=zV\v′

∥∥µv
x −µv

z
∥∥ , v,v′ ∈V ,

Corr(µ,β) :=max
v∈V

∑
v′∈V

eβd(v,v′)Cµ

v,v′ ,

where β> 0 is a given constant.

Proposition 3.1. Fix any partition K of V and any t ∈ {1, . . . ,T}. Suppose there exists κ ∈ (0,1)

such that:

(3.9) κ≤ g f
(
xN( f ), yt

)
≤ 1
κ

, ∀x ∈XV , f ∈ F.

Assume that for a given probability mass function µ on XV there exists β> 0 such that:

(3.10) 2κ−2ΥCorr(µ,β)+ e2βΥ(2)
(
1−κ2Υ̃

)
≤ 1

2
.

Then for any K ∈K , J ⊆ K and m ∈ {0, . . . ,n},

(3.11)
∥∥Ctµ− C̃m

t µ
∥∥

J ≤ 4e−β
(
1−κb(m,K )

)
card(J)e−βm,

where b(m,K ) := 2maxK∈K maxv∉Nm−1
v (K){card(N(v))}, with the convention that the maximum

over an empty set is zero.

The proof of proposition 3.1 is given in section 4.2 of chapter 4. The term Corr(µ,β) quantifies

the strength of dependence across the coordinates of X = (X v)v∈V ∼µ . A probability distribution

µ satisfies the decay of correlation property if it exists a β such that Corr(µ,β) is bounded above

[Rebeschini and Van Handel, 2015]. The hypothesis (3.10) places a combined constraint on this

dependence, the constant κ which in (3.9) controls the oscillation of the likelihood function factors

g f (xN( f ), yt), and the graph attributesΥ,Υ(2) and Υ̃. In particular, ifΥ,Υ(2) and Υ̃ are particularly

small then the hypothesis (3.10) is likely to be satisfied, meaning that there is a preference on

factor graphs with a few number of connections (see the meaning of Υ, Υ(2) and Υ̃ after equation

(3.8)), where the local structures are more evident. This preference on sparse factor graphs is

also reflected in the bound, indeed b(m,K ) is small if the elements of V have few connections in

the factor graph.

Turning to the bound (3.11), one can examine its dependence on the partition K and the

parameter m. The quantity b(m,K ) is non-increasing with m. In practice, b(m,K ) will often be

decreasing with m, and is always zero when m = n since then Nm−1
v (K) is V . Also b(m,K ) will

often decrease as K becomes coarser and in the extreme case of the trivial partition K = {V },

the constant b(m,K ) is always zero, because Nm−1
v (K) is again V , and so v ∉V is equivalent to
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X7
tX6

tX5
tX4

tX3
tX2

tX1
t

f6f5f4f3f2f1

Figure 3.3: Solid lines indicate a chain factor graph with 4 likelihood factors and V = {1,2,3,4,5},
hence M = 5. Dashed lines indicate extension to M = 6,7 by adding f5 and X (6) then f6 and X (7).

v ∈;. Combined with the e−βm term, this means
∥∥Ctµ− C̃m

t µ
∥∥

J can be made small by choosing

the partition K to be suitably coarse and m to be suitably large.

It is important to note that Corr(µ,β), κ and Υ appearing in the hypotheses (3.9) and (3.10),

and the quantities on the right hand side of (3.11) do not necessarily have any dependence on

M, where recall that M := card(V ). For instance, when µ=⊗v∈Vµ
v then Corr(µ,β) = 0 and one

can easily construct families of FHMMs of increasing dimension in which κ, Υ, Υ(2), Υ̃, b(m,K )

are independent of M: consider the simple case where the factor graph is a chain as shown in

figure 3.3, and the dimension of the model is increased by adding f5 and X (6) then f6 and X (7)

as shown by the dashed lines. In this situation, for any v ∈V the cardinality of N(v) and N0
v (v)

remain unchanged as the dimension of the model increases.

Algorithm 3 Approximate Bayes update

Require: K , {Nm
f (K)}K∈K , {Nm

v (K)}K∈K , {µK }K∈K , {g f (·, y)} f ∈F
1: for K ∈K do
2: K̂ ← {K ′ ∈K : K ′∩Nm

v (K) 6= ;}
3: for x ∈XK̂ do
4: µ̂(x)←∏

K ′∈K̂ µ
K ′

(xK ′
)

5: for f ∈ Nm
f (K) do

6: µ̂(x)← µ̂(x) · g f (
xN( f ), y

)
7: Normalize µ̂ to a probability mass function on XK̂

8: Marginalize out components K̂ \ K : µ̃K ← µ̂K

return (µ̃K )K∈K

Algorithm 3 shows the steps involved in computing C̃m
t µ in the case that µ factorizes with

respect to K . To simplify considerations of the computational cost of algorithm 3, suppose that

for each K ∈K there exists a collection of elements in K that is a partition of Nm
v (K). This is a

typical feature of regular graphs such as lattices. In this case, the complexity of algorithm 3 is

readily found to be:

O

(
card(K )max

K∈K
card

(
Nm

f (K)
)
L

max
K∈K

card(Nm
v (K))

)
.

The elements of the computational cost are derived as follows:

29



CHAPTER 3. EXPLOITING LOCALITY IN FHMM

• card(K ) is obtained because each correction is repeated on all the elements of the partition;

• max
K∈K

card
(
Nm

f (K)
)

is derived from including all the desired factors in the computation;

• L
max
K∈K

card(Nm
v (K))

is the cost of including all the desired factors in the approximate correction.

Crucially the exponent of L in this cost, which is proportional to maxK∈K card(Nm
v (K)), does

not necessarily grow with the overall dimension M, see again the chain example in figure 3.3. This

suggests that the overall cost of filtering and smoothing method built around the approximate

Bayes update operator C̃m
t may avoid the exponential-in-M factor in the cost O (TMLM+1) of

exact filtering and smoothing for FHMMs.

3.3.2 Graph Filter

As an approximation to the operator Ft introduced in subsection 2.1.2 define:

F̃m
t := C̃m

t P,

where the dependence of F̃m
t on K , inherited from C̃m

t , is not shown in the notation. The

approximate filtering distributions are then defined by the recursion:

(3.12) π̃0 :=λ0, π̃t := F̃m
t π̃t−1, t ∈ {1, . . . ,T}

theorem 3.1 builds from proposition 3.1 and quantifies the approximation error associated

with (π̃t)t∈{0,...,T}. Further to (3.7)-(3.8), in order to state theorem 3.1, some additional quantities

and definitions must be introduce. For J ⊆V ,

J̃ := {v ∈ J :∀ f ∈ N(v), N( f )⊆ J},(3.13)

∂J := J \ J̃,

∂N(J) := { f ∈ N(J) : N( f )∩V \ J 6= ;}.

Moreover, given a probability mass function µ on XV and the transition kernel P on XV

and two random variables such that X ∼ µ and Z|X ∼ p(X , ·), denote by µv
x,z the conditional

distribution of X v given {XV\v = XV\v, Z = z}, and define

C̃µ

v,v′ := 1
2

sup
z∈XV

sup
x,x̂∈XV :

xV\v′=x̂V\v′

∥∥∥µv
x,z −µv

x̂,z

∥∥∥, v,v′ ∈V

�Corr(µ,β) :=max
v∈V

∑
v′∈V

eβd(v,v′)Cµ

v,v′ ,

where β> 0.

Remark 3.1. If the components of X are independent, i.e. µ = ⊗
v∈V µ

v, then C̃µ

v,v′ = 0 for any

v 6= v′ and so �Corr(µ,β)= 0 for any β> 0.
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Theorem 3.1. Fix any collection of observations {y1, . . . , yT } and any partition K of V . There

exists a region R0 ⊆ (0,1)3 depending only on Υ̃,Υ and Υ(2), such that if, for given (ε−,ε+,κ) ∈R0,

ε− ≤ pv(xv, zv)≤ ε+, and κ≤ g f
(
xN( f ), yt

)
≤ 1
κ

,

for all x, z ∈XV ,v ∈V , f ∈ F, t ∈ {1, . . . ,T}, then for β> 0 small enough depending only on Υ̃,Υ,Υ(2),ε−,ε+,

κ for any λ0 satisfying:

�Corr(λ0,β)≤ 2e−β
(
1− ε−

ε+

)
+2e2βΥ(2)

(
1−κ2Υ̃

)
and for any K ∈K , J ⊆ K and m ∈ {0, . . . ,n}:

‖πt − π̃t‖J ≤α1(β)
(
1−κa(K )

)
card(J)+γ1(β)

(
1−κb(K ,m)

)
card(J)e−βm, ∀t ∈ {1, . . . ,T},

where πt, π̃t are given by (2.4) and (3.12) with initial condition λ0; α1(β),γ1(β) are constants

depending only on β, and

a(K ) := 2max
K∈K

max
v∈∂K

card(N(v)∩∂N(K)),

b(m,K ) := 2max
K∈K

max
v∉Nm−1

v (K)
card(N(v)),

with the convention that the maximum over an empty set is zero.

The proof of theorem 3.1 is in section 4.2 of chapter 4. Explicit expressions for R0, β, α1(β)

and γ1(β) are given in the proof of the theorem and its supporting results, see (4.9) for R0 and

β, and (4.10) for α1(β) and γ1(β). Note that the assumption on �Corr(λ0,β) plays the same role of

(3.10) in proposition 3.1 and ensures that the initial local dependencies are not too strong.

The second term on the right hand side of the bound on ‖πt − π̃t‖J given in theorem 3.1 is,

up to a numerical constant, equal to the upper bound obtained in proposition 3.1, see discussion

there of its dependence on m and K . The first term on the right hand side of the bound on

‖πt − π̃t‖J depends on the neighborhood structure of the factor graph G . Loosely speaking, the

constant a(K ) is small when the graph is sparsely connected and the partition is coarse, and

in the extreme case of the trivial partition K = {V }, the constant a(K ) is zero because, in the

notation of (3.13), Ṽ = V and so ∂V is empty. The quantities in the hypotheses and bound of

theorem 3.1 exhibit the same dimension-free qualities as discussed after proposition 3.1.

Implementation of the approximate filtering method is shown in algorithm 4, which is referred

to from now on as the Graph Filter. Noting that the complexity of computing π̂K ← (Pµ)K , which is

O
(
TL

2max
K∈K

card(K))
, is dominated by the cost of algorithm 3, with an additional 2 at the exponent

of L, the overall complexity of algorithm 4 is then:

O

(
Tcard(K )max

K∈K
card

(
Nm

f (K)
)
L

2max
K∈K

card(Nm
v (K))

)
.

The elements of the computational cost are derived as follows:
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CHAPTER 3. EXPLOITING LOCALITY IN FHMM

Algorithm 4 Graph Filter

Require: K , {Nm
f (K)}K∈K , {Nm

v (K)}K∈K , {λK
0 }K∈K , {pv(·, ·)}v∈V , {g f (·, ·)} f ∈F , {yt}t={1,...,T}

1: for K ∈K do
2: π̃K

0 ←λK
0

3: Compute pK (·, ·) :=∏
v∈K pv(·, ·)

4: for t ∈ {1, . . . ,T} do
5: for K ∈K do
6: for zK ∈XK do
7: π̂K (zK )←∑

xK∈XK pK (xK , zK ) · π̃K
t−1(xK )

8: (π̃K
t )K∈K ←algorithm 3

(
K , {Nm

f (K)}K∈K , {Nm
v (K)}K∈K , {π̂K }K∈K , {g f (·, y)} f ∈F

)
9: return {(π̃K

t )K∈K }t={0,...,T}

• T is derived from cycling over time;

• card(K ) is obtained because each prediction and correction is repeated on all the elements

of the partition;

• max
K∈K

card
(
Nm

f (K)
)

is derived from algorithm 3;

• L
2max

K∈K
card(K)

is the cost of the matrix-vector operation when computing prediction over

all v ∈ K and K ∈ K which is then upper bounded by the cost of algorithm 3, given that

L
max
K∈K

card(K) ≤ L
max
K∈K

card(Nm
v (K))

.

For the chain graph example in figure 3.3 with K = {{1}, {2}, . . .}, the complexity is:

O
(
Tcard(K )min{2(m+1), M−1}L2min{2(m+1)+1,M}

)
.

Thus the exponent of L has the dimension-free property of becoming independent of M depending

on m when M is large enough.

3.3.3 Graph Smoother

The approximate smoothing distributions are defined by simply substituting the approximate

filtering distributions into recursion (2.6):

(3.14) π̃T|T := π̃T , π̃t|T :=Rπ̃t π̃t+1|T , t ∈ {T −1, . . . ,0}.

Theorem 3.2. Fix any collection of observations {y1, . . . , yT } and any partition K of V . There

exists a region R̃0 ⊆ (0,1)3 depending only on Υ̃,Υ and Υ(2), such that if, for given (ε−,ε+,κ) ∈ R̃0,

ε− ≤ pv(xv, zv)≤ ε+, and κ≤ g f
(
xN( f ), yt

)
≤ 1
κ

,
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Algorithm 5 Graph Smoother

Require: K , (pv(·, ·))v∈V , (π̃K
t )K∈K ,t={0,...,T}

1: for K ∈K do
2: π̃K

T|T ← π̃K
T

3: Compute pK (·, ·) :=∏
v∈K pv(·, ·)

4: for t ∈ {T −1, . . . ,0} do
5: for K ∈K do
6: for zK ∈XK do
7: for xK ∈XK do
8: ←−p K (zK , xK )← pK (xK , zK )π̃K

t (xK )

9: Normalize ←−p K (zK , ·) to a probability mass function on XK

10: for xK ∈XK do
11: π̃K

t|T (xK )←∑
zK∈XK

←−p K (zK , xK )π̃K
t+1|T (zK )

12: return ((π̃K
t|T )K∈K )t={1,...,T}

for all x, z ∈ XV ,v ∈ V , f ∈ F, t ∈ {1, . . . ,T}, then for β > log(2) small enough depending only on

Υ̃,Υ,Υ(2),ε−,ε+, κ and for any λ0 satisfying satisfying:

�Corr(λ0,β)≤ 2e−β
(
1− ε−

ε+

)
+2e2βΥ(2)

(
1−κ2Υ̃

)
,

and for K ∈K , J ⊆ K and m ∈ {0, . . . ,n}:∥∥π̃t|T −πt|T
∥∥

J ≤α2(β,ε−,ε+)
(
1−κa(K )

)
card(J)+γ2(β,ε−,ε+)

(
1−κb(K ,m)

)
card(J)e−βm,

where πt|T , π̃t|T are given by (2.6) and (3.14) with initial condition λ0, α2(β,ε−,ε+) and γ2(β,ε−,ε+)

are constants depending on ε−,ε+, β and

a(K ) := 2max
K∈K

max
v∈∂K

card(N(v)∩∂N(K)),

b(m,K ) := 2max
K∈K

max
v∉Nm−1

v (K)
card(N(v)),

with the convention that the maximum over an empty set is zero.

The proof of theorem 3.2 is in section 4.3 of chapter 4. The only difference between the bound

in this theorem and that in theorem 3.1 are the constants α2(β,ε−,ε+) and γ2(β,ε−,ε+), explicit

expressions can be deduced from the proof. The assumption on the initial distribution λ0 is the

same as in theorem 3.1.

The approximate smoothing method, shown in algorithm 5 has complexity

O
(
Tcard(K )L

3max
K∈K

card(K))
,

where:

• T is derived from cycling over time;
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• card(K ) is derived from repeating the operation on all the elements of the partition;

• L
3max

K∈K
card(K)

is obtained from the computation of the reversed kernel and its application to

the previous smoothing approximation.

Assuming 3maxK∈K card(K) is smaller than 2maxK∈K card(Nm
v (K)), which is typically the

case in practice, the overall complexity of algorithm 4 combined with algorithm 5 is:

O

(
Tcard(K )max

K∈K
card

(
Nm

f (K)
)
L

2max
K∈K

card(Nm
v (K))

)
.

Discussion on m and K As already mentioned, the proposed algorithms are built upon two

layers of approximation:

• factorization: the target distribution is approximated with a product of marginals;

• localization: each marginal is approximated with a localized version, which excludes “far

away” factors.

The two layers are guided by two quantities: the partition K and the parameter m. m is

associated to localization, instructing how many factors f ∈ F to include in each approximation

of the marginals. Obviously, a bigger m guarantees a better approximation, but it also implies

a higher computational cost. K refers to factorization and determines the structure of the

marginals to be computed. Again, a coarser K gives a better approximation, but it is more

computationally intensive.

Choosing m and K is not straightforward, and several aspects must be considered. In the

following we give a list of suggestions for the choices of m and K to contain the computational

cost of the algorithms.

1. m and K should be chosen such that in any of the marginals approximation only a subset

of F is used, otherwise, if all the factors are included, running the Graph Filter-Smoother

is as expensive as the forward-backward algorithm.

2. K should look at the structure of the factor graph and try to include the least factors. For

instance, in figure 3.2 the partition is chosen to be K = {{1,2}, {3}, {4}, {5}}, but another valid

partition is K ? = {{1,3}, {2}, {4}, {5}}. However, K is better than K ? because for the same

m = 0 the element {1,2} in K requires less factors than the element {1,3} in K ? (similar

argument for {3} in K and {2} in K ?).

3. m should be selected to avoid factors with high degree. Indeed, including too many “hub”

factors could blow up the computational cost.

Remark that the above suggestions are focused on controlling the computational cost and they do

not take into account the approximation quality. This latter aspect is difficult to evaluate and it

is generally suggested to try multiple combinations of m and K .
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3.4 Numerical results

This section treats the experimental part. Subsection 3.4.1 describes a class of FHMM’s with

conditionally Gaussian observations used as a running example in Ghahramani and Jordan [1997]

and which is used in the numerical experiments run in this thesis. The purpose of the first set of

experiments, in section 3.4.1, is to illustrate the practical implications of the previous theoretical

results, assessing the performance of the Graph Filter and Smoother methods against exact

filtering and smoothing, both in terms of accuracy and computational speed. In subsection 3.4.1

the performance of EM algorithms for parameter estimation built around the Graph Smoother

is compared with the variational approximations presented in Ghahramani and Jordan [1997].

Subsection 3.4.2 outlines a model of traffic flow on the London Underground and illustrate

parameter estimation and prediction using the Graph Filter and Smoother.

The experiments were run on the University of Bristol’s BlueCrystal High-Performance

Computing machine. Precisely, they used either one or two standard compute nodes each with 2

X 2.6GHZ 8-CORE INTEL E5-2670 (SANDYBRIDGE) chips and 4GB of RAM per core.

3.4.1 Synthetic data

With X a finite subset of Z, V = {1, . . . , M} and Y = Rdy , consider the Gaussian emission model

from Ghahramani and Jordan [1997]:

g(x, y)= |Σ|− 1
2 (2π)−

dy
2 exp

{
−1

2
[y−a(x)]T Σ−1 [y−a(x)]

}
,

where a(x) is a vector whose entries may depend on x.

X 5
tX 4

tX 3
tX 2

tX 1
t

Y 4
t ∼N (cX 5

t + cX 4
t ,σ2)Y 3

t ∼N (cX 4
t + cX 3

t ,σ2)Y 2
t ∼N (cX 3

t + cX 2
t ,σ2)Y 1

t ∼N (cX 2
t + cX 1

t ,σ2)

X 5
t ∼ p(X 5

t−1, ·)X 4
t ∼ p(X 4

t−1, ·)X 3
t ∼ p(X 3

t−1, ·)X 2
t ∼ p(X 2

t−1, ·)X 1
t ∼ p(X 1

t−1, ·)

f4f3f2f1

Figure 3.4: Factor graph for the model in section 3.4.1 the case F = { f1, f2, f3, f4} and V =
{1,2,3,4,5}.

The case dy = M−1 is considered along with the specific forms of Σ and a(x):

Σ=σ2I and a(x)=
(
a f (x)

)
f ∈{1...M−1}

with a f (x) := c
(
x f + x f+1

)
,
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where c > 0 is a constant. Under these assumptions, N( f )= { f , f +1} and

g f (xN( f ), y)= 1p
2πσ

exp
{
− [y f − c(x f + x f+1)]2

2σ2

}
.

The corresponding factor graph G is a chain, as already seen in figure 3.3, and it is illustrated

in figure 3.4. The transition probabilities and initial probability mass function are assumed to

have identical components across V ,

λ0(x)= ∏
v∈V

λv
0(xv), x ∈XV and λv

0 = µ̂0, ∀v ∈V ;

p(x, z)= ∏
v∈V

pv(xv, zv), x, z ∈XV and pv = p̂, ∀v ∈V .

Throughout the experiments the partition K is:

K = {{1}, . . . , {M}}.

Accuracy and speed performance for filtering and smoothing X= {0,1} and three data

sets of length T = 500 are simulated from the model with parameters:

(3.15) µ̂0(xv)= 1, xv = 1,∀v ∈V , {p̂(xv, zv)}xv,zv∈X =
(
0.6 0.4

0.2 0.8

)
, c = 1, σ2 = 1.

First consider the execution time of the approximate filtering and smoothing method, i.e., the

combination of algorithm 4 and algorithm 5, as a function of the parameters m and M. Figure 3.5

shows execution time as m and M vary. The execution time of exact filtering and smoothing using

the algorithm of Ghahramani and Jordan [1997], henceforth “GJ” , is included for reference.

It is apparent from the top row of plots that with m fixed, the execution time of the Graph

Filter and Smoother initially increases super-linearly with M up to some point which depends on

m, and from then on it is linear in M. This is most visually evident for the large values of m and

is consistent with the complexity of the combined Graph Filter and Smoother method discussed

in subsection 3.3.3, which for the model considered here is:

(3.16) O
(
TM min{2(m+1), M−1}L2min{2(m+1)+1,M}

)
.

By contrast, the execution time of GJ increases exponentially with M, making its implementation

extremely expensive in high-dimensional cases.

When M is fixed, it is clear from the bottom row of plots in figure 3.5 that the execution time

of the Graph Filter and Smoother is super-linear in m up to some point which depends on M, and

then is constant in m. Again this is consistent with (3.16). The phenomenon of the cost becoming

constant in m arises because as m grows, eventually all factors are included in the products in

C̃m,K
t , see (3.4).

The next set of experiments examine the accuracy. Recall two important characteristics of

the bound of theorem 3.2: the bound does not depend on the overall dimension, M, and decays
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Figure 3.5: Execution time for the combined filtering and smoothing algorithms as a function of
m and M. Each vertical pair of plots corresponds to one of three simulated data sets. GJ is the
exact filtering and smoothing algorithm of Ghahramani and Jordan [1997].

exponentially with m. The region R̃0 in theorem 3.2 is non-empty, but for the specific parameter

settings in (3.15) there does not exist (ε−,ε+,κ) ∈ R̃0 such that the assumptions of the theorem on

pv and g f hold. Thus technically theorem 3.2 does not hold in this example. However, figure 3.6

and figure 3.7 encouragingly show that the LTV between the exact and approximate smoothing

distributions exhibits the characteristics of not depending on the overall dimension, M, and

decaying exponentially with m.

Comparison to variational inference within EM for parameter estimation Here the

accuracy of parameter estimation using the Graph Smoother within an approximate EM al-

gorithm is illustrated. The performance is compared with the approximate EM approach of
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Figure 3.6: The LTV distance between the approximate and exact marginal smoothing distribu-
tions averaged over both the components X i

t , . . . , X i+4
t , with i = 1, . . . ,8, and the T = 500 time steps.

With m fixed the average LTV is constant in M for M large enough. The three plots correspond to
the three simulated data sets.

Ghahramani and Jordan [1997] in which variational approximations to the smoothing distri-

butions are employed. For background on EM see Dempster et al. [1977] and Ghahramani and

Jordan [1997] (section 3.1).

Ghahramani and Jordan [1997] (sections 3.4 and 3.5) describes two families of variational

distributions for FHMM which can be used to compute the E-step in EM approximately: a “fully-

factorized” scheme in which the variational distribution is chosen to statistically decouple all

state variables, (X v
t )v∈V , t = 0, . . . ,T, in the HMM, and a “structured” approximation, in which the

variational distribution is Markovian in time but statistically decouples state-variables across

V . The former is going to be called completely decoupled, while the latter is going to be named

spatially decoupled.

The computational cost of computing the approximate smoothing distributions using either

the completely decoupled or spatially decoupled schemes is:

(3.17) O (ITL2M2(M−1)4),

where I is the number of iterations of the fixed-point equations needed to find the variational

approximation. I = 20 was sufficient for convergence in the considered experiments, indeed

Ghahramani and Jordan [1997] (page 254) suggest 2−10 iterations is typically sufficient. Recall

that for M large enough, (3.16) is exponential in m, but linear in M, while (3.17) scales no faster

than M6. Whether or not the variational approximations can be computed more quickly than

the Graph Smoother is dependent on the model in question. The experiments did not show a
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Figure 3.7: The LTV distance between the approximate and exact marginal smoothing distri-
butions of certain components of X1

t , . . . , X M
t and the T = 500 time steps. The LTV decreases

exponentially with m. The three plots correspond to the three simulated data sets.

substantial difference in speed.

Details of the EM updates using the Graph Smoother are given in the appendix A. The only

difference between these updates and those using the variational approximations is in the E-step,

where the expectation is simply taken with respect to the corresponding approximate smoothing

distribution.

The model described in subsection 3.4.1 is considered, with X = {0,1} and T = 200, and

generated a data set with true parameter values:

µ̂0(xv)= 1, xv = 1,∀v ∈V , {p̂(xv, zv)}xv,zv∈X =
(
0.6 0.4

0.2 0.8

)
, c = 2 and σ2 = 4.

The EM algorithms based on the Graph Smoother and the fully and spatially decoupled varia-

tional approximations were run for 20 different EM initializations. Tables 3.1 and 3.2 show the

mean of the final estimates over the different initial conditions for M = 3 and M = 10, respectively.

Graphical results are presented in figures 3.8 and 3.10 for M = 3 and figures 3.9 and 3.11 for

M = 10.

In figure 3.8 the EM algorithms associated with the Graph Smoother converge to points closer

to the true parameter values than those using the variational approximations. Using m = 1 rather

than m = 0 in the former yields a slight increase in the accuracy. In figure 3.10 the results using

the Graph Smoother are not more accurate in all cases, but the completely decoupled variational

method generally performs badly. In figure 3.9 the results for the Graph Smoother are again

more accurate. In figure 3.11 it is notable that the estimates of the transition probabilities are

39



CHAPTER 3. EXPLOITING LOCALITY IN FHMM

a little more accurate with m = 0 rather than m = 1 but substantially more accurate than with

either of the variational schemes. Again the completely decoupled variational approximation

performs poorly. These observations are numerically evident also from tables 3.1 and 3.2.
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Figure 3.8: M = 3. Estimation of c and σ2 using approximate EM based on the Graph Smoother
and the completely and spatially decoupled variational approximations by Ghahramani and
Jordan [1997]. Horizontal axes correspond to EM iterations. 20 different EM initializations shown
for each algorithm setting.
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Figure 3.9: M = 10. Estimation of c and σ2 using approximate EM based on the Graph Smoother
and the completely and spatially decoupled variational approximations by Ghahramani and
Jordan [1997]. Horizontal axes correspond to EM iterations. 20 different EM initializations shown
for each algorithm setting.

Method λ0(0),λ0(1) c σ2 p(0,0), p(0,1), p(1,0), p(1,1) ‖p‖F

True values 0.000, 1.000 2.000 4.000 0.600, 0.400, 0.200, 0.800 1.095
Graph Smoother m = 0 0.137, 0.863 1.753 4.642 0.072, 0.928, 0.518, 0.482 1.171
Graph Smoother m = 1 0.001, 0.999 1.779 4.542 0.075, 0.925, 0.549, 0.451 1.171

Completely decoupled Variational Bayes 0.384, 0.616 1.498 6.562 0.075, 0.925, 0.084, 0.916 1.306
Spatially decoupled Variational Bayes 0.393, 0.607 1.960 6.223 0.362, 0.638, 0.385, 0.615 1.366

Table 3.1: Parameters estimates for the case M = 3 with Graph Filter-Smoother and variational
Bayes at the end of the EM algorithm. The estimates are found by taking the mean over the
different initial conditions. ‖p‖F stands for the Frobenius norm of the transition matrix p.
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Figure 3.10: M = 3. Estimation of µ̂0 and p̂ using approximate EM based on the Graph Smoother
and the completely and spatially decoupled variational approximations by Ghahramani and
Jordan [1997]. Horizontal axes correspond to EM iterations. 20 different EM initializations
are shown for each algorithm setting. Traces corresponding to the 2 elements of the initial
distribution µ̂0 and 4 elements of the transition matrix p̂ are superimposed on each plot.
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Figure 3.11: M = 10. Estimation of µ̂0 and p̂ using approximate EM based on the Graph Smoother
and the completely and spatially decoupled variational approximations by Ghahramani and
Jordan [1997]. Horizontal axes correspond to EM iterations. 20 different EM initializations
are shown for each algorithm setting. Traces corresponding to the 2 elements of the initial
distribution µ̂0 and 4 elements of the transition matrix p̂ are superimposed on each plot.
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Method λ0(0),λ0(1) c σ2 p(0,0), p(0,1), p(1,0), p(1,1) ‖p‖F

True values 0.000, 1.000 2.000 4.000 0.600, 0.400, 0.200, 0.800 1.095
Graph Smoother m = 0 0.152, 0.848 1.786 4.617 0.570, 0.430, 0.150, 0.850 1.121
Graph Smoother m = 1 0.320, 0.678 1.691 4.566 0.466, 0.534, 0.099, 0.901 1.158

Completely decoupled Variational Bayes 0.469, 0.531 1.833 6.260 0.343, 0.657, 0.336, 0.664 1.347
Spatially decoupled Variational Bayes 0.026, 0.678 1.423 5.804 0.044, 0.956, 0.040, 0.960 1.356

Table 3.2: Parameters estimates for the case M = 10 with Graph Filter-Smoother and variational
Bayes at the end of the EM algorithm. The estimates are found by taking the mean over the
different initial conditions. ‖p‖F stands for the Frobenius norm of the transition matrix p.

3.4.2 Analyzing traffic flows on the London Underground

This section analyses the passenger inflow-outflow on the London Underground from three per-

spectives: one step ahead prediction; missing data imputation with multi-step-ahead prediction;

multi-step-ahead prediction under disruptions and improvements (building new lines).

Transport For London, the operator of the London Underground, has made publicly available

“tap” data, consisting of a 5% sample of all Oyster card journeys in a week during November

2009 [Transport for London, 2018]. The data consist of the locations and times of entry to and

exit from the transport network for each trip.

Similar Transport for London data have been analyzed by Silva et al. [2015], who developed

models of numbers of trips between pairs of stations in the Underground network to quantify the

effects of shocks such as line and station closures and to predict traffic volumes. The modelling

approach described by Silva et al. [2015](Supporting Information) is very sophisticated, including

several components such as regression of the numbers of passengers entering stations onto

time, a cascade of nonparametric binomial models for the numbers of passengers inside the

transport system who entered at each station and a Bayesian probabilistic flow model. One of

many attractive features of this approach is that it avoids the computational cost of network

tomography models for traffic data [Guimera et al., 2005, Colizza et al., 2006, Newman et al.,

2011] which is prohibitive in the context of large transport systems due to the exponential growth

of problem size in the number of network links.

Similar computational difficulties are encountered with some dynamic Bayesian network

models of flow on transport networks. For example, Hofleitner et al. [2012] proposes a dynamic

mixture model for travel times where the mixture component represents a time-varying con-

gestion state associated with each link in the transport network. In principle, inference in this

model can be performed using a particle filter, but as noted by Woodard et al. [2017], due to

high-dimensionality the cost of doing so accurately (with respect to Monte Carlo error) is very

demanding.

It is not the objective of this thesis to conduct as detailed modelling exercise as in these works,

but rather to establish a proof of principle that the Graph Filter-Smoother is naturally suited to

the topological structure of transport networks and shows promise for traffic prediction using
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even a very simple FHMM. This leaves a potential for a deeper investigation of traffic modelling

using FHMM’s in future work.
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Figure 3.12: Locations in longitude and latitude of 20 stations from the the Central line and the
Jubilee line of the London underground. Stations are represented as yellow nodes, while train
lines are green edges.

3.4.2.1 Dataset and model

Consider 20 stations on a central portion of the Central line and the Jubilee line. Stations’ names

and geographical locations are shown in figure 3.12. The dataset consists of the inflow and the

outflow of passengers from Monday to Friday per station every 10 minutes from 00:00 am to 00:00

am of the next day. The data are split into training given by Monday, Tuesday and Wednesday

and test consisting of Thursday and Friday.

Given that inflow and outflow are modelled, consider two factors per each station, one for

the inflow, the other for the outflow. Precisely, per each f ∈ {1, . . . ,20}, denote with y f ,in
t the inflow

at time t in station f and with y f ,out
t the outflow at time t in station f . Consider then the lines

as the hidden unit of an HMM. Model each line as bidirectional and use the notation xi, j
t for

i, j ∈ {1, . . . ,20} and i 6= j to the state of the line connecting station i with station j at time t with

the train moving from i to j. In this case, the index set V is the collection of all bidirectional

lines in the tube’s network. The nodes of the factor graph are then: the factors associated to the

stations’ inflow and outflow (the number of nodes in figure 3.12 multiply by two); the bidirectional

lines (the number of edges in figure 3.12 multiply by two). To build the edges of the factor

graph consider the relation between stations and lines. If at time t the inflow in station i is

substantial then lots of passengers are going to leave station i and fill the lines xi,·
t . Similarly,

43



CHAPTER 3. EXPLOITING LOCALITY IN FHMM

if the outflow in j at time t is large then lots of people are coming from the lines x·, j
t . For these

reasons for i, j ∈ {1, . . . ,20}, with i, j connected through a line in the tube’s network, the line xi, j
t

is connected with yi,in
t and y j,out

t . The described procedure builds the factor graph G and the

related neighbourhood function N(·).
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Figure 3.13: EM estimates using the Graph Filter-Smoother algorithm, see appendix A, of the
initial distribution and transition matrix per each line. Each coloured line corresponds to a
different line and direction in the tube’s network.

The state-space of each line is X = {0,1,2,3}, which can be interpreted as different levels

of busyness in the line. Although the study is restricted to only 20 out of over 300 stations in

the full London Underground network, exact filtering and smoothing would be computationally

unfeasible since M = 48 (the number of lines multiplied by the number of directions), L = 4 and

hence the cardinality of the overall state-space XV is 448.
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Figure 3.14: EM estimates using the Graph Filter-Smoother algorithm, of λ f ,in and λ f ,out. Each
coloured line correspond to a different station flow (inflow or outflow) in the tube’s network.

The emission distribution is given by:

g(x, y)=
20∏

f=1
g f ,in

(
x f ,N( f ), y f ,in

)
g f ,out

(
xN( f ), f , y f ,out

)
, x ∈XV ,

where g f ,in (
x f ,N( f ), y f ,in)

and g f ,out (xN( f ), f , y f ,out) are Poisson distributions:

g f ,in(x f ,N( f ), y f ,in)=
(
λ f ,in ∑

j∈N( f ) x f , j)y f ,in

(y f ,in)!
e−(λ f ,in ∑

j∈N( f ) x f , j)

g f ,out(xN( f ), f , y f ,out)=
(
λ f ,out ∑

i∈N( f ) xi, f )y f ,out

(y f ,out)!
e−(λ f ,out ∑

i∈N( f ) xi, f )

where x f ,N( f )
t = (x f , j

t ) j∈N( f ) and xN( f ), f
t = (xi, f

t )i∈N( f ). The λ parameter can be interpreted as a

flow intensity which varies across stations and inflow-outflow. Similarly, consider an initial

distribution and a transition matrix per each line, i.e.:

µ0(x)=
20∏
i=1

∏
j∈N(i)

µ
i, j
0

(
xi, j

)
, x ∈XV

p(x, z)=
20∏
i=1

∏
j∈N(i)

pi, j
(
xi, j, zi, j

)
, x, z ∈XV .

The total number of parameters is then 1000: 40 from the flow intensity, 768 from the

transition matrices, 192 from the initial distribution.

The static parameters are learnt through an EM algorithm, more details are available

in appendix A. The EM algorithm uses the Graph Filter-Smoother with m = 0 and K as in

subsection 3.4.1 (partition of singleton over V ). The algorithm was run on the training set with

random initial conditions on the learnable parameters. The estimates are shown in figure 3.13

and figure 3.14. The estimates are found to be robust for different initial conditions.
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The estimate of the initial distribution sets all the lines to the state 0, meaning that all the

lines are quiet in the early morning of Monday (the interval from 00:00 am to 00:10 am).

The interpretation of the transition kernel is more difficult. Generally, the estimates can

be clustered in three groups, which are heuristically called: “stable” , “quiet” , “busy” . Remark

that the names of the groups do not have any quantitative meaning and they are used to refer

to estimates with commonalities. Firstly, a line belonging to the stable group has a transition

kernel that prefers keeping the state fixed, i.e. the stochastic matrix has high probabilities on

the diagonal. Most of the lines are found in this group. Secondly, the quiet cluster has lines with

transition kernel’s estimates where state {3} is difficult to reach, this means that given the state

{2} at time t it is very likely to go backward to the state {1} or stay in {2}. These estimates appear

in lines connecting low-flow stations and precisely in lines between: hubs and low-flow stations

(e.g Liverpool Street inflow with Aldgate outflow); high-flow stations and low-flow stations (e.g

Canary Wharf inflow with North Greenwich outflow); low-flow stations and low-flow stations

(e.g. Stepney Green inflow with Whitechapel outflow). Finally, a line in the busy group can easily

reach states {2,3}. For instance, if a line in the busy group reaches state {1} at time t, it moves

to state {2} with high probability and it keeps moving forward to state {3} in the next time step.

These estimates are typical for lines connecting high-flow stations with high-flow stations, e.g.

Liverpool Street inflow with Bank outflow.

The interpretation of figure 3.14 is straightforward, indeed λ f ,· scales the intensity of the flow,

hence bigger estimates of λ f ,· are referred to stations with higher flows.

Flow prediction without missing data Prediction over the test data is performed through

the posterior predictive of Graph Filter-Smoother, i.e. per each time step t ≥ 0 a posterior

predictive sample yt+1 is obtained as:

(3.18) xt ∼ π̃t|t, xt+1 ∼ p(xt, ·), yt+1 ∼ g(xt+1, ·),

where g, p are computed through the EM algorithm run on the training set (Monday, Tuesday,

Wednesday) and π̃·|· is obtained by running recursively the Graph Filter on the test data (Thursday,

Friday). Note that (3.18) provides a sample from the posterior predictive, the mean of this sample

is then used as prediction for the test set. The first column of figure 3.15 shows the mean and

the 0.95 credible interval of posterior predictive samples for the data from Thursday to Friday.

For ease of presentation consider the plots on four stations, plots on all the other stations are

available in appendix A section A.2.2. The results indicate that the model is able to track the

peaks of the inflow and outflow that occur during the morning and afternoon rush hours, which

vary in magnitude from station to station. Moreover, credible intervals show satisfying coverage

of the true data.

The proposed method is compared with an LSTM trained on one-step-ahead prediction over

the inflow-outflow, more details about the architecture and training are available in appendix A,

section A.2.1. The LSTM takes as input inflow-outflow data over all the stations at time t and
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Figure 3.15: One step-ahead posterior predictive mean (solid red line) and 0.95 credible intervals
(red bands) using the Graph Filter-Smoother on four stations. Blue solid lines stand for the
observed data from Thursday to Friday. The first row shows the inflow, the second row shows the
outflow. The name of the station is reported at the top of each plot, along with the estimate of the
corresponding λ f ,·.

0 50 100 150 200 250 300

0

5

10

15

20

25

30

in
flo

w

Mile End

0 50 100 150 200 250 300

0

20

40

60

80

Liverpool Street

0 50 100 150 200 250 300

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Aldgate East

0 50 100 150 200 250 300

0

5

10

15

20

25

Tower Hill

0 50 100 150 200 250 300

time

0

5

10

15

20

25

30

35

ou
tfl

ow

Mile End

0 50 100 150 200 250 300

time

0

20

40

60

80

100
Liverpool Street

0 50 100 150 200 250 300

time
2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Aldgate East

0 50 100 150 200 250 300

time

0

5

10

15

20

25

30

35

Tower Hill

Figure 3.16: One step-ahead prediction with the LSTM. Per time step, a sample of size 100 is built
over different training of the LSTM where solid red lines show the mean and red bands show the
region between the 0.025 and the 0.975 quantiles. Blue solid lines stand for the observed data
from Thursday to Friday. The first row reports the inflow, the second row reports the outflow. The
name of the station is written at the top of each plot.

output predictions for time t+1. 100 LSTMs (different initial conditions and seeds) are trained on

Monday, Tuesday and Wednesday. As for the Graph Filter-Smoother method, testing is performed

on Thursday and Friday. First column of figure 3.16 shows LSTM’s predictions on four stations

only, more details are available in the appendix A, section A.2.2. Figure 3.16 shows that different

trainings of the LSTM lead to similar performances with bands that are narrower than figure

3.15.

Table 3.3 reports RMSEs for the posterior predictive mean of Graph Filter-Smoother and

the LSTM. The mean and standard deviation of the RMSE for the posterior predictive mean of

Graph Filter-Smoother are computed over 100 samples of the posterior predictive mean. The

mean and standard deviation of the RMSE for LSTM are computed over 100 LSTMs optimization

(i.e. different initial conditions and seeds, which is a common procedure in machine learning).
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CHAPTER 3. EXPLOITING LOCALITY IN FHMM

The proposed algorithm has performances that are comparable with the LSTM even though the

LSTM is explicitly trained to minimize the RMSE on the one-step-ahead prediction.

Method No missing Missing without peak Missing with peak

Graph Filter-Smoother 4.796±0.011 5.399±0.014 5.493±0.019
LSTM 4.639±0.138 7.427±2.080 6.178±1.425

Table 3.3: RMSE comparison between the posterior predictive mean of Graph Filter-Smoother
and LSTM. “No missing” refers to the performance on the full test set. “Missing without peak”
refers to the test set performance when data from t = 130 (around 9 pm on Thursday) to t = 170
(around 4 am on Friday) are missing. “Missing with peak” refers to the test set performance
when data from t = 230 (around 2 pm on Friday) to t = 270 (around 9 pm on Friday) are missing.
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Figure 3.17: Multi-step-ahead posterior predictive mean (solid red line) and 0.95 credible intervals
(red bands) using the Graph Filter-Smoother on four stations with missing data in a quiet period
(without peak). Blue solid lines stand for the observed data from Thursday to Friday (the missing
data are included). Grey dashed lines show the start and the end of the missing data window.
Stations’ names are reported at the top of each plot.
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Figure 3.18: Multi-step-ahead posterior predictive mean (solid red line) and 0.95 credible intervals
(red bands) using the Graph Filter-Smoother on four stations with missing data in a busy period
(with peak). Blue solid lines stand for the observed data from Thursday to Friday (the missing
data are included). Grey dashed lines show the start and the end of the missing data window.
Stations’ names are reported at the top of each plot.
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Flow prediction with missing data Suppose now that data cannot be collected in the period

from t to t+h, for instance, because the sensors in the stations are broken and people come in

and out without tapping their Oyster cards.

Graph Filter can automatically impute missing data by applying the “prediction” operator

without the “correction” operator. Precisely, multi-step-ahead posterior predictive from t to t+h

can be pursued as follows:

xt ∼ π̃t|t,

xt+1 ∼ p(xt, ·), ỹt+1 ∼ g(xt+1, ·),
xt+2 ∼ p(xt+1, ·), ỹt+1 ∼ g(xt+2, ·),
. . .

xt+h ∼ p(xt+h−1, ·), ỹt+h ∼ g(xt+h, ·).

The sample ỹt+1, . . . , ỹt+h provides a way to impute the missing data yt+1, . . . , yt+h.

Similarly, LSTM can do multi-step-ahead prediction by using the output on the current time

step as input for the next time step. Remark that the considered LSTM is trained exclusively for

one-step-ahead prediction (i.e. LSTM maps yt onto yt+1). As an alternative, one could train LSTM

on multi-step-ahead predictions (i.e. LSTM maps yt onto yt+1, . . . , yt+h), which requires to know

the missing data window in advance. However, that is generally not plausible, e.g. missing data

in traffic applications are caused by broken sensors and the time they are out of order cannot be

predicted in advance.
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Figure 3.19: Multi-step-ahead prediction with the LSTM on four stations with missing data in a
quiet period (without peak). Per time step, a sample of size 100 is built over different training of
the LSTM where solid red lines show the mean and red bands show the region between the 0.025
and the 0.975 quantiles. Blue solid lines stand for the observed data from Thursday to Friday.
Grey dashed lines show the start and the end of the missing data window. Stations’ names are
reported at the top of each plot.

RMSE performances between LSTM and the proposed method in a missing data scenario are

compared in the second and the third column of Table 3.3. Two cases are distinguished: missing

data in a quiet period (second column) and missing data in a busy period (third column). LSTM
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Figure 3.20: Multi-step-ahead prediction with the LSTM on four stations with missing data in a
busy period (with peak). Per time step, a sample of size 100 is built over different training of the
LSTM where solid red lines show the mean and red bands show the region between the 0.025
and the 0.975 quantiles. Blue solid lines stand for the observed data from Thursday to Friday.
Grey dashed lines show the start and the end of the missing data window. Stations’ names are
reported at the top of each plot.

has evident robustness issues, the RMSE varies consistently depending on the initial condition

and on the training (high standard deviation). On the contrary, the proposed method is more

stable, with a standard deviation that is 100 times lower than LSTM and an RMSE that is

significantly lower in mean. This appears in the experiments for missing data in both busy and

quiet periods. Graphical illustrations on selected stations can be found in figures 3.17, 3.18, 3.19,

3.20, more figures can be found in appendix A.

Flow prediction under disruptions and improvements The section concludes with a

multi-step-ahead prediction when the factor graph changes over time. Indeed, improvements

(new lines are built) and /or disruptions (some lines are closed) may occur in the underground,

which can be modelled by adding and /or removing lines from the tube’s network.

LSTM is not able to adapt to the new structure of the network and it keeps predicting as

nothing has changed. On the contrary, the Graph Filter-Smoother can modify the factor graph

(remove and /or add elements of V ) and study the effects that this has on future inflow-outflow.

In the case of improvements at time t, a line connecting i and j is added. To include this line

in future predictions the extra line has to be added to the factor graph and two additional hidden

units, referring to the two directions of the added line, are created. Then each new hidden unit is

associated with a prior at time t−1 and an estimate of the transition matrix. The former is done

by setting to zero with probability one the new line because the line does not exist at t−1. The

latter is estimated as the mean element by element of the transition matrices of the other lines

(an alternative approach could be to consider a mean over the lines connected to the stations i, j

only).

In the case of disruption at time t, a line connecting i and j is closed (removed). To exclude

the line from future prediction the two hidden units associated with the closed line can be simply
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removed from the factor graph. After that, the removed hidden unit is not considered in the

recursion.

Figures 3.21 compare graphically how the flows react when removing a line connecting Mile

End and North Greenwich and when adding a line between Bank and London Bridge. Generally,

removing a line in the proposed model implies a decrease in the inflow-outflow of the connected

stations, while adding a line causes an increase in the inflow-outflow of the connected stations.

Note that competition among stations as in Silva et al. [2015] is not implemented, hence it should

be expected a change only on the surrounding stations. More complicated spatial dependencies

can be considered in the Poisson emission, but these studies are left to future works.
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Figure 3.21: Predicted flows for Bank and London Bridge when removing a line (first and second
columns), and for Mile End and North Greenwich when adding a line (third and fourth columns).
Solid lines are posterior predictive means. Bands are 0.95 credible intervals. In red: Graph
Filter-Smoother without any changes. In black: Graph Filter-Smoother when removing a line. In
green: Graph Filter-Smoother when adding a line. Blue solid lines are the observed data without
any changes. Stations names and λ f ,· estimates (without changes) are reported at the top.

Summary There are several advantages of using Graph Filter-Smoother when modelling

traffic flows.

• As it has been described in the paragraph “Dataset and model” , all the parameters of the

proposed model can be easily interpreted. This compares with LSTM whose weights do not

have any interpretation and it must be considered as a black-box.

• The proposed method can quantify uncertainty. In particular, the experiments showed that

0.95 credible intervals cover most of the data. On the contrary, LSTM does not have any

way to quantify uncertainty and it is overconfident in its predictions.

• Experimentally, Graph Filter-Smoother is able to impute missing data efficiently without

drastic changes in the prediction performance (RMSE in table 3.3). Conversely, LSTM has

robustness issues with different training (different initial conditions and gradient steps)

leading to very different predictions.
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• The proposed method is flexible and it can adapt to sudden changes in the structure of the

factor graph without retraining from scratch. The latest part of the experiments proposed a

way to modify the Graph Filter-Smoother to adapt to changes in the tube’s network.
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4
EXPLOITING LOCALITY IN HIGH-DIMENSIONAL FACTORIAL HIDDEN

MARKOV MODELS-THEORETICAL PROOFS

This chapter consists of three sections. In section 4.1, some of the key definitions are gathered

together for the reader’s convenience and some further objects and lemmas needed for the main

proofs are introduced. Section 4.2 and section 4.3 are dedicated to proving respectively theorems

3.1 and 3.2. Upon first reading, one may skip straight to section 4.2, where an outline of the main

steps in the proof of theorem 3.1 is given. As already mentioned, a significant part of this chapter

has been submitted to publication and it is available in the appendix of Rimella and Whiteley

[2019].

Before commencing, a comment on generality and notation. In the previous sections a state-

space X, which is a set of finite cardinality, and probability mass function on XU for some U ⊆V

are considered. In order to make notation visually compact, throughout the current section

expectations with respect to such mass functions are written as measure theoretic integrals,

e.g.
∫
IA(x)µ(dx). Here it is to be understood that µ(dx) = µ(x)ψ(dx) where ψ denotes counting

measure, and hence
∫
IA(x)µ(dx)≡µ(A)≡∑

x∈A µ(x). This integral notation reflects the fact that

many of the results from this thesis do not rely on X being a set of finite cardinality and could be

replaced by a Polish spaces as for the definitions in section 2.1 of chapter 2.
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4.1 Definitions and Preliminary results

The following definitions associated with the factor graph G are needed (some definitions are

repeated from (3.7)-(3.8) and reported here for the convenience of the reader):

d(J, J′) :=min
e∈J

min
e′∈J′{d(e, e′)}, J, J′ ⊆V ×F,

N(J) := { f ∈ F : ∃v ∈ J with d(v, f )≤ 1}, J ⊆V ,

N2(J) := {v′ ∈V : ∃v ∈ J with d(v′,v)≤ 2}, J ⊆V ,

Nr
v(J) := {v′ ∈V such that ∃v ∈ J with d(v,v′)≤ 2r+2}, J ⊆V ,

Nr
f (J) := { f ∈ F such that ∃v ∈ J with d(v, f )≤ 2r+1}, J ⊆V ,

nJ := 1
2

max
v∈V

d(J,v),

Υ :=max
v∈V

{card(N(v))},

Υ(2) :=max
v∈V

{card(N0
v (v))},

Υ̃ := max
v,v′∈V

{card(N(v)∩N(v′))},

J̃ := {v ∈ J :∀ f ∈ N(v), N( f )⊆ J}, J ⊆V ,

∂J := J \ J̃, J ⊆V .

Remark that N0
v (J)= N2(J) and the following inclusion relation holds:

J ⊆ N2(J)= N0
v (J)⊆ N1

v (J)⊆ ·· · ⊆ Nm
v (J), m ≥ 1,

and similarly on the set F:

N(J)= N0
f (J)⊆ N1

f (J)⊆ ·· · ⊆ Nm
f (J), m ≥ 1.

Let S be a product of Polish spaces, i.e.: S=⊗
k∈ISk, where I is a finite index set.

Definition 4.1. Given two probability distribution µ,ν on S, the total variation distance (TV)

and the local total variation distance (LTV) are:

•
∥∥µ−ν∥∥ := sup

A∈σ(S)
|µ(A)−ν(A)|.

•
∥∥µ−ν∥∥

J := sup
A∈σ(

⊗
k∈JSk)

|µJ(A)−νJ(A)|, J ⊂ I.

Definition 4.2. Let µ be a probability distribution on S and let X ∼µ. The conditional distribu-

tion over the component i ∈ I is defined as:

µi
x(A) :=P

(
X i ∈ A|X I\i = xI\i

)
, x ∈S.
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Definition 4.3. Let µ be a probability distribution on XV with X ∼ µ and let P(x,dz) :=
p(x, z)ψ(dz) with x, z ∈XV be the transition kernel of the considered FHMM with Z|X ∼ P(X , ·),
then for v ∈V :

µv
x,z(A) :=P

(
X v ∈ A|XV\v = xV\v, Z = z

)
, x, z ∈XV .

Lemma 4.1. Fix any collection of observations {y1, . . . , yT } and consider a probability distribution

µ on XV . Given the optimal correction operator as in (2.5), the conditional distribution of Ctµ over

the component v ∈V is given by:

(Ctµ)v
x(A)=

∫
IA(xv)

∏
f ∈N(v) g f (xN( f ), yt)µv

x(dxv)∫ ∏
f ∈N(v) g f (xN( f ), yt)µv

x(dxv)
, x ∈XV .

Similarly, the one step forward conditional distribution over the component v ∈V is:

(Ctµ)v
x,z(A)=

∫
IA(xv)

∏
f ∈N(v) g f (xN( f ), yt)pv(xv, zv)µv

x(dxv)∫ ∏
f ∈N(v) g f (xN( f ), yt)pv(xv, zv)µv

x(dxv)
, x, z ∈XV .

Proof. The proof is a trivial consequence of the form of the correction operator as in (2.5) and

Definition 4.2. The procedure is the following:

(Ctµ)v
x(A)= (Ctµ)(A× xV\v)

(Ctµ)(X× xV\v)

=
∫
IA×xV\v (x̃v × x̃V\v)

∏
f ∈F\N(v) g f (x̃N( f ), yt)

∏
f ∈N(v) g f (x̃N( f ), yt)µ(dx̃)∫

IX×xV\v (x̃v × x̃V\v)
∏

f ∈F\N(v) g f (x̃N( f ), yt)
∏

f ∈N(v) g f (x̃N( f ), yt)µ(dx̃)

=
∏

f ∈F\N(v) g f (xN( f ), yt)∏
f ∈F\N(v) g f (xN( f ), yt)

∫
IA(x̃v)IxV\v (x̃V\v)

∏
f ∈N(v) g f (x̃N( f ), yt)µ(dx̃)∫

IX(x̃v)IxV\v (x̃V\v)
∏

f ∈N(v) g f (x̃N( f ), yt)µ(dx̃)

=
∫
IA(x̃v)IxV\v (x̃V\v)

∏
f ∈N(v) g f (x̃N( f ), yt)

µ(dx̃)∫
I
X×xV\v (x̃v×x̃V\v)µ(dx̃)∫

IX(x̃v)IxV\v (x̃V\v)
∏

f ∈N(v) g f (x̃N( f ), yt)
µ(dx̃)∫

I
X×xV\v (x̃v×x̃V\v)µ(dx̃)

=
∫
IA(x̃v)

∏
f ∈N(v) g f (x̃N( f ), yt)µv

x(dx̃v)∫ ∏
f ∈N(v) g f (x̃N( f ), yt)µv

x(dx̃v)
.

The form of (Ctµ)v
x,z(A) follow the same procedure with the addition of the kernel pv(xv, zv) at the

end, where the isolation of the component v is a consequence of the factorization of the transition

kernel.

�

Definition 4.4. Fix any collection of observations {y1, . . . , yT } and consider a probability distribu-

tion µ on XV . For K ∈K and m = {0, . . . ,n} define:

(C̃m,K
t µ)(A) :=

∫
IA(xK )

∏
f ∈Nm

f (K) g f (xN( f ), yt)µ(dx)∫ ∏
f ∈Nm

f (K) g f (xN( f ), yt)µ(dx)
,

and define:

C̃m
t µ := ⊗

K∈K

C̃m,K
t µ.(4.1)
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Given that the approximated correction operator is applied to probability distributions that

factorize over the partition K , the quantity of interest is µ=⊗
K∈K µK hence:

(C̃m,K
t µ)(A)=

∫
IA(xK )

∫ ∏
f ∈Nm

f (K) g f (xN( f )
K , yt)µV\K (dx̃)µK (dxK )∫ ∏

f ∈Nm
f (K) g f (xN( f )

K , yt)µV\K (dx̃)µK (dxK )
,

meaning that C̃m
t µ can be written as:

(C̃m
t µ)(A)=

∫
IA(x)

∏
K∈K

∫ ∏
f ∈Nm

f (K) g f (xN( f )
K , yt)µV\K (dx̃)µ(dx)∫ ∏

K∈K

∫ ∏
f ∈Nm

f (K) g f (xN( f )
K , yt)µV\K (dx̃)µ(dx)

,

where xK is a collection of auxiliary variables:

xv
K :=

xv if v ∈ K

x̃v if v ∉ K
with x̃ ∈XV\K and x ∈XV .

The above definition is used to distinguish the components that are integrated out (with a tilde)

from the ones that are not (without a tilde).

Lemma 4.2. Fix any collection of observations {y1, . . . , yT } and let µ be a probability distribution

on XV such that µ = ⊗
K ′∈K µK ′

. Given the new correction operator as in (4.1) the conditional

distribution of C̃m
t µ over the component v ∈ K with K ∈K is given by:

(C̃m
t µ)v

x(A)=
∫
IA(xv)

∫ ∏
f ∈Nm

f (K) g f (xN( f )
K , yt)µV\K (dx̃)µv

x(dxv)∫ ∏
f ∈Nm

f (K) g f (xN( f )
K , yt)µV\K (dx̃)µv

x(dxv)
, x ∈XV.

Similarly, the one step forward conditional distribution over the component v ∈ K with K ∈K is

given by:

(C̃m
t µ)v

x,z(A)=
∫
IA(xv)

∫ ∏
f ∈Nm

f (K) g f (xN( f )
K , yt)µV\K (dx̃)pv(xv, zv)µv

x(dxv)∫ ∏
f ∈Nm

f (K) g f (xN( f )
K , yt)µV\K (dx̃)pv(xv, zv)µv

x(dxv)
, x, z ∈XV.

Proof. The proof follows from Definition 4.2, Definition 4.4 and the form of the operator when µ

factorizes. The form of these conditional distributions can be obtained with the same procedure
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as in the proof of lemma 4.1. Consider v ∈ K :

(C̃m
t µ)v

x(A)= (C̃m
t µ)(A× xV\v)

(C̃m
t µ)(X× xV\v)

=
∫
IA×xV\v (x̂)

∏
K ′∈K

∫ ∏
f ∈Nm

f (K ′) g f (x̂N( f )
K ′ , yt)µV\K ′

(dx̃)µ(dx̂)∫
IX×xV\v (x̂)

∏
K ′∈K

∫ ∏
f ∈Nm

f (K ′) g f (x̂N( f )
K ′ , yt)µV\K ′(dx̃)µ(dx̂)

=
∫
IA×xV\v (x̂)

∫ ∏
f ∈Nm

f (K) g f (x̂N( f )
K , yt)µV\K (dx̃)µ(dx̂)∫

IX×xV\v (x̂)
∫ ∏

f ∈Nm
f (K) g f (x̂N( f )

K , yt)µV\K (dx̃)µ(dx̂)

=
∫
IA×xV\v (x̂)

∫ ∏
f ∈Nm

f (K) g f (x̂N( f )
K , yt)µV\K (dx̃) µ(dx̂)∫

I
X×xV\v (x̂v×x̂V\v)µ(dx̂)∫

IX×xV\v (x̂)
∫ ∏

f ∈Nm
f (K) g f (x̂N( f )

K , yt)µV\K (dx̃) µ(dx̂)∫
I
X×xV\v (x̂v×x̂V\v)µ(dx̂)

=
∫
IA(x)

∫ ∏
f ∈Nm

f (K) g f (xN( f )
K , yt)µV\K (dx̃)µv

x(dx)∫ ∏
f ∈Nm

f (K) g f (xN( f )
K , yt)µV\K (dx̃)µv

x(dx)
.

Moreover given that for v ∈ K and µ=⊗
K ′∈K µK ′

then µv
x = (µK )v

x then (C̃m
t µ)v

x(A)= (C̃m,K
t µ)v

x(A),

which can be easily checked by substituting µv
x with (µK )v

x in the previous computations. �

Lemma 4.3. Let µ,µ′ and ν,ν′ be probability distributions on S. Assume that there exists ε ∈ (0,1)

such that:

ν(A)≥ εµ(A) and ν′(A)≥ εµ′(A).

Then: ∥∥ν−ν′∥∥≤ 2(1−ε)+ε∥∥µ−µ′∥∥ .

Proof. The proof is available in lemma 4.1, pag.32 of Rebeschini and Van Handel [2015]. �

Lemma 4.4. Let µ,ν be probability distributions on S and Λ a bounded-strictly positive measur-

able function on the same space. Consider:

µΛ(A) :=
∫
IA(x)Λ(x)µ(dx)∫
Λ(x)µ(dx)

, νΛ(A) :=
∫
IA(x)Λ(x)ν(dx)∫
Λ(x)ν(dx)

.

Then: ∥∥µΛ−νΛ
∥∥≤ 2

supxΛ(x)
infxΛ(x)

∥∥µ−ν∥∥ .

Proof. The complete proof is available in lemma 4.2, pag.32 of Rebeschini and Van Handel [2015].

�

Theorem 4.1 (Dobrushin Comparison theorem). Let µ,ν be probability distributions on S. For

i, j ∈ I define the quantities:

(4.2) Ci, j = 1
2

sup
x,x̂∈S

xI\ j=x̂I\ j

∥∥∥µi
x −µi

x̂

∥∥∥ and b j = sup
x∈S

∥∥∥µ j
x −ν j

x

∥∥∥ .
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Assume that:

max
i∈I

∑
j∈I

Ci, j < 1 (Dobrushin condition),

then the matrix D :=∑
t≥0 Ct, where C0 is the identity matrix, converges and for an arbitrary J ⊆ I

it holds: ∥∥µ−ν∥∥
J ≤ ∑

i∈J

∑
j∈I

D i, jb j.

Proof. See for example theorem 8.20 of Georgii [2011]. �

Lemma 4.5. Let I be a finite index set with m(·, ·) a pseudometric on it. Let C be a nonnegative

matrix with rows and columns indexed by I. Assume that there exists λ ∈ (0,1) such that:

max
i∈I

∑
j∈I

em(i, j)Ci, j ≤λ.

Then the matrix D :=∑
t≥0 Ct satisfies:

max
i∈I

∑
j∈I

em(i, j)D i, j ≤ 1
1−λ .

Moreover: ∑
j∈J

D i, j ≤ e−m(i,J)

1−λ .

Proof. The proof is available in Rebeschini and Van Handel [2015] (lemma 4.3, pag.33). Remark

that a pseudometric m(·, ·) on I is a metric on I where it is allowed that m(i, j)= 0 even if i 6= j. �

4.2 Graph Filter

The proof of theorem 3.1 consists of three main steps:

• establish an LTV bound between filtering distributions with different initial conditions,

under a decay of correlation assumption for the initial distributions. This is the subject of

proposition 4.1 in subsection 4.2.1;

• control the approximation error between the Bayes update operator Ct and C̃m
t , under decay

of correlation assumptions, this is the subject of the propositions in subsection 4.2.2;

• prove that the required decay of correlation assumptions hold uniformly in time, this is the

subject of subsection 4.2.3.

These steps are then brought together to complete the proof of theorem 3.1 in subsection 4.2.4.
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4.2.1 Stability of the filter with respect to initial distributions

Definition 4.5. Given v,v′ ∈V and µ probability distribution on XV define the quantity:

Cµ

v,v′ := 1
2

sup
x,x̂∈XV :xV\v′=x̂V\v′

∥∥µv
x −µv

x̂
∥∥ .

Then for a fixed β> 0:

Corr(µ,β) :=max
v∈V

∑
v′∈V

eβd(v,v′)Cµ

v,v′ .

Definition 4.6. Given v,v′ ∈V and µ probability distribution on XV define the quantity:

C̃µ

v,v′ := 1
2

sup
z∈XV

sup
x,x̂∈XV :

xV\v′=x̂V\v′

∥∥∥µv
x,z −µv

x̂,z

∥∥∥.

Then for a fixed β> 0:

�Corr(µ,β) :=max
v∈V

∑
v′∈V

eβd(v,v′)Cµ

v,v′ .

Proposition 4.1. Fix any collection of observations {y1, . . . , yT } and any partition K of V . Suppose

that there exists (ε−,ε+) ∈ (0,1)2 and κ ∈ (0,1) such that:

ε− ≤ pv(xv, zv)≤ ε+ and κ≤ g f (xN( f ), yt)≤ 1
κ

,

for all x ∈XV , z ∈XV ,v ∈ V , f ∈ F, t ∈ {1, . . . ,T}. Let µ,ν two probability distributions on XV , and

assume there exists β> 0 such that:

�Corr(µ,β)+2eβ
(
1− ε−

ε+

)
+ e2βΥ(2)

(
1−κ2Υ̃

)
≤ 1

2
,

then for all t ∈ {0, . . . ,T},K ∈K and J ⊆ K:

∥∥FT . . .Ft+1µ−FT . . .Ft+1ν
∥∥

J ≤ 2e−β(T−t) ∑
v∈J

max
v′∈V

{
e−βd(v,v′) sup

x,z∈XV

∥∥∥µv′
x,z −νv′

x,z

∥∥∥}
.

Proof. Define the probability distributions:

ρ(A)∝
∫
IA(x0:T )

[
T∏

k=1
p(xk−1, xk)g(xk, yk)

]
T⊗

k=1
ψ(dxk)µ(dx0),

ρ̃(A)∝
∫
IA(x0:T )

[
T∏

k=1
p(xk−1, xk)g(xk, yk)

]
T⊗

k=1
ψ(dxk)ν(dx0).

It can be observed that: ∥∥ρ− ρ̃∥∥
(T,J) =

∥∥FT . . .F1µ−FT . . .F1ν
∥∥

J ,

and the proof proceeds by applying the Dobrushin theorem (theorem 4.1) to ρ, ρ̃ where the index

set is given by I =⋃T
t=0(t,V ) and the subset is (T, J).

59



CHAPTER 4. EXPLOITING LOCALITY IN FHMM- THEORETICAL PROOFS

The first step is to bound Ci, j for all the possible combination of i, j ∈ I, as in (4.2) of theorem

4.1, i.e.:

Ci, j = 1
2

sup
x,x̂∈XI :

xI\ j=x̂I\ j

∥∥∥ρ i
x −ρ i

x̂

∥∥∥ .

In the following passages consider x = (x0, . . . , xT ), where xt ∈XV .

• Consider i = (0,v) and v ∈V then:

ρ
(0,v)
x (A)=

∫
IA(x̃v

0)I{xV\v
0 ,x1:T }(x̃

V\v
0 , x̃1:T )

T∏
k=1

p(x̃k−1, x̃k)g(x̃k, yk)
T⊗

k=1
ψ(dx̃k)µ(dx̃0)

∫
IX(x̃v

0)I{xV\v
0 ,x1:T }(x̃

V\v
0 , x̃1:T )

T∏
k=1

p(x̃k−1, x̃k)g(x̃k, yk)
T⊗

k=1
ψ(dx̃k)µ(dx̃0)

=
g(x1, y1)

T∏
k=2

p(xk−1, xk)g(xk, yk)

g(x1, y1)
T∏

k=2
p(xk−1, xk)g(xk, yk)

∫
IA(x̃v

0)I{xV\v
0 ,x1}(x̃

V\v
0 , x̃1)p(x̃0, x̃1)µ(dx̃0)∫

IX(x̃v
0)I{xV\v

0 ,x1}(x̃
V\v
0 , x̃1)p(x̃0, x̃1)µ(dx̃0)

=
∫
IA(x̃v

0)pv(x̃v
0, xv

1)µv
x0

(dx̃v
0)∫

pv(x̃v
0, xv

1)µv
x0(dx̃v

0)
=µv

x0,x1
(A),

where the last passage follows from the factorization of the kernel and the definition of µv
x.

The next step is to distinguish the different cases in which ρ i
x can differ from ρ i

x̃, where

xI\ j = x̃I\ j.

– If j = (0,v′) and v′ ∈V then: Ci, j ≤ C̃µ

v,v′ .

– If j = (1,v′) and v′ ∈V then: Ci, j ≤


(
1− ε−

ε+

)
v′ = v

0 v′ 6= v
,

where the result follows from lemma 4.3, obtained by a majorization of the kernel

part.

– If j = (k,v′) with k > 1 and v′ ∈V then: Ci, j = 0,

because in ρ i
x there is no dependence on xt with t > 1.

• Consider i = (t,v) with 0< t < T and v ∈V define:

xN( f )\v
t := (x̃v

t , xN( f )\v
t ), x̃0:T\t := (x̃0:t−1, x̃t+1:T ) and x0:T\t := (x0:t−1, xt+1:T )
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then:

ρ
(t,v)
x (A)=

∫
IA(x̃v

t )I{xV\v
t ,x0:T\t}(x̃

V\v
t , x̃0:T\t)

T∏
k=1

p(x̃k−1, x̃k)g(x̃k, yk)
T⊗

k=1
ψ(dx̃k)µ(dx̃0)

∫
IX(x̃v

t )I{xV\v
t ,x0:T\t}(x̃

V\v
t , x̃0:T\t)

T∏
k=1

p(x̃k−1, x̃k)g(x̃k, yk)
T⊗

k=1
ψ(dx̃k)µ(dx̃0)

=

∏
k 6=t

g(xk, yk)
∏

k 6=t,t+1
p(xk−1, xk)∏

k 6=t
g(xk, yk)

∏
k 6=t,t+1

p(xk−1, xk)

∫
IA(x̃v

t )I{xV\v
t ,x0:T\t}(x̃

V\v
t , x̃0:T\t)p(x̃t−1, x̃t)p(x̃t, x̃t+1)g(x̃t, yt)

T⊗
k=1

ψ(dx̃k)µ(dx̃0)

∫
IX(x̃v

t )I{xV\v
t ,x0:T\t}(x̃

V\v
t , x̃0:T\t)p(x̃t−1, x̃t)p(x̃t, x̃t+1)g(x̃t, yt)

T⊗
k=1

ψ(dx̃k)µ(dx̃0)

=
∫
IA(x̃v

t )pv(xv
t−1, x̃v

t )pv(x̃v
t , xv

t+1)
∏

f ∈N(v) g f (xN( f )\v
t , yt)ψv(dx̃v

t )∫
pv(xv

t−1, x̃v
t )pv(x̃v

t , xv
t+1)

∏
f ∈N(v) g f (xN( f )\v

t , yt)ψv(dx̃v
t )

,

where the last passage follows from the factorization of the kernel and the factorial repre-

sentation of the observation density. The next stage is to distinguish the different cases in

which ρ i
x can differ from ρ i

x̃, where xI\ j = x̃I\ j.

– If j = (k,v′) with k ≤ t−2 and v′ ∈V then: Ci, j = 0.

– If j = (t−1,v′) and v′ ∈V then Ci, j ≤


(
1− ε−

ε+

)
v′ = v

0 v′ 6= v
,

where the result follows from lemma 4.3, obtained by a majorization of the kernel

part.

– If j = (t,v′) and v′ ∈V then Ci, j ≤


(
1−κ2card(N(v)∩N(v′))

)
v′ ∈ N2(v)\ v

0 otherwise
,

where the result follows from lemma 4.3, obtained by a majorization of the observation

density part. Recall that the only factors that contain v are the ones in N(v) so the

components that are connected to these factors are the ones in N2(v).

– If j = (t+1,v′) and v′ ∈V then Ci, j ≤


(
1− ε−

ε+

)
v′ = v

0 v′ 6= v
,

where the result follows from lemma 4.3, obtained by a majorization of the kernel

part.

– If j = (k,v′) with k ≥ t+2 and v′ ∈V then: Ci, j = 0.
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• Consider i = (T,v) and v ∈V then:

ρ
(T,v)
x (A)=

∫
IA(x̃v

T )I{xV\v
T ,x0:T−1}(x̃

V\v
T , x̃0:T−1)

T∏
k=1

p(x̃k−1, x̃k)g(x̃k, yk)
T⊗

k=1
ψ(dx̃k)µ(dx̃0)

∫
IX(x̃v

T )I{xV\v
T ,x0:T−1}(x̃

V\v
T , x̃0:T−1)

T∏
k=1

p(x̃k−1, x̃k)g(x̃k, yk)
T⊗

k=1
ψ(dx̃k)µ(dx̃0)

=

T−1∏
k=1

g(xk, yk)
T−1∏
k=0

p(xk−1, xk)

T−1∏
k=1

g(xk, yk)
T−1∏
k=0

p(xk−1, xk)

∫ ∫
IA(x̃v

T )I{xV\v
T ,x0:T−1}(x̃

V\v
T , x̃0:T−1)p(x̃T−1, x̃T )g(x̃T , yT )

T⊗
k=1

ψ(dx̃k)µ(dx̃0)

∫ ∫
IX(x̃v

T )I{xV\v
T ,x0:T−1}(x̃

V\v
T , x̃0:T−1)p(x̃T−1, x̃T )g(x̃T , yT )

T⊗
k=1

ψ(dx̃k)µ(dx̃0)

=
∫
IA(x̃v

T )p(xv
T−1, x̃v

T )
∏

f ∈N(v) g f (xN( f )\v
T , yT )ψv(dxv

T )∫
p(xv

T−1, x̃v
T )

∏
f ∈N(v) g f (xN( f )\v

T , yT )ψv(dx̃v
T )

.

– If j = (k,v′) with k ≤ T −2 and v′ ∈V then: Ci, j = 0.

– If j = (T −1,v′) and v′ ∈V then: Ci, j ≤


(
1− ε−

ε+

)
v′ = v

0 v′ 6= v
,

where the result follows from lemma 4.3, obtained by a majorization of the kernel

part.

– If j = (T,v′) and v′ ∈V then: Ci, j ≤


(
1−κ2card(N(v)∩N(v′))

)
v′ ∈ N2(v)\ v

0 otherwise
,

where the result follows from lemma 4.3, obtained by a majorization of the observation

density part.

Given the previous results, for any v ∈ K :

∑
j∈I

em(i, j)Ci, j ≤



∑
v′∈V

eβd(v,v′)C̃µ

v,v′ + eβ
(
1− ε−

ε+

)
i = (0,v)

2eβ
(
1− ε−

ε+

)
+ ∑

v′∈N2(v)
(1−κ2card(N(v)∩N(v′)))eβd(v,v′) i = (t,v)

eβ
(
1− ε−

ε+

)
+ ∑

v′∈N2(v)
(1−κ2card(N(v)∩N(v′)))eβd(v,v′) i = (T,v)

where m(i, j)=β|k−k′|+βd(v,v′) for i = (k,v) and j = (k′,v′) with k,k′ ∈ {0, . . . ,T} and v,v′ ∈V is

the pseudometric of interest on the index set I. But then by combining the above calculation with

the assumption:

max
i∈I

∑
j∈I

Ci, j ≤max
i∈I

∑
j∈I

em(i, j)Ci, j

≤ �Corr(µ,β)+2eβ
(
1− ε−

ε+

)
+

(
1−κ2Υ̃

)
max
v∈V

∑
v′∈N2(v)

eβd(v,v′)

= �Corr(µ,β)+2eβ
(
1− ε−

ε+

)
+ e2βΥ(2)

(
1−κ2Υ̃

)
≤ 1

2
.
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Given that
∑

j∈I Ci, j ≤∑
j∈I em(i, j)Ci, j then the Dobrushin theorem (theorem 4.1) can be applied,

meaning that: ∥∥FT . . .F1µ−FT . . .F1ν
∥∥

J = ∥∥ρ− ρ̃∥∥
(T,J) ≤

∑
v∈J

∑
j∈I

D(T,v), jb j.

The second step is to control the quantities b j, as in (4.2) of theorem 4.1:

b j = sup
x∈XI

∥∥∥ρ j
x − ρ̃ j

x

∥∥∥ .

Remark that the form of ρ j
x is already known from the study on Ci, j, hence ρ̃ j

x is the only thing

that has to be computed.

• If j = (0,v′) and v′ ∈V then:

ρ̃
j
x(A)=

∫
IA(xv′

0 )pv′
(xv′

0 , xv′
1 )νv′

x0
(dxv′

0 )∫
pv′(xv′

0 , xv′
1 )νv′

x0(dxv′
0 )

= νv
x0,x1

(A),

where the procedure is exactly the same as for ρ̃(0,v′)
x (A) with ν rather than µ, hence:

b j = sup
x0,x1∈XV

∥∥∥µv′
x0,x1

−νv′
x0,x1

∥∥∥ .

• If j = (k′,v′) with k′ ≥ 1 and v′ ∈V then:

ρ
j
x(A)= ρ̃ j

x(A),

because the difference is only on the initial distribution which disappear as consequence of

the Markov property, hence:

b j = 0.

Moreover, given that maxi∈I
∑
j∈I

em(i, j)Ci, j ≤ 1
2 then lemma 4.5 can be applied and so:

max
i∈I

∑
j∈J

em(i,J)D i, j ≤ 2.

By joining step one and step two it follows that:∥∥FT . . .F1µ−FT . . .F1ν
∥∥

J

≤ ∑
v∈J

∑
j∈I

D(T,v), jb j

≤ ∑
v∈J

∑
v′∈V

D(T,v),(0,v′)b(0,v′)

≤ ∑
v∈J

∑
v′∈V

eβ|T|+βd(v,v′)D(T,v),(0,v′)e−β|T|−βd(v,v′) sup
x0,x1∈XV

∥∥∥µv′
x0,x1

−νx0,x1

∥∥∥
≤ 2e−βT ∑

v∈J
max
v′∈V

{
e−βd(v,v′) sup

x0,x1∈XV

∥∥∥µv′
x0,x1

−νx0,x1

∥∥∥}
.
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Given that the above bound depends only on how many times the operator Ft is applied then:

∥∥FT . . .Ft+1µ−FT . . .Ft+1ν
∥∥

J ≤ 2e−β(T−t) ∑
v∈J

max
v′∈V

{
e−βd(v,v′) sup

x,z∈XV

∥∥∥µv′
x,z −νv′

x,z

∥∥∥}
.

�

4.2.2 Control on the approximation error

The next objective is to bound the approximation errors:

sup
x,z∈XV

∥∥(F̃m
t π̃t−1)v

x,z − (Ftπ̃t−1)v
x,z

∥∥ , t < T,

∥∥F̃m
T π̃t−1 −Ftπ̃t−1

∥∥
J , t = T,

or equivalently:

sup
x,z∈XV

∥∥(C̃m
t µ)v

x,z − (Ctµ)v
x,z

∥∥ , t < T,

∥∥C̃m
t µ−Ctµ

∥∥
J , t = T,

where µ=Pπ̃t−1.

Proposition 4.2. (case: t < T) Fix any collection of observations {y1, . . . , yT } and any partition K

of V . Suppose that there exist κ ∈ (0,1) such that:

κ≤ g f
(
xN( f ), yt

)
≤ 1
κ

,

for all x ∈XV , f ∈ F, t ∈ {1, . . . ,T} and pv(xv, zv) > 0 for all x, z ∈XV ,v ∈ V. Let µ be a probability

distribution on XV such that µ=⊗
K∈K µK and assume that there exists β> 0 such that:

2κ−2ΥCorr(µ,β)+2e2βΥ(2)
(
1−κ2Υ̃

)
≤ 1

2
.

Then for a fixed t ∈ {1, . . . ,T −1}, K ∈K , v ∈ K and m ∈ {0, . . . ,n}:

sup
x,z∈XV

∥∥(C̃m
t µ)v

x,z − (Ctµ)v
x,z

∥∥≤ 2
(
1−κa(K )

)
+4e−βm

(
1−κb(K ,m)

)
,

where

a(K ) := 2max
K∈K

max
v∈∂K

card(N(v)∩∂N(K)),

b(m,K ) := 2max
K∈K

max
v∉Nm−1

v (K)
card(N(v)).

Proof. Remark that if µ=⊗
K ′∈K µK ′

and v ∈ K with K ∈K then from lemma 4.2:

(C̃m
t µ)v

x,z(A)=
∫
IA(xv)

∫ ∏
f ∈Nm

f (K) g f (xN( f )
K , yt)µV\K (dx̃)pv(xv, zv)µv

x(dxv)∫ ∏
f ∈Nm

f (K) g f (xN( f )
K , yt)µV\K (dx̃)pv(xv, zv)µv

x(dxv)

= (C̃m,K
t µ)v

x,z(A),

where x, z ∈XV .
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Given v ∈ K with K ∈K , it must be noticed that two cases can be distinguished: v connected

with factors that are connected only with elements inside K (using the thesis’ notation v ∈ K̃) and

its complement (exists a factor connected with v that is connected with elements outside K).

Consider the case v ∈ K̃ , then N(v) are factors that depend only on components in K , so for

x, z ∈XV :

(C̃m,K
t µ)v

x,z(A)

=
∫
IA(xv)

∏
f ∈N(v) g f (xN( f ), yt)

∫ ∏
f ∈Nm

f (K)\N(v) g f (xN( f )
K , yt)µV\K (dx̃)pv(xv, zv)µv

x(dxv)∫ ∏
f ∈N(v) g f (xN( f ), yt)

∫ ∏
f ∈Nm

f (K)\N(v) g f (xN( f )
K , yt)µV\K (dx̃)pv(xv, zv)µv

x(dxv)

=
∫ ∏

f ∈Nm
f (K)\N(v) g f (xN( f )

K , yt)µV\K (dx̃)∫ ∏
f ∈Nm

f (K)\N(v) g f (xN( f )
K , yt)µV\K (dx̃)

∫
IA(xv)

∏
f ∈N(v) g f (xN( f ), yt)pv(xv, zv)µv

x(dxv)∫ ∏
f ∈N(v) g f (xN( f ), yt)pv(xv, zv)µv

x(dxv)

=
∫
IA(xv)

∏
f ∈N(v) g f (xN( f ), yt)pv(xv, zv)µv

x(dxv)∫ ∏
f ∈N(v) g f (xN( f ), yt)pv(xv, zv)µv

x(dxv)
= (Ctµ)v

x,z(A),

where the last passage follows because all the dependencies on v inside the previous integral are

removed. From the above procedure it has been proved that (C̃m,K
t µ)v

x,z(A)= (Ctµ)v
x,z(A) for v ∈ K̃

and so:

sup
x,z∈XV

∥∥(C̃m
t µ)v

x,z − (Ctµ)v
x,z

∥∥= 0,

which proves the statement for v ∈ K̃ .

Consider now the case v ∈ ∂K , using the triangular inequality:

∥∥(C̃m
t µ)v

x,z − (Ctµ)v
x,z

∥∥≤ ∥∥(C̃m
t µ)v

x,z − (C̃n
t µ)v

x,z
∥∥+∥∥(C̃n

t µ)v
x,z − (Ctµ)v

x,z
∥∥ ,

where n :=maxK∈K nK .

Firstly,
∥∥(C̃n

t µ)v
x,z − (Ctµ)v

x,z
∥∥ can be controlled by rewriting (C̃n

t µ)v
x,z as an integration of (Ctµ)v

x,z.

Indeed, given that Nn
f (K)= F, it is possible to rearrange (C̃n

t µ)v
x,z as follows:

(C̃n
t µ)v

x,z(A)=
∫
IA(xv)

∫ ∏
f ∈F g f (xN( f )

K , yt)µV\K (dx̃)pv(xv, zv)µv
x(dxv)∫ ∏

f ∈F g f (xN( f )
K , yt)µV\K (dx̃)pv(xv, zv)µv

x(dxv)

=
∫
IA(xv)g(xK , yt)pv(xv, zv)µv

x(dxv)µV\K (dx̃)∫
g(xK , yt)pv(xv, zv)µv

x(dxv)µV\K (dx̃)

=
∫ ∫

IA(xv)g(xK , yt)pv(xv, zv)µv
x(dxv)

∫
g(xK ,yt)pv(xv,zv)µv

x(dxv)∫
g(xK ,yt)pv(xv,zv)µv

x(dxv)µ
V\K (dx̃)∫

g(xK , yt)pv(xv, zv)µv
x(dxv)µV\K (dx̃)

=
∫ (Ctµ)v

xK ,z(A)
∫

g(xK , yt)pv(xv, zv)µv
x(dxv)∫

g(xK , yt)pv(xv, zv)µv
x(dxv)µV\K (dx̃)

µV\K (dx̃),
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where x, z ∈XV . But then:

|(C̃n
t µ)v

x,z(A)− (Ctµ)v
x,z(A)|

= |
∫ [(Ctµ)v

xK ,z(A)− (Ctµ)v
x,z(A)]

∫
g(xK , yt)pv(xv, zv)µv

x(dxv)∫
g(xK , yt)pv(xv, zv)µv

x(dxv)µV\K (dx̃)
µV\K (dx̃)|

≤ sup
x̂,x∈XV\v:

x̂K=xK

|(Ctµ)v
x̂,z(A)− (Ctµ)v

x,z(A)|.

But given that A is arbitrary it follows:∥∥(C̃n
t µ)v

x,z − (Ctµ)v
x,z

∥∥≤ sup
x̂,x∈XV\v:

x̂K=xK

∥∥∥(Ctµ)v
x̂,z(A)− (Ctµ)v

x,z(A)
∥∥∥ .

Note that the supremum is constrained on x̂K = xK meaning that the factors in N(v) calling

elements outside K can be removed:

(Ctµ)v
x̂,z(A)≥

∫
IA(x̂v)

∏
f ∈N(v)∩∂N(K)

g f (x̂N( f ), yt)
∏

f ∈N(v)\∂N(K)
g f (x̂N( f ), yt)pv(x̂v, zv)µv

x̂(dx̂v)∫ ∏
f ∈N(v)∩∂N(K)

g f (x̂N( f ), yt)
∏

f ∈N(v)\∂N(K)
g f (x̂N( f ), yt)pv(x̂v, zv)µv

x̂(dx̂v)

≥ κ2card(N(v)∩∂N(K))

∫
IA(x̂v)

∏
f ∈N(v)\∂N(K)

g f (x̂N( f ), yt)pv(x̂v, zv)µv
x̂(dx̂v)∫ ∏

f ∈N(v)\∂N(K)
g f (x̂N( f ), yt)pv(x̂v, zv)µv

x̂(dx̂v)
,

where the majorization follows from the assumption on the kernel density. The procedure can be

repeated for (Ctµ)v
x,z and the same inequality is obtained, because all the differences between x

and x̂ are outside K . Hence by applying lemma 4.3:∥∥(C̃n
t µ)v

x,z − (Ctµ)v
x,z

∥∥≤ 2
(
1−κ2card(N(v)∩∂N(K))

)
≤ 2

(
1−κ2max

K∈K
max
v∈∂K

card(N(v)∩∂N(K)))
≤ 2

(
1−κa(K )

)
.

Secondly, the control
∥∥(C̃m

t µ)v
x,z − (C̃n

t µ)v
x,z

∥∥ must be done, to do so, the Dobrushin theorem can

be used. Define the probability distributions:

ρ(A) :=
∫
IA(xV\K

K , xK )g(xK , yt)pv(xv, zv)µV\K (dxK
V\K )µK (dxK )∫

g(xK , yt)pv(xv, zv)µV\K (dxK V\K )µK (dxK )
,

ρ̃(A) :=
∫
IA(xV\K

K , xK )
∏

f ∈Nm
f (K) g(xN( f )

K , yt)pv(xv, zv)µV\K (dxK
V\K )µK (dxK )∫ ∏

f ∈Nm
f (K) g(xN( f )

K , yt)pv(xv, zv)µV\K (dxK V\K )µK (dxK )
,

where x, z ∈XV . It can be observed that by construction:∥∥ρ− ρ̃∥∥
(1,v) =

∥∥(C̃m
t µ)v

x,z − (C̃n
t µ)v

x,z
∥∥ ,

meaning that the Dobrushin theorem can be applied to ρ, ρ̃ where the index set is I = (0,V \ K)∪
(1,K) and the subset is (1,v). Remark that in this case the first number has not a meaning of

time, but they are just some indexes that distinguish the spaces.
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The first step is to bound Ci, j for all the possible combination of i, j ∈ I, as in (4.2) of theorem

4.1.

• Consider i = (0,b) and b ∈V \ K with b ∈ K ′ then:

ρ
(0,b)
xV\K ,xK (A)=

∫
IA(x̃b)I{xV\K\b,xK }(x̃

V\K\b, x̃K )g(x̃, yt)pv(x̃v, zv)µV\K (dx̃V\K )µK (dx̃K )∫
IA(x̃b)I{xV\K\b,xK }(x̃V\K\b, x̃K )g(x̃, yt)pv(x̃v, zv)µV\K (dx̃V\K )µK (dx̃K )

=
∏

f ∈F\N(b) g(xN(b), yt)∏
f ∈F\N(b) g(xN(b), yt)∫
IA(x̃b)I{xV\K\b,xK }(x̃

V\K\b, x̃K )
∏

f ∈N(b)
g(x̃N(b), yt)pv(x̃v, zv)µV\K (dx̃V\K )∫

IX(x̃b)I{xV\K\b,xK }(x̃V\K\b, x̃K )
∏

f ∈N(b)
g(x̃N(b), yt)pv(x̃v, zv)µV\K (dx̃V\K )

=
∫
IA(xb)

∏
f ∈N(b) g f (xN( f ), yt)µb

x(dxb)∫ ∏
f ∈N(b) g f (xN( f ), yt)µb

x(dxb)

=
∫
IA(xb)

∏
f ∈N(b) g f (xN( f ), yt)(µK ′

)b
x(dxb)∫ ∏

f ∈N(b) g f (xN( f ), yt)(µK ′)b
x(dxb)

.

– If j = (0,b′) and b′ ∈V \ K then there are two cases:

* if b′ ∈ N2(b) then by lemma 4.3:

Ci, j ≤
(
1−κ2card(N(b)∩N(b′))

)
+κ2card(N(b)∩N(b′))Cµ

b,b′ ;

* if b′ ∉ N2(b) then
∫
IA(x)Λ(x)ν(dx)∫
Λ(x)ν(dx) and by lemma 4.4:

Ci, j ≤ 2κ−2card(N(b))Cµ

b,b′ ,

where the bound follows from a multiple application of the kernel assumption

κcard(N(b)) ≤∏
f ∈N(b) g f (xN( f ), yt)≤ κ−card(N(b)).

– If j = (1,b′) and b′ ∈ K then from lemma 4.3:

Ci, j ≤
(1−κ2card(N(b)∩N(b′))) if b′ ∈ N2(b)

0 otherwise
,

given that K 6= K ′, because b ∈V \ K , then for sure the only difference is in the factors

because the conditional distribution K ′ depends only on elements inside K ′.

• Consider i = (1,b) and b ∈ K then:

ρ
(1,b)
x (A)=

∫
IA(x̃b)I{xV\K ,xK\b}(x̃

V\K\b, x̃K )g(x̃, yt)pv(x̃v, zv)µV\K (dx̃V\K )µK (dx̃K )∫
IA(x̃b)I{xV\K ,xK\b}(x̃V\K\b, x̃K )g(x̃, yt)pv(x̃v, zv)µV\K (dx̃V\K )µK (dx̃K )

=
∫
IA(xb)

∏
f ∈N(b) g f (xN( f ), yt)[pv(x̃v, zv)]Ib(v)µb

x(dxb)∫ ∏
f ∈N(b) g f (xN( f ), yt)[pv(x̃v, zv)]Ib(v)µb

x(dxb)

=
∫
IA(xb)

∏
f ∈N(b) g f (xN( f ), yt)[pv(x̃v, zv)]Ib(v)(µK )b

x(dxb)∫ ∏
f ∈N(b) g f (xN( f ), yt)[pv(x̃v, zv)]Ib(v)(µK )b

x(dxb)
,
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where the procedure is the same as in i = (0,b). Remark [pv(x̃v, zv)]Ib(v) can be not considered

because if b = v then that variable is integrated out.

– If j = (0,b′) and b′ ∈V \ K then from lemma 4.3:

Ci, j ≤
(1−κ2card(N(b)∩N(b′))) b′ ∈ N2(b)

0 otherwise
,

again the difference can be only on the factors because b′ is outside K .

– If j = (1,b′) and b′ ∈ K then there are two cases:

* if b′ ∈ N2(b) then by lemma 4.3:

Ci, j ≤
(
1−κ2card(N(b)∩N(b′))

)
+κ2card(N(b)∩N(b′))Cµ

b,b′ ;

* if b′ ∉ N2(b) then by lemma 4.4:

Ci, j ≤ 2κ−2card(N(b))Cµ

b,b′ .

But then:

max
i∈I

∑
j∈I

Ci, j ≤max
i∈I

∑
j∈I

em(i, j)Ci, j ≤max
b∈V

{ ∑
b′∈N2(b)

em((0,b),(0,b′))
[(

1−κ2card(N(b)∩N(b′))
)

+κ2card(N(b)∩N(b′))Cµ

b,b′

]
+ ∑

b′∉N2(b)
em((0,b),(0,b′))2κ−2card(N(b))Cµ

b,b′

+ ∑
b′∈N2(b)

em((0,b),(1,b′))
(
1−κ2card(N(b)∩N(b′))

)}

≤ 2e2βΥ(2)
(
1−κ2Υ̃

)
+max

b∈V

{ ∑
b′∈N2(b)

2κ−2card(N(b))eβd(b,b′)Cµ

b,b′

+ ∑
b′∉N2(b)

2κ−2card(N(b))eβd(b,b′)Cµ

b,b′

}
≤ 2e2βΥ(2)

(
1−κ2Υ̃

)
+2κ−2Υmax

b∈V

∑
b′∈V

eβd(b,b′)Cµ

b,b′

≤ 2κ−2ΥCorr(µ,β)+2e2βΥ(2)
(
1−κ2Υ̃

)
≤ 1

2
,

where m(i, j)=βd(v,v′) for i = (k,v) and j = (k,v′) with v,v′ ∈V and k,k′ ∈ {0,1} is the pseudomet-

ric of interest on the index set. Hence the Dobrushin theorem applies:∥∥(C̃m
t µ)v

x,z − (C̃n
t µ)v

x,z
∥∥= ∥∥ρ− ρ̃∥∥

(1,v) ≤
∑
j∈I

D(1,v), jb j.

The second step is to control the quantities b j, as in (4.2) of theorem 4.1. Recall that if

b′ ∈ Nm−1
v (K) then N(b′)⊂ Nm

f (K). Given the form of the conditional distribution of ρ̃ is the same

of the conditional distribution of ρ, with a restricted number of factors, then ρ̃ can be analysed at

first and then the resulting form can be extended to ρ.
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• If j = (0,b′) and b′ ∈V \ K , then:

ρ̃
(0,b′)
x (A)

=

∫
IA(x̃b′

)I{xV\K\b′ ,xK }(x̃
V\K\b′

, x̃K )
∏

f ∈Nm
f (K)

g f (x̃N( f ), yt)pv(x̃v, zv)µV\K (dx̃V\K )µK (dx̃K )∫
IA(x̃b′)I{xV\K\b′ ,xK }(x̃V\K\b′ , x̃K )

∏
f ∈Nm

f (K)
g f (x̃N( f ), yt)pv(x̃v, zv)µV\K (dx̃V\K )µK (dx̃K )

=
∏

f ∈Nm
f (K)\N(b′) g(x̃N(b′), yt)∏

f ∈Nm
f (K)\N(b′) g(x̃N(b′), yt)∫

IA(x̃b′
)I{xV\K\b′ ,xK }(x̃

V\K\b′
, x̃K )

∏
f ∈Nm

f (K)∩N(b′)
g(x̃N(b′), yt)pv(x̃v, zv)µV\K (dx̃V\K )∫

IX(x̃b′)I{xV\K\b′ ,xK }(x̃V\K\b′ , x̃K )
∏

f ∈Nm
f (K)∩N(b′)

g(x̃N(b′), yt)pv(x̃v, zv)µV\K (dx̃V\K )

=
∫
IA(x̃b′

)
∏

f ∈Nm
f (K)∩N(b′) g f (xN( f )

K , yt)µb′
x (dx̃b′

)∫ ∏
f ∈Nm

f (K)∩N(b′) g f (xN( f )
K , yt)µb′

x (dx̃b′)
.

Remark that N(Nm−1
v (K))= Nm

f (K) so if b′ ∈ Nm−1
v (K) then N(b′)⊆ Nm

f (K), hence by lemma

4.3:

b j ≤
2(1−κ2card(N(b′))) b′ ∉ Nm−1

v (K)

0 otherwise
,

where the result follows from the majorization of the observation density in ρ
(0,b′)
x in the

worst case scenario when Nm
f (K)∩N(b′)=;.

• If j = (1,b′) and b′ ∈ K then:

ρ̃
(1,b′)
x (A)

=

∫
IA(x̃b′

)I{xV\K ,xK\b′ }(x̃
V\K , x̃K\b′

)
∏

f ∈Nm
f (K)

g f (x̃N( f ), yt)pv(x̃v, zv)µV\K (dx̃V\K )µK (dx̃K )∫
IA(x̃b′)I{xV\K ,xK\b′ }(x̃V\K , x̃K\b′)

∏
f ∈Nm

f (K)
g f (x̃N( f ), yt)pv(x̃v, zv)µV\K (dx̃V\K )µK (dx̃K )

=
∫
IA(xb′

)
∏

f ∈Nm
f (K)∩N(b′) g f (xN( f ), yt)µb′

x (dxb′
)∫ ∏

f ∈Nm
f (K)∩N(b′) g f (xN( f ), yt)µb′

x (dxb′)
,

where the procedure is the same as in i = (0,b′). Given that b′ ∈ K then surely b′ ∈ Nm−1
v (K)

hence:

b j = 0.
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By putting all together and by applying lemma 4.5:∥∥(C̃m
t µ)v

x,z − (C̃n
t µ)v

x,z
∥∥≤ ∑

j∈I
D(1,v), jb j ≤ 2

(
1−κ2max

K∈K
{maxv∉Nm−1

v (K) card(N(v))})
∑

b′∉Nm−1
v (K)

eβd(v,b′)e−βd(v,b′)D(1,v),(1,b′)

≤ 4
(
1−κb(K ,m)

)
e−βd(v,V\Nm−1

v (K))

≤ 4e−βm
(
1−κb(K ,m)

)
,

where the last passage follows from v ∈ J ⊆ K and so:

d(v,V \ Nm−1
v (K))≥ d(K ,V \ Nm−1

v (K))≥ m,

indeed the minimum distance between v ∈ J and V \ Nm−1
v (K) is bigger than the minimum

distance between K and V \ Nm−1
v (K) given that J ⊆ K . At the same time all the element that

are far m−1 from K (the ones in Nm−1
v (K)) are removed meaning that the minimum distance is

surely m. It can be concluded that:∥∥(C̃m
t µ)v

x,z − (Ctµ)v
x,z

∥∥≤ 2(1−κa(K ))+4e−βm
(
1−κb(K ,m)

)
.

�

Proposition 4.3. Fix any collection of observations {y1, . . . , yT } and any partition K on the set V .

Suppose that there exist κ ∈ (0,1) such that:

κ≤ g f
(
xN( f ), yt

)
≤ 1
κ

,

for all x ∈XV , f ∈ F, t ∈ {1, . . . ,T}. Let µ be a probability distribution on XV such that µ=⊗
K∈K µK

and assume that there exists β> 0 such that:

2κ−2ΥCorr(µ,β)+2e2βΥ(2)
(
1−κ2Υ̃

)
≤ 1

2
.

Then for a fixed t ∈ {1, . . . ,T −1}, K ∈K , v ∈ K and m ∈ {0, . . . ,n}:

sup
x∈XV

∥∥∥(C̃m,K
t µ)v

x − (Ctµ)v
x

∥∥∥≤ 2
(
1−κa(K )

)
+4e−βm

(
1−κb(K ,m)

)
,

where

a(K ) := 2max
K∈K

max
v∈∂K

card(N(v)∩∂N(K)),

b(m,K ) := 2max
K∈K

max
v∉Nm−1

v (K)
card(N(v)).

Proof. The proof follows the same procedure of proposition 4.2, where the kernel term pv(xv, zv)

has been removed. �
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Consider now the case t = T, here marginal distributions over a set J are considered, this

differs from the previous analysis which focused on conditional distributions. This alternative

scenario simplifies the bound compared to the one in proposition 4.2, indeed the dependencies

from the components outside K , with K ∈K and J ⊆ K , are removed. Moreover, this case can be

decoupled from the FHMM scenario, indeed it is a general Bayes update. Note that proposition

4.4 is equivalent to prove proposition 3.1, given that T is completely arbitrary.

Proposition 4.4. (case: t = T) Fix any observation yT and any partition K on the set V . Suppose

there exists κ ∈ (0,1) such that:

κ≤ g f (xN( f ), yT )≤ 1
κ

,

for all x ∈XV , f ∈ F. Let µ be a probability distribution on XV and assume that there exists β> 0

such that:

2κ−2ΥCorr(µ,β)+ e2βΥ(2)
(
1−κ2Υ̃

)
≤ 1

2
.

Then for a fixed v ∈ K ∈K , J ⊆ K and m ∈ {0, . . . ,n}:∥∥CTµ− C̃m
T µ

∥∥
J ≤ 4

(
1−κb(m,K )

)
card(J)e−βm,

where b(m,K ) := 2maxK∈K maxv∉Nm−1
v (K) card(N(v)).

Proof. Given that J ⊆ K then:∥∥CTµ− C̃m
T µ

∥∥
J =

∥∥∥(CTµ)K − C̃m,K
T µ

∥∥∥
J

,

which is obvious because the comparison is on marginals on J that is equivalent to marginalize

first on K and then marginalize again on J. Remark that:

(C̃m,K
T µ)(A)=

∫
IA(xK )

∏
f ∈Nm

f (K) g f (xN( f ), yT )µ(dx)∫ ∏
f ∈Nm

f (K) g f (xN( f ), yT )µ(dx)
,

(CTµ)K (A)=
∫
IA(xK )g(x, yT )µ(dx)∫

g(x, yt)µ(dx)
.

Define the probability distributions:

ρ(A) :=
∫
IA(x)g(x, yT )µ(dx)∫

g(x, yt)µ(dx)
,

ρ̃(A) :=
∫
IA(x)

∏
f ∈Nm

f (K) g f (xN( f ), yT )µ(dx)∫ ∏
f ∈Nm

f (K) g f (xN( f ), yT )µ(dx)
.

It can be observed that by definition:∥∥ρ− ρ̃∥∥
J =

∥∥∥(CTµ)K − C̃m,K
T µ

∥∥∥
J

,

meaning that the Dobrushin theorem can be applied to ρ, ρ̃ where the index set is I =V .
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The first step is to bound Ci, j for all the possible combination of i, j ∈ I, as in (4.2) of theorem

4.1.

• Consider i = v and v ∈V then:

ρv
x(A)=

∫
IA(x̃v)IxV\v (x̃V\v)

∏
f ∈N(v) g f (x̃N( f ), yT )

∏
f ∈F\N(v) g f (x̃N( f ), yT )µ(dx̃)∫

IX(x̃v)IxV\v (x̃V\v)
∏

f ∈N(v) g f (x̃N( f ), yT )
∏

f ∈F\N(v) g f (x̃N( f ), yT )µ(dx̃)

=
∏

f ∈F\N(v) g f (xN( f ), yT )∏
f ∈F\N(v) g f (xN( f ), yT )

∫
IA(x̃v)IxV\v (x̃V\v)

∏
f ∈N(v) g f (x̃N( f ), yT )µ(dx̃)∫

IX(x̃v)IxV\v (x̃V\v)
∏

f ∈N(v) g f (x̃N( f ), yT )µ(dx̃)

=
∫
IA(x̃v)

∏
f ∈N(v) g f (x̃N( f ), yT )µv

x(dx̃v)∫ ∏
f ∈N(v) g f (x̃N( f ), yT )µv

x(dx̃v)
.

– If j = v′ and v′ ∈V then two cases can be distinguished:

* if v′ ∈ N2(b) then by lemma 4.3:

Ci, j ≤
(
1−κ2card(N(v)∩N(v′))

)
+κ2card(N(v)∩N(v′))Cµ

v,v′ .

* if v′ ∉ N2(v) then by lemma 4.4:

Ci, j ≤ 2κ−2card(N(v))Cµ

v,v′ .

But then by assumption:

max
i∈I

∑
j∈I

Ci, j ≤max
v∈V

{ ∑
v′∈N2(v)

em(v,v′)
[(

1−κ2card(N(v)∩N(v′))
)

+κ2card(N(v)∩N(v′))Cµ

v,v′

]
+ ∑

v′∉N2(v)
em(v,v′)2κ−2card(N(v))Cµ

v,v′

}

≤ 2κ−2ΥCorr(µ,β)+ e2βΥ(2)
(
1−κ2Υ̃

)
≤ 1

2

where m(i, j) = βd(v,v′) is the pseudometric of the index set. Hence the Dobrushin theorem

applies: ∥∥∥(CTµ)K − C̃m,K
T µ

∥∥∥
J
= ∥∥ρ− ρ̃∥∥

J ≤ ∑
i∈J

∑
j∈V

D i, jb j.

The second step is to control the quantities b j, as in (4.2) of theorem 4.1.
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• If j = v′ and v′ ∈V :

ρ̃v′
x (A)

=

∫
IA(x̃v′

)IxV\v′ (x̃V\v′
)

∏
f ∈Nm

f (K)∩N(v′)
g f (x̃N( f ), yT )

∏
f ∈Nm

f (K)\N(v′)
g f (x̃N( f ), yT )µ(dx̃)∫

IX(x̃v′)IxV\v′ (x̃V\v′)
∏

f ∈Nm
f (K)∩N(v′)

g f (x̃N( f ), yT )
∏

f ∈Nm
f (K)\N(v′)

g f (x̃N( f ), yT )µ(dx̃)

=
∏

f ∈Nm
f (K)\N(v′) g f (xN( f ), yT )∏

f ∈Nm
f (K)\N(v′) g f (xN( f ), yT )

·
∫
IA(x̃v′

)IxV\v′ (x̃V\v′
)
∏

f ∈Nm
f (K)∩N(v′) g f (x̃N( f ), yT )µ(dx̃)∫

IX(x̃v′)IxV\v′ (x̃V\v′)
∏

f ∈Nm
f (K)∩N(v′) g f (x̃N( f ), yT )µ(dx̃)

=
∫
IA(xv)

∏
f ∈Nm

f (K)∩N(v′) g f (xN( f ), yT )µv
x(dxv′

)∫ ∏
f ∈Nm

f (K)∩N(v′) g f (xN( f ), yT )µv
x(dxv′)

.

Remark that v′ ∈ Nm−1
v (K) implies N(v′)⊆ Nm

f (K), hence:

b j =
2(1−κ2card(N(v′))) v′ ∈ Nm−1

v (K)

0 otherwise
,

where the bound follows from an application of lemma 4.4.

By putting all together and by using lemma 4.5:∥∥∥(CTµ)K − C̃m,K
T µ

∥∥∥
J
≤ ∑

i∈J

∑
j∈V

D i, jb j ≤ 2
(
1−κ2maxK∈K maxv∉Nm−1

v (K) card(N(v))
) ∑

v∈J

∑
v′∉Nm−1

v (K)
Dv,v′

≤ 4
(
1−κ2maxK∈K maxv∉Nm−1

v (K) card(N(v))
) ∑

v∈J
e−βd(v,V\Nm−1

v (K))

≤ 4
(
1−κb(m,K )

)
card(J)e−βm,

where the last part follows from the same observation on the distance as in proposition 4.2.

�

Proof. of Proposition 3.1 An application of proposition 4.4, since the time step T is arbitrary.

�

4.2.3 Decay of correlation

The next step is to prove that the following decay of correlation conditions hold uniformly in t:

�Corr(F̃m
t π̃t−1,β)+2eβ

(
1− ε−

ε+

)
+ e2βΥ(2)

(
1−κ2Υ̃

)
≤ 1

2
,

2κ−2ΥCorr(Pπ̃t−1,β)+2e2βΥ(2)
(
1−κ2Υ̃

)
≤ 1

2
.
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Proposition 4.5. Suppose there exists (ε−,ε+) ∈ (0,1) such that:

ε− ≤ pv(xv, zv)≤ ε+,

for all x, z ∈ XV ,v ∈ V. Given a probability distribution µ on XV assume that there exists β > 0

such that: �Corr(µ,β)+ eβ
(
1− ε−

ε+

)
≤ 1

2
,

then:

Corr(Pµ,β)≤ 2
(
1− ε−

ε+

)
e−β.

Proof. Recall that:

(Pµ)v
z =

∫
IA(zv)p(x, z)µ(dx)ψv(dzv)∫

p(x, z)µ(dx)ψv(dzv)
,

where ψ is the counting measure. Recall also that:

Corr(Pµ,β)=max
v∈V

∑
v′∈V

eβd(v,v′)CPµ
v,v′ ,

where:

CPµ
v,v′ = 1

2
sup

z,z̃∈XV :
zV\v′=ẑV\v′

∥∥(Pµ)v
z − (Pµ)v

ẑ
∥∥ .

The strategy is hence to firstly control:

∥∥(Pµ)v
z − (Pµ)v

ẑ
∥∥ , with zV\v′ = ẑV\v′

and then sum over all v′ to find a bound for Corr(Pµ,β).

Define the probability distributions:

ρ(A) :=
∫
IA(x, zv)p(x, z)µ(dx)ψv(dzv)∫

p(x, z)µ(dx)ψv(dzv)
,

ρ̃(A) :=
∫
IA(x, ẑv)p(x, ẑ)µ(dx)ψv(dẑv)∫

p(x, ẑ)µ(dx)ψv(dẑv)
,

where z, ẑ ∈XV such that zV\v′ = ẑV\v′
. It can be observed that by definition:

∥∥ρ− ρ̃∥∥
(1,v) =

∥∥(Pµ)v
z − (Pµ)v

ẑ
∥∥ ,

meaning that the Dobrushin theorem can be applied to ρ, ρ̃ where the set of index is I = (0,V )∪
(1,v).
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The first step is to bound Ci, j for all the possible combinations of i, j ∈ I, as in (4.2) of theorem

4.1.

• Consider i = (0,b) and b ∈V then:

ρ
(0,b)
x,z (A)=

∫
IA(x̃b)IxV\b,z̃v (x̃V\b, zv)p(x̃, z̃)µ(dx̃)ψv(dz̃v)∫
IX(x̃b)IxV\b,z̃v (x̃V\b, zv)p(x̃, z̃)µ(dx̃)ψv(dz̃v)

=
∫
IA(x̃b)pb(x̃b, zb)µb

x(dx̃b)∫
pb(x̃b, zb)µb

x(dx̃b)
.

– If j = (0,b′) and b′ ∈V then:

Ci, j ≤ C̃µ

b,b′ .

– If j = (1,v) then by lemma 4.3:

Ci, j ≤


(
1− ε−

ε+

)
b = v

0 otherwise
,

where the kernel part is upper bounded.

• Consider i = (1,v) then:

ρ
(1,v)
x,z (A)=

∫
IA(z̃v)Ix(x̃)p(x̃, z̃)µ(dx̃)ψv(dz̃v)∫
IX(z̃v)Ix(x̃)p(x̃, z̃)µ(dx̃)ψv(dz̃v)

=
∫
IA(z̃v)pv(xv, z̃v)ψv(dz̃v)∫

pv(xv, z̃v)ψv(dz̃v)
.

– If j = (0,b′) and b′ ∈V then by lemma 4.3:

Ci, j ≤


(
1− ε−

ε+

)
b′ = v

0 otherwise
,

where the kernel part is upper bounded.

– If j = (1,v) then:

Ci, j = 0.

because the component v is integrated out.

But then:

max
i∈I

∑
j∈I

em(i, j)Ci, j ≤ �Corr(µ,β)+ eβ
(
1− ε−

ε+

)
≤ 1

2
,

where m(i, j)=β|k−k′|−βd(v,v′) for i = (k,v) and j = (k′,v′) with k,k′ ∈ {0,1} and v,v′ ∈V is the

pseudometric of interest. Hence the Dobrushin theorem applies:∥∥(Pµ)v
x − (Pµ)v

z
∥∥= ∥∥ρ− ρ̃∥∥

(0,v) ≤
∑
i∈J

∑
j∈V

D i, jb j.
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The second step is to control the quantities b j, as in (4.2) of theorem 4.1. Remark that the

conditional distributions of ρ̃ are the same of ρ with ẑ instead of z.

• Consider j = (0,b′) and b′ ∈V then:

ρ̃
(0,b′)
x,ẑ (A)=

∫
IA(x̃b′

)pb′
(x̃b′

, ẑb′
)µb′

x (dx̃b′
)∫

pb′(x̃b′ , ẑb′)µb′
x (dx̃b′)

.

Then by lemma 4.3:

b j ≤
2

(
1− ε−

ε+

)
b′ = v′

0 otherwise
,

because ẑV\v′ = zV\v′
.

• Consider j = (1,v) then:

ρ̃
(1,v)
x,ẑ (A)=

∫
IA(z̃v)pv(xv, z̃v)ψv(dz̃v)∫

pv(xv, z̃v)ψv(dz̃v)
.

Then:

b j = 0,

because the variable z is integrated out.

By putting all together:∥∥(Pµ)v
z − (Pµ)v

ẑ
∥∥≤ ∑

j∈V
D(1,v), jb j ≤ 2

(
1− ε−

ε+

)
D(1,v),(0,v′).

Hence:

Corr(Pµ,β)=max
v∈V

∑
v′∈V

ed(v,v′)CPµ
v,v′ ≤

(
1− ε−

ε+

)
e−βmax

v∈V

∑
v′∈V

eβd(v,v′)+βD(1,v),(0,v′)

≤ 2
(
1− ε−

ε+

)
e−β.

�

Proposition 4.6. Fix any collection of observations {y1, . . . , yT } and any partition K on the set V .

Suppose that there exists (ε−,ε+) ∈ (0,1) and κ ∈ (0,1) such that:

ε− ≤ pv(xv, zv)≤ ε+ and κ≤ g f (xN( f ), y)≤ 1
κ

,

for all x, z ∈XV ,v ∈ V , f ∈ F, t ∈ {1, . . . ,T}. Let µ be a probability distribution on XV and assume

that there exists β> 0 such that:

�Corr(µ,β)+2eβ
(
1− ε−

ε+

)
+ e2βΥ(2)

(
1−κ2Υ̃

)
≤ 1

2
.

Then for any t ∈ {1, . . . ,T} and m ∈ {0, . . . ,n}:

�Corr(F̃m
t µ,β)≤ 2e−β

(
1− ε−

ε+

)
+2e2βΥ(2)

(
1−κ2Υ̃

)
.
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Proof. Recall that for x, z ∈XV :

(F̃m
t µ)v

x,z(A)

=

∫
IA(x̃v)

∫ ∏
f ∈Nm

f (K)
g f (xN( f )

K , yt)
∏

w∈Nm
v (K)

pw(xw
0 , xw

K )µ(dx0)ψV\K (x̃)pv(x̃v, zv)ψv(dx̃v)

∫ ∏
f ∈Nm

f (K)
g f (xN( f )

K , yt)
∏

w∈Nm
v (K)

pw(xw
0 , xw

K )µ(dx0)ψV\K (x̃)pv(x̃v, zv)ψv(dx̃v)
,

and: �Corr(F̃m
t µ,β)=max

v∈V

∑
v′∈V

eβd(v,v′)C̃F̃m
t µ

v,v′ ,

where C̃F̃m
t µ

v,v′ = 1/2 sup
z∈XV

sup
x,x̂∈XV :xV\v′=x̂V\v′

∥∥∥(F̃m
t µ)v

x,z − (F̃m
t µ)v

x̂,z

∥∥∥. The idea is again to firstly control

each term of the �Corr and then sum on them.

Consider the probability distributions ρ and ρ̃:

ρ(A)

:=

∫
IA(x0, xV\K∪v)

∏
f ∈Nm

f (K)
g f (xN( f ), yt)

∏
w∈Nm

v (K)
pw(xw

0 , xw)pv(xv, zv)µ(dx0)ψV\K∪v(xV\K∪v)∫ ∏
f ∈Nm

f (K)
g f (xN( f ), yt)

∏
w∈Nm

v (K)
pw(xw

0 , xw)pv(xv, zv)µ(dx0)ψV\K∪v(xV\K∪v)
,

ρ̃(A)

:=

∫
IA(x0, x̂V\K∪v)

∏
f ∈Nm

f (K)
g f (x̂N( f ), yt)

∏
w∈Nm

v (K)
pw(xw

0 , x̂w)pv(x̂v, zv)µ(dx0)ψV\K∪v(x̂V\K∪v)∫ ∏
f ∈Nm

f (K)
g f (x̂N( f ), yt)

∏
w∈Nm

v (K)
pw(xw

0 , x̂w)pv(x̂v, zv)µ(dx0)ψV\K∪v(x̂V\K∪v)
,

where x, x̂ ∈XV , such that x̂V\v′ = xV\v′
. It can be observed that by definition:∥∥ρ− ρ̃∥∥

(1,v) =
∥∥∥(F̃m

t µ)v
x,z − (F̃m

t µ)v
x̂,z

∥∥∥ ,

meaning that the Dobrushin theorem can be applied to ρ, ρ̃ where the complete set of index

I = (0,V )∪ (1,V \ K ∪v).

The first step is to bound Ci, j for all the possible combinations of i, j ∈ I, as in (4.2) of theorem

4.1.

• Consider i = (0,b) and b ∈V then:

ρ
(0,b)
x0,x (A)=

∏
f ∈Nm

f (K) g f (xN( f ), yt)pv(xv, zv)∏
f ∈Nm

f (K) g f (xN( f ), yt)pv(xv, zv)

∫
IA(xb

0 )
∏

w∈Nm
v (K) pw(xw

0 , xw)µ(dx0)∫ ∏
w∈Nm

v (K) pw(xw
0 , xw)µ(dx0)

=
∫
IA(xb

0 )pb(xb
0 , xb)µb

x0
(dxb

0 )∫
pb(xb

0 , xb)µb
x0(dxb

0 )
=µb

x0,x(A).
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– If j = (0,b′) and b′ ∈V then: Ci, j ≤ C̃µ

b,b′ .

– If j = (1,b′) and b′ ∈V \ K ∪v then by lemma 4.3: Ci, j ≤


(
1− ε−

ε+

)
b′ = b

0 otherwise
, where

the kernel part is upper bounded.

• Consider i = (1,b) and b ∈V \ K ∪v then:

ρ
(1,b)
x0,x (A)

=
∏

f ∈Nm
f (K)\N(b) g f (xN( f ), yt)∏

f ∈Nm
f (K)\N(b) g f (xN( f ), yt)∫

IA(xb)
∏

f ∈Nm
f (K)∩N(b) g f (xN( f ), yt)pb(xb

0 , xb)[pv(xv, zv)]Ib(v)ψb(dxb)∫ ∏
f ∈Nm

f (K)∩N(b) g f (xN( f ), yt)pb(xb
0 , xb)[pv(xv, zv)]Ib(v)ψb(dxb)

=
∫
IA(xb)

∏
f ∈Nm

f (K)∩N(b) g f (xN( f ), yt)pb(xb
0 , xb)[pv(xv, zv)]Ib(v)ψb(dxb)∫ ∏

f ∈Nm
f (K)∩N(b) g f (xN( f ), yt)pb(xb

0 , xb)[pv(xv, zv)]Ib(v)ψb(dxb)

– If j = (0,b′) and b′ ∈V then by lemma 4.3: Ci, j ≤


(
1− ε−

ε+

)
b′ = b

0 otherwise
,

where the kernel part is upper bounded.

– If j = (1,b′) and b′ ∈V \ K ∪v then by lemma 4.3:

Ci, j ≤
(1−κ2card(N(b)∩N(b′))) b′ ∈ Nm

v (K)∩N2(b)

0 otherwise
,

where the observation density part is upper bounded.

But then:

max
i∈I

∑
j∈I

em(i, j)Ci, j ≤ �Corr(µ,β)+ eβ
(
1− ε−

ε+

)
+max

b∈V

∑
b′∈N2(b)

eβd(b,b′)
(
1−κ2card(N(b)∩N(b′))

)
≤ �Corr(µ,β)+2eβ

(
1− ε−

ε+

)
+Υ(2)e2β

(
1−κ2Υ̃

)
≤ 1

2
,

where m(i, j)=β|k−k′|+βd(v,v′) with i = (k,v) and j = (k′,v′) for k,k′ ∈ {0,1} and v,v′ ∈V is the

pseudometric of interest. Remark also that 2eβ > eβ. Then the Dobrushin theorem can be applied:∥∥∥(F̃m
t µ)v

x,z − (F̃m
t µ)v

x̂,z

∥∥∥= ∥∥ρ− ρ̃∥∥
(1,v) ≤

∑
j∈I

D(1,v), jb j.

The second step is to control b j, as in (4.2) of theorem 4.1.

• If j = (0,b′) and b′ ∈V then:

ρ̃
(0,b′)
x0,x̂ (A)=

∫
IA(xb′

0 )pb′
(xb′

0 , x̂b′
)µb′

x0
(dxb′

0 )∫
pb′(xb′

0 , x̂b′)µb′
x0(dxb′

0 )
=µb′

x0,x̂(A),
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where the computations are the same as in ρ
(0,b)
x0,x . Hence by lemma 4.3:

b j ≤
2

(
1− ε−

ε+

)
b′ = v′

0 otherwise
,

because x1 and x̃1 differ only on v′.

• If j = (1,b′) and b′ ∈V \ K ∪v then:

ρ̃
(1,b′)
x0,x̂ (A)=

∫
IA(x̂b′

)
∏

f ∈Nm
f (K)∩N(b′) g f (x̂N( f ), yt)pb′

(xb′
0 , x̂b′

)[pv(x̂v, zv)]Ib′ (v)ψb′
(dx̂b′

)∫ ∏
f ∈Nm

f (K)∩N(b′) g f (x̂N( f ), yt)pb′(xb′
0 , x̂b′)[pv(x̂v, zv)]Ib′ (v)ψb′(dx̂b′)

.

Hence by lemma 4.3:

b j ≤
2(1−κ2card(N(b′)∩N(v′))) b′ ∈ N2(v′)∩Nm

v (K)\ v

0 otherwise
,

where the case b′ = v is still zero because the only difference is on v′.

By joining step one and step two it follows:∥∥ρ− ρ̃∥∥
(1,v) ≤ D(1,v),(0,v′)b(0,v′) +

∑
b′∈N2(v′)

D(1,v),(1,b′)b(1,b′)

≤ 2
(
1− ε−

ε+

)
D(1,v),(0,v′) +2

(
1−κ2Υ̃

) ∑
b′∈N2(v′)

D(1,v),(1,b′).

Remark that if v′ ∈ V and b′ ∈ N2(v′) then obviously b′ ∈ V and v′ ∈ N2(b′). Moreover, by the

triangular inequality d(v,v′)≤ d(v,b′)+d(v′,b′). Then by summing over V and by applying lemma

4.5:

∑
v′∈V

eβd(v,v′)C̃F̃m
t µ

v,v′ ≤
(
1− ε−

ε+

) ∑
v′∈V

eβd(v,v′)D(1,v),(0,v′) +
(
1−κ2Υ̃

) ∑
v′∈V

eβd(v,v′) ∑
b′∈N2(v′)

D(1,v),(1,b′)

≤
(
1− ε−

ε+

) ∑
v′∈V

eβd(v,v′)D(1,v),(0,v′)

+
(
1−κ2Υ̃

) ∑
v′∈V

∑
b′∈N2(v′)

eβd(v,b′)+d(b′,v′)D(1,v),(1,b′)

≤ 2
(
1− ε−

ε+

)
e−β+

(
1−κ2Υ̃

)
e2β ∑

b′∈V

∑
v′∈N2(b′)

eβd(v,b′)D(1,v),(1,b′)

≤ 2
(
1− ε−

ε+

)
e−β+2Υ(2)

(
1−κ2Υ̃

)
e2β.

Given that the bound does not depend on v the thesis follows from the definition of �Corr(F̃m
t µ,β).

�
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Corollary 4.1. Fix any collection of observations {y1, . . . , yT } and any partition K on the set

V . There exists a region R0 ⊆ (0,1)3 depending only on Υ̃, Υ and Υ(2), such that if, for given

(ε−,ε+,κ) ∈R0,

ε− ≤ pv(xv, zv)≤ ε+ and κ≤ g f (xN( f ), yt)≤ 1
κ

,

for all x, z ∈XV , f ∈ F,v ∈V , t ∈ {1, . . . ,T}, then for β> 0 small enough depending only on Υ̃,Υ, Υ(2),

ε−,ε+, κ, for any λ0 satisfying the decay of correlation property:

(4.3) �Corr(λ0,β)≤ 2e−β
(
1− ε−

ε+

)
+2e2βΥ(2)

(
1−κ2Υ̃

)
and for any t ∈ {1, . . . ,T} and m ∈ {0, . . . ,n}:

(4.4) �Corr(F̃m
t π̃t−1,β)+2eβ

(
1− ε−

ε+

)
+ e2βΥ(2)

(
1−κ2Υ̃

)
≤ 1

2

and

(4.5) 2κ−2ΥCorr(Pπ̃t−1,β)+2e2βΥ(2)
(
1−κ2Υ̃

)
≤ 1

2
,

where π̃t−1 is the approximated filtering distribution obtained through (3.12).

Proof. The proof is inductive in t. To initialize the induction, let t = 1. The aim is to identify

ranges of values for β,ε−,ε+ and κ such that:

(4.6) �Corr(F̃m
1 λ0,β)+2eβ

(
1− ε−

ε+

)
+ e2βΥ(2)

(
1−κ2Υ̃

)
≤ 1

2

and

(4.7) 2κ−2ΥCorr(Pλ0,β)+ e2βΥ(2)
(
1−κ2Υ̃

)
≤ 1

2
.

Start by analysing (4.6). Note that there is a bound for �Corr(λ0,β) given by (4.3). So for any

β> 0, (ε−,ε+) ∈ (0,1)2 and κ ∈ (0,1) there is the upper bound:

�Corr(λ0,β)+2eβ
(
1− ε−

ε+

)
+ e2βΥ(2)

(
1−κ2Υ̃

)
≤ 2e−β

(
1− ε−

ε+

)
+2e2βΥ(2)

(
1−κ2Υ̃

)
+2eβ

(
1− ε−

ε+

)
+ e2βΥ(2)

(
1−κ2Υ̃

)
≤ 2

(
1− ε−

ε+

)
+

[
3Υ(2)

(
1−κ2Υ̃

)
+2

(
1− ε−

ε+

)]
e2β,

In order to apply proposition 4.6 and obtain (4.6), the next step is to derive constraints on β,

ε−,ε+ and κ such that:

(4.8) 2
(
1− ε−

ε+

)
+

[
3Υ(2)(1−κ2Υ̃)+2

(
1− ε−

ε+

)]
e2β ≤ 1

2
.
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This holds for β such that:

β≤ 1
2

log

 1−4
(
1− ε−

ε+

)
6Υ(2)(1−κ2Υ̃)+4

(
1− ε−

ε+

)
=β1

0.

and to guarantee β> 0 when (ε−,ε+,κ) ∈ (0,1)3, i.e. the logarithm being positive, further impose:

1−4
(
1− ε−

ε+

)
> 6Υ(2)

(
1−κ2Υ̃

)
+4

(
1− ε−

ε+

)
.

Informed by these considerations define the region:

R1
0 := {(ε−,ε+,κ) ∈ (0,1)3 : 8

(
1− ε−

ε+

)
+6Υ(2)(1−κ2Υ̃)< 1}.

Hence by choosing (ε−,ε+,κ) ∈R1
0 and β< β1

0, the inequality (4.8) holds as required and so,

noting π̃0 =λ0, proposition 4.6 can be applied to give:

�Corr(F̃m
1 π̃0,β)+2eβ

(
1− ε−

ε+

)
+ e2βΥ(2)

(
1−κ2Υ̃

)
≤ 2e−β

(
1− ε−

ε+

)
+2e2βΥ(2)

(
1−κ2Υ̃

)
+2eβ

(
1− ε−

ε+

)
+ e2βΥ(2)

(
1−κ2Υ̃

)
≤ 2

(
1− ε−

ε+

)
+

[
3Υ(2)

(
1−κ2Υ̃

)
+2

(
1− ε−

ε+

)]
e2β,

which has been already proved to be less than 1/2 for β≤β1
0 and (ε−,ε+,κ) ∈R1

0.

Turning to (4.7), first note the following upper bound:

�Corr(λ0,β)+ eβ
(
1− ε−

ε+

)
≤ 2e−β

(
1− ε−

ε+

)
+2e2βΥ(2)

(
1−κ2Υ̃

)
+ eβ

(
1− ε−

ε+

)
,

and with the previous choice of β,ε−,ε+ and κ it can be noticed that:

�Corr(δx,β)+ eβ
(
1− ε−

ε+

)
≤ 2e−β

(
1− ε−

ε+

)
+2e2βΥ(2)

(
1−κ2Υ̃

)
+ eβ

(
1− ε−

ε+

)
≤ 2

(
1− ε−

ε+

)
+

[
3Υ(2)

(
1−κ2Υ̃

)
+2

(
1− ε−

ε+

)]
e2β ≤ 1

2
.

Hence the assumption of proposition 4.5 holds without any additional restrictions, meaning that:

2κ−2ΥCorr(Pπ̃0,β)≤ 4κ−2Υe−β
(
1− ε−

ε+

)
.

The next step is to identify constraints on β, ε−,ε+ and κ in order to guarantee the second of the

following two inequalities:

2κ−2ΥCorr(Pπ̃0,β)+2e2βΥ(2)
(
1−κ2Υ̃

)
≤ 4κ−2Υe−β

(
1− ε−

ε+

)
+2e2βΥ(2)

(
1−κ2Υ̃

)
≤ 1

2
.
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To do so, impose:

β≤ 1
2

log

 κ2Υ−8
(
1− ε−

ε+

)
4Υ(2)

(
1−κ2Υ̃

)
κ2Υ

=β2
0,

and again for positivity of the logarithm:

κ2Υ−8
(
1− ε−

ε+

)
> 4Υ(2)

(
1−κ2Υ̃

)
κ2Υ.

This leads to define:

R2
0 :=

{
(ε−,ε+,κ) ∈ (0,1)3 : κ2Υ−4Υ(2)

(
1−κ2Υ̃

)
κ2Υ > 8

(
1− ε−

ε+

)}
,

and hence by choosing β≤β2
0 and (ε−,ε+,κ) ∈R2

0:

2κ−2ΥCorr(Pπ̃0,β)+2e2βΥ(2)
(
1−κ2Υ̃

)
≤ 1

2
.

It has been proved that with:

(4.9) β0 =min{β1
0,β2

0} and (ε−,ε+,κ) ∈R0 :=R1
0 ∩R2

0,

both (4.4) and (4.5) hold for t = 1.

Suppose now that (4.4) holds for t. Then since F̃m
t+1π̃t = π̃t+1, proposition 4.6 can be applied for

t+1 and so:

�Corr(F̃m
t+1π̃t,β)+2eβ

(
1− ε−

ε+

)
+ e2βΥ(2)

(
1−κ2Υ̃

)
≤

2
(
1− ε−

ε+

)
+

[
3Υ(2)

(
1−κ2Υ̃

)
+2

(
1− ε−

ε+

)]
e2β,

which has been already proved to be less than 1/2 for β≤β0 and (ε−,ε+,κ) ∈R0 – see (4.8).

Given that (4.4) holds for t then:

�Corr(π̃t,β)+ eβ
(
1− ε−

ε+

)
≤ 1

2
,

proposition 4.5 applies and so for the previous choices of β,ε−,ε+,κ:

2e2βΥ(2)
(
1−κ2Υ̃

)
+2κ−2ΥCorr(Pπ̃t,β)≤ 2e2βΥ(2)

(
1−κ2Υ̃

)
+4κ−2Υe−β

(
1− ε−

ε+

)
≤ 1

2
,

which completes the treatment of (4.5).

Hence the induction is complete and for β≤β0, (ε−,ε+,κ) ∈R0 both (4.4) and (4.5) hold for all t.

�
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4.2.4 Proof of theorem 3.1

Proof. For notational convenience the proof is stated for πT − π̃T , but since T is arbitrary this is

also not a restriction.

The quantity πT − π̃T can be expressed as a telescopic sum, indeed:

πT − π̃T =FT . . .F1δx − F̃m
T . . . F̃m

1 δx =
T∑

t=1
(FT . . .Ft+1Ftπ̃t−1 −FT . . .Ft+1F̃

m
t π̃t−1),

hence given J ⊆ K ∈K , by the triangular inequality:

‖πT − π̃T‖J ≤
T−1∑
t=1

∥∥FT . . .Ft+1Ftπ̃t−1 −FT . . .Ft+1F̃
m
t π̃t−1

∥∥
J +∥∥FT π̃T−1 − F̃m

T π̃T−1
∥∥

J .

If ε−,ε+,κ and β are chosen according to corollary 4.1 then proposition 4.1 can be applied for

t ∈ {1, . . .T −1}:

‖πT − π̃T‖J ≤
T−1∑
t=1

2e−β(T−t) ∑
v∈J

max
v′∈V

{
e−βd(v,v′) sup

x∈XV ,zv∈X

∥∥∥(Ftπ̃t−1)v′
x0,zv − (F̃m

t π̃t−1)v′
x0,zv

∥∥∥}
+∥∥FT π̃T−1 − F̃m

T π̃T−1
∥∥

J .

But given that also proposition 4.2 and proposition 4.4 can be applied then by considering v′ ∈ K ′:

sup
x1∈XV ,zv′∈X

∥∥∥(Ftπ̃t−1)v′
x1,z − (F̃m

t π̃t−1)v′
x1,z

∥∥∥≤ 2
(
1−κa(K )

)
+4e−βm

(
1−κb(K ,m)

)
,

and

∥∥FT π̃T−1 − F̃m
T π̃T−1

∥∥
J ≤ 4e−βm

(
1−κb(m,K )

)
card(J).

Hence putting everything together:

‖πT − π̃T‖J

≤
[
2

(
1−κa(K )

)
+4e−βm

(
1−κb(K ,m)

)]
·

T−1∑
t=1

2e−β(T−t) ∑
v∈J

1+4e−βm
(
1−κb(m,K )

)
card(J)

≤
[
2

(
1−κa(K )

)
+4e−βm

(
1−κb(K ,m)

)] 2
(eβ−1)

card(J)

+4e−βm
(
1−κb(m,K )

)
card(J)

=α1(β)
(
1−κa(K )

)
card(J)+γ1(β)

(
1−κb(K ,m)

)
card(J)e−βm.(4.10)

�
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4.3 Graph Smoother

As for the filtering distribution, the proof of theorem 3.2 follows by breaking down the problem.

Consider the difference between the optimal smoothing and the approximate one:

Rπ̃t π̃t+1|T −Rπtπt+1|T =Rπ̃t . . .Rπ̃T−1 π̃T −Rπ̃t . . .Rπ̃T−1πT

+
T−t−1∑

s=0
Rπ̃t . . .Rπ̃t+s−1Rπ̃t+sπt+s+1|T −Rπ̃t . . .Rπ̃t+s−1Rπt+sπt+s+1|T ,

hence the overall proof can be split in three steps:

1. control the part outside the sum: approximate smoothing stability (section 4.3.1);

2. control the part inside the sum: approximate smoothing stability and smoothing error

control (section 4.3.2).

Remark that for the proof of theorem 3.2 corollary 4.1 is needed, so condition 4.3 must hold.

The following definition is needed.

Definition 4.7. Let µ,ν be probability distributions on XV , let Z ∼µ and X |Z ∼←−
P ν(Z, ·), where

←−
P ν(z, ·) := p(x, z)ν(dx)/

∫
p(x, z)ν(dx). Then define:

(
ν←−µ )v

z,x(A) :=P(Zv ∈ A|ZV\v = z, X = x).

4.3.1 Approximate smoothing stability

It must be proved that an application of the approximate smoothing operator to π̃T is not too

different from the same applied on πT .

Proposition 4.7. Fix any collection of observations {y1, . . . , yT } and any partition K on the set V .

There exists a region R0 ⊆ (0,1)3, as in corollary 4.1, depending only on Υ̃,Υ and Υ(2), such that if,

for given (ε−,ε+,κ) ∈R0,

ε− ≤ pv(xv, zv)≤ ε+ and κ≤ g f (xN( f ), yt)≤ 1
κ

,

for all x, z ∈XV , f ∈ F,v ∈V , t ∈ {1, . . . ,T}, then for β> 0 small enough depending only on Υ̃,Υ, Υ(2),

ε−,ε+, κ, for any t ∈ {0, . . . ,T −1},K ∈K and J ⊆ K and m ∈ {0, . . . ,n}:∥∥Rπ̃t . . .Rπ̃T−1 π̃T −Rπ̃t . . .Rπ̃T−1πT
∥∥

J

≤ 2e−β(T−t) ∑
v∈J

max
v′∈V

{
e−βd(v,v′) sup

xT−1,xT∈XV

∥∥∥∥∥(
π̃T−1←−
π̃T )v′

xT ,xT−1
− (

π̃T−1←−πT )v′
xT ,xT−1

∥∥∥∥∥
}

.

Proof. Denote with
←−̃
p t(·, ·) the reverse kernel density with reference distribution the approxi-

mated filtering distribution, i.e.:

←−̃
p t(z, x) := p(x, z)∫

p(x̂, z)π̃t(dx̂)
.
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Then:

Rπ̃t . . .Rπ̃T−1 π̃T (A)=
∫
IA(xt)

←−̃
p t(xt+1, xt)π̃t(dxt) . . .

←−̃
p T−1(xT , xT−1)π̃T−1(dxT−1)π̃T (dxT ),

Rπ̃t . . .Rπ̃T−1πT (A)=
∫
IA(xt)

←−̃
p t(xt+1, xt)π̃t(dxt) . . .

←−̃
p T−1(xT , xT−1)π̃T−1(dxT−1)πT (dxT ).

Consider the following probability distributions:

ρ(A) :=
∫
IA(xt, . . . , xT )

←−̃
p t(xt+1, xt)π̃t(dxt) . . .

←−̃
p T−1(xT , xT−1)π̃T−1(dxT−1)πT (dxT ),

ρ̃(A) :=
∫
IA(xt, . . . , xT )

←−̃
p t(xt+1, xt)π̃t(dxt) . . .

←−̃
p T−1(xT , xT−1)π̃T−1(dxT−1)π̃T (dxT ),

the quantity of interest can be reformulated in terms of LTV on ρ, ρ̃:∥∥Rπ̃t . . .Rπ̃T−1 π̃T −Rπ̃t . . .Rπ̃T−1πT
∥∥

J = ∥∥ρ− ρ̃∥∥
(t,J) .

So, it is enough to find a bound for
∥∥ρ− ρ̃∥∥

(t,J) to guarantee the proof of the statement. The

Dobrushin theorem can be used on the distributions ρ, ρ̃ where the index set is I =⋃T
k=t(k,V ) and

the subset is (t, J).

The first step is to bound Ci, j for all the possible combination of i, j ∈ I, as in (4.2) of theorem 4.1.

The notation x = (xt, . . . , xT ) is used, where xk ∈XV for k = t, . . . ,T and x\ xv
k := (xt, . . . , xV\v

k , . . . , xT )

(and the same with a tilde).

• Consider i = (t,v) and v ∈V then:

ρ̃
(t,v)
x (A)

=
∫
IA(x̃v

t )Ix\xv
t
(x̃ \ x̃v

t )
←−̃
p t(x̃t+1, x̃t)π̃t(dx̃t) . . .

←−̃
p T−1(x̃T , x̃T−1)π̃T−1(dx̃T−1)π̃T (dx̃T )∫

Ix\xv
t
(x̃ \ x̃v

t )
←−̃
p t(x̃t+1, x̃t)π̃t(dx̃t) . . .

←−̃
p T−1(x̃T , x̃T−1)π̃T−1(dx̃T−1)π̃T (dx̃T )

=
∫
IA(xv

t )
←−̃
p t(xt+1, xt)(π̃t)v

xt
(dxv

t )∫ ←−̃
p t(xt+1, xt)(π̃t)v

xt (dxv
t )

=
∫
IA(xv

t )pv(xv
t , xv

t+1)(π̃t)v
xt

(dxv
t )∫

pv(xv
t , xv

t+1)(π̃t)v
xt (dxv

t )
,

where the last passage follow from the independence of the numerator of the reverse kernel

from xt. Now the different cases in which ρ i
x can differ from ρ i

x̃, where xI\ j = x̃I\ j, must be

distinguished.

– If j = (t,v′) and v′ ∈V then: Ci, j ≤ C̃π̃t
v,v′ .

– If j = (t+1,v′) and v′ ∈V then: Ci, j ≤


(
1− ε−

ε+

)
v′ = v

0 v′ 6= v
,

where the result follows from lemma 4.3 is obtained by a majorization of the kernel

part.

– If j = (k,v′) with k > t+1 and v′ ∈V then: Ci, j = 0,

because in ρ i
x there is no dependence on xk with k > t+1.
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• Consider i = (k,v) with t+1< k < T and v ∈ K with K ∈K then:

ρ̃
(k,v)
x (A)

=
∫
IA(x̃v

k)Ix\xv
k
(x̃ \ x̃v

k)
←−̃
p t(x̃t+1, x̃t)π̃t(dx̃t) . . .

←−̃
p T−1(x̃T , x̃T−1)π̃T−1(dx̃T−1)π̃T (dx̃T )∫

Ix\xv
k
(x̃ \ x̃v

k)
←−̃
p t(x̃t+1, x̃t)π̃t(dx̃t) . . .

←−̃
p T−1(x̃T , x̃T−1)π̃T−1(dx̃T−1)π̃T (dx̃T )

=
∫
IA(xv

k)
←−̃
p k−1(xk, xk−1)

←−̃
p k(xk+1, xk)(π̃k)v

xk
(dxk)∫ ←−̃

p k−1(xk, xk−1)
←−̃
p k(xk+1, xk)(π̃k)v

xk (dxk)

=
∫
IA(xv

k)
←−̃
p k−1(xk, xk−1)pv(xv

k, xv
k+1)(π̃k)v

xk
(dxk)∫ ←−̃

p k−1(xk, xk−1)pv(xv
k, xv

k+1)(π̃k)v
xk (dxk)

,

where the last passage follows from the definition of the denominator of
←−̃
p k(xk+1, xk) that

is independent from xv
k given that xk is integrated out. At this point the computations on

the numerator are carried out and similar calculations follow on the denominator when

A =X. Firstly the definition of (π̃k)v
xk

can be expanded:

∫
IA(xv)

←−̃
p k−1(x, xk−1)pv(xv, xv

k+1)∏
f ∈Nm

f (K)
g f (xN( f )

K , yt)
∫ ∏

w∈Nm
v (K)

pw(xw
0 , xw

K )π̃k−1(dx0)ψV\K (x̃)

∫ ∏
f ∈Nm

f (K)
g f (xN( f )

K , yt)
∫ ∏

w∈Nm
v (K)

pw(xw
0 , xw

K )π̃k−1(dx0)ψV\K (x̃)ψv(dxv)
ψv(dxv)

=
∫
IA(xv)

∏
w∈V pw(xw

k−1, xw)∏
K ′∈K

∫ ∏
w∈K ′ pw(xw

k−1, xw)π̃K ′
k−1(dxK ′

k−1)
pv(xv, xv

k+1)

∏
f ∈Nm

f (K)
g f (xN( f )

K , yt)
∫ ∏

w∈Nm
v (K)

pw(xw
0 , xw

K )π̃k−1(dx0)ψV\K (x̃)

∫ ∏
f ∈Nm

f (K)
g f (xN( f )

K , yt)
∫ ∏

w∈Nm
v (K)

pw(xw
0 , xw

K )π̃k−1(dx0)ψV\K (x̃)ψv(dxv)
ψv(dxv)

=
∫
IA(xv)

pv(xv
k−1, xv)∫ ∏

w∈K pw(xw
k−1, xw)π̃K

k−1(dxK
k−1)

pv(xv, xv
k+1)

∏
f ∈Nm

f (K)
g f (xN( f )

K , yt)
∫ ∏

w∈Nm
v (K)

pw(xw
0 , xw

K )π̃k−1(dx0)ψV\K (x̃)

∫ ∏
f ∈Nm

f (K)
g f (xN( f )

K , yt)
∫ ∏

w∈Nm
v (K)

pw(xw
0 , xw

K )π̃k−1(dx0)ψV\K (x̃)ψv(dxv)
ψv(dxv)

=
∫
IA(xv)pv(xv

k−1, xv)pv(xv, xv
k+1)∏

f ∈Nm
f (K)

g f (xN( f )
K , yt)

∫ ∏
w∈Nm

v (K)\K
pw(xw

0 , xw
K )π̃V\K

k−1 (dxV\K
0 )ψV\K (x̃)

∫ ∏
f ∈Nm

f (K)
g f (xN( f )

K , yt)
∫ ∏

w∈Nm
v (K)

pw(xw
0 , xw

K )π̃k−1(dx0)ψV\K (x̃)ψv(dxv)
ψv(dxv),

where the factorization of π̃k−1 and the factorization of the kernel have been used. Given
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that the same holds for the denominator the expression can be simplified a bit more. Define:

Nk :=
∫
IA(xv)pv(xv

k−1, xv)pv(xv, xv
k+1)∫ ∏

f ∈Nm
f (K)

g f (xN( f )
K , yt)

∏
w∈Nm

v (K)\K
pw(xw

0 , xw
K )π̃V\K

k−1 (dxV\K
0 )ψV\K (x̃)ψv(dxv),

Dk :=
∫

pv(xv
k−1, xv)pv(xv, xv

k+1)∫ ∏
f ∈Nm

f (K)
g f (xN( f )

K , yt)
∏

w∈Nm
v (K)\K

pw(xw
0 , xw

K )π̃V\K
k−1 (dxV\K

0 )ψV\K (x̃)ψv(dxv).

Then:

ρ̃
(k,v)
x (A)= Nk

Dk
.

– If j = (k′,v′) with k′ ≤ k−2 and v′ ∈V then: Ci, j = 0.

– If j = (k−1,v′) and v′ ∈V then Ci, j ≤


(
1− ε−

ε+

)
v′ = v

0 v′ 6= v
,

where the result follows from lemma 4.3, obtained by a majorization of the kernel

part.

– If j = (k,v′) and v′ ∈V then Ci, j ≤


(
1−κ2card(N(v)∩N(v′))

)
v′ ∈ N2(v)\ v

0 otherwise
,

where the result follows from lemma 4.3, obtained by a majorization of the observation

density part. Recall that the only factors that contain v are the one in N(v) so the

components that are connected to these factors are the one in N2(v).

– If j = (k+1,v′) and v′ ∈V then Ci, j ≤


(
1− ε−

ε+

)
v′ = v

0 v′ 6= v
,

where the result follows from lemma 4.3, obtained by a majorization of the kernel

part.

– If j = (k′,v′) with k′ ≥ k+2 and v′ ∈V then: Ci, j = 0.

• Consider i = (T,v) and v ∈V then:

ρ̃
(T,v)
x (A)

=
∫
IA(x̃v

T )Ix\xv
T
(x̃ \ x̃v

T )
←−̃
p t(x̃t+1, x̃t)π̃t(dx̃t) . . .

←−̃
p T−1(x̃T , x̃T−1)π̃T−1(dx̃T−1)π̃T (dx̃T )∫

Ix\xv
T
(x̃ \ x̃v

T )
←−̃
p t(x̃t+1, x̃t)π̃t(dx̃t) . . .

←−̃
p T−1(x̃T , x̃T−1)π̃T−1(dx̃T−1)π̃T (dx̃T )

=
∫
IA(xv

T )
←−̃
p T−1(xT , xT−1)(π̃T )v

xT
(dxv

T )∫ ←−̃
p T−1(xT , xT−1)(π̃T )v

xT (dxv
T )

= NT

DT
,
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where:

NT :=
∫
IA(xv

T )pv(xv
T−1, xv

T )
∫ ∏

f ∈Nm
f (K)

g f (xN( f )
T , yT )

∏
w∈Nm

v (K)\K
pw(xw

T−1, xw
T )π̃V\K

T−1 (dxV\K
T−1 )ψV\K (dxV\K

T )ψv(dxv
T ),

DT :=
∫

pv(xv
T−1, xv

T )
∫ ∏

f ∈Nm
f (K)

g f (xN( f )
T , yT )

∏
w∈Nm

v (K)\K
pw(xw

T−1, xw
T )π̃V\K

T−1 (dxV\K
T−1 )ψV\K (dxV\K

T )ψv(dxv
T ),

which follows from similar passages as in i = (k,v).

– If j = (k′,v′) with k′ ≤ T −2 and v′ ∈V then: Ci, j = 0.

– If j = (T −1,v′) and v′ ∈V then Ci, j ≤


(
1− ε−

ε+

)
v′ = v

0 v′ 6= v
,

where the result follows from lemma 4.3, obtained by a majorization of the kernel

part.

– If j = (T,v′) and v′ ∈V then Ci, j ≤


(
1−κ2card(N(v)∩N(v′))

)
v′ ∈ N2(v)\ v

0 otherwise
,

where the result follows from lemma 4.3, obtained by a majorization of the observation

density part. Recall that the only factors that contain v are the one in N(v) so the

components that are connected to these factors are the one in N2(v).

Given the previous results, for any v ∈V :

∑
j∈I

em(i, j)Ci, j ≤



∑
v′∈V

eβd(v,v′)C̃π̃t
v,v′ + eβ

(
1− ε−

ε+

)
i = (0,v)

2eβ
(
1− ε−

ε+

)
+ ∑

v′∈N2(v)

(
1−κ2card(N(v)∩N(v′))

)
eβd(v,v′) i = (k,v),

eβ
(
1− ε−

ε+

)
+ ∑

v′∈N2(v)

(
1−κ2card(N(v)∩N(v′))

)
eβd(v,v′) i = (T,v)

where m(i, j)=β|k−k′|+βd(v,v′) for i = (k,v) and j = (k′,v′) with k,k′ ∈ {t, . . . ,T} and v,v′ ∈V is

the pseudometric of interest on the index set I. But then given the region R0 is considered:

max
i∈I

∑
j∈I

Ci, j ≤ �Corr(π̃t,β)+2eβ
(
1− ε−

ε+

)
+ e2βΥ(2)

(
1−κ2Υ̃

)
≤ 1

2
.

Given that
∑

j∈I Ci, j ≤∑
j∈I em(i, j)Ci, j then the Dobrushin theorem (theorem 4.1) can be applied,

meaning that: ∥∥Rπ̃t . . .Rπ̃T−1 π̃T −Rπ̃t . . .Rπ̃T−1πT
∥∥

J = ∥∥ρ− ρ̃∥∥
(t,J) ≤

∑
v∈J

∑
j∈I

D(t,v), jb j.
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The second step is to control the quantities b j, as in (4.2) of theorem 4.1:

b j = sup
x∈XI

∥∥∥ρ j
x − ρ̃ j

x

∥∥∥ .

Remark that the form of ρ̃ i
x is already known from the study on Ci, j, hence it is enough to compute

ρ i
x and then compare it.

• If j = (k,v′) with k < T and v′ ∈V then:

ρ
j
x(A)= ρ̃ j

x(A),

because the difference is only on the final integral (on πT and π̃T ) which disappear as

consequence of the Markov property derived from the reversed kernel, hence:

b j = 0.

• If j = (T,v′) and v′ ∈V then:

ρ
(T,v′)
x (A)

=
∫
IA(x̃v′

T )Ix\xv′
T

(x̃ \ x̃v′
T )

←−̃
p t(x̃t+1, x̃t)π̃t(dx̃t) . . .

←−̃
p T−1(x̃T , x̃T−1)π̃T−1(dx̃T−1)πT (dx̃T )∫

Ix\xv′
T

(x̃ \ x̃v′
T )

←−̃
p t(x̃t+1, x̃t)π̃t(dx̃t) . . .

←−̃
p T−1(x̃T , x̃T−1)π̃T−1(dx̃T−1)πT (dx̃T )

=
∫
IA(xv′

T )
←−̃
p T−1(xT , xT−1)(πT )v′

xT
(dxv′

T )∫ ←−̃
p T−1(xT , xT−1)(πT )v′

xT (dxv′
T )

.

Moreover, given that maxi∈I
∑
j∈I

em(i, j)Ci, j ≤ 1
2 then lemma 4.5 can be applied and so:

max
i∈I

∑
j∈J

em(i,J)D i, j ≤ 2.

By joining step one and step two it follows that:∥∥Rπ̃t . . .Rπ̃T−1 π̃T −Rπ̃t . . .Rπ̃T−1πT
∥∥

J

≤ ∑
v∈J

∑
j∈I

D(t,v), jb j ≤ ∑
v∈J

∑
v′∈V

D(t,v),(T,v′)b(T,v′)

≤ ∑
v∈J

∑
v′∈V

eβ|T−t|+βd(v,v′)D(t,v),(T,v′)e−β|T−t|−βd(v,v′)

sup
xT−1,xT∈XV

∥∥∥∥∥(
π̃T−1←−
π̃T )v′

xT ,xT−1
− (

π̃T−1←−πT )v′
xT ,xT−1

∥∥∥∥∥
≤ 2e−β(T−t) ∑

v∈J
max
v′∈V

{
e−βd(v,v′) sup

xT−1,xT∈XV

∥∥∥∥∥(
π̃T−1←−
π̃T )v′

xT ,xT−1
− (

π̃T−1←−πT )v′
xT ,xT−1

∥∥∥∥∥
}

.

�
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Proposition 4.8. Suppose there exist (ε−,ε+,κ) ∈ (0,1)3, such that:

ε− ≤ pv(xv, zv)≤ ε+,

for all x, z ∈XV ,v ∈V. Then for any v ∈V and for any x0, x1 ∈XV and m ∈ {0, . . . ,n}:∥∥∥∥∥(
π̃T−1←−πT )v

x1,x0
− (

π̃T−1←−
π̃T )v

x1,x0

∥∥∥∥∥≤ 2
(
ε+
ε−

)2
sup

x1∈XV

∥∥(πT )v
x1
− (π̃T )v

x1

∥∥ .

where π̃t is the approximated filtering distribution obtained through recursion 3.12 and πt is the

approximated filtering distribution obtained through recursion 2.4.

Proof. Denote with
←−̃
p t(·, ·) the reverse kernel with reference distribution the approximated

filtering distribution, i.e.:
←−̃
p t(z, x) := p(x, z)∫

p(x̂, z)π̃t(dx̂)
.

Consider the probability distributions:

(
π̃T−1←−πT )v

x1,x0
(A)=

∫
IA(xv

1)
←−̃
p T−1(x1, x0)(πT )v

x1
(dxv

1)∫ ←−̃
p T−1(x1, x0)(πT )v

x1(dxv
1)

,

(
π̃T−1←−
π̃T )v

x1,x0
(A)=

∫
IA(xv

1)
←−̃
p T−1(x1, x0)(π̃T )v

x1
(dxv

1)∫ ←−̃
p T−1(x1, x0)(π̃T )v

x1(dxv
1)

.

It can be observed that the form
∫
IA(x)Λ(x)ν(dx)/

∫
Λ(x)ν(dx) allows to apply lemma 4.4. Hence:

(4.11)

∥∥∥∥∥(
π̃T−1←−πT )v

x1,x0
− (

π̃T−1←−
π̃T )v

x1,x0

∥∥∥∥∥≤ 2
(
ε+
ε−

)2
sup

x1∈XV

∥∥(πt)v
x1
− (π̃t)v

x1

∥∥ .

Remark that in this case the function Λ in lemma 4.4 is
←−̃
p t−1(x̃1, x0)IxV\v

1
(x̃V\v

1 ) hence the result

follows from the following observations:

•
←−̃
p t−1(x̃1, x0)IxV\v

1
(x̃V\v

1 )≤
(
ε+
ε−

) ∏
v′∈V\v

pv′ (xv′
0 ,xv′

1 )∫ ∏
v′∈V\v

pv′ (x̂v′
0 ,xv′

1 )π̃t−1(dx̂0)
;

•
←−̃
p t−1(x̃1, x0)IxV\v

1
(x̃V\v

1 )≥
(
ε−
ε+

) ∏
v′∈V\v

pv′ (xv′
0 ,xv′

1 )∫ ∏
v′∈V\v

pv′ (x̂v′
0 ,xv′

1 )π̃t−1(dx̂0)
;

where the ratio is constant in xv
1 and the inequality holds also for the sup and the inf. �
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4.3.2 Approximate smoothing stability and smoothing error control

Here it must be proved that an initial application of the optimal smoothing operator followed by

a sequential application of the approximate smoothing operator to a probability distribution µ is

not too different from an initial application of the approximate smoothing operator followed by a

sequential application of the approximate smoothing operator to the same probability distribution

µ.

Proposition 4.9. Fix any collection of observations {y1, . . . , yT } and any partition K on the set V .

There exists a region R0 ⊆ (0,1)3, as in corollary 4.1, depending only on Υ̃,Υ and Υ(2), such that if,

for given (ε−,ε+,κ) ∈R0,

ε− ≤ pv(xv, zv)≤ ε+ and κ≤ g f (xN( f ), yt)≤ 1
κ

, ∀x, z ∈XV , f ∈ F,v ∈V , t ∈ {1, . . . ,T},

then for β > 0 small enough depending only on Υ̃,Υ,Υ(2), ε−,ε+,κ, for any t ∈ {0, . . . ,T −1}, m ∈
{0, . . . ,n} and for any s = {0, . . . ,T − t+1}:

∥∥Rπ̃t . . .Rπ̃t+s−1Rπ̃t+sµ−Rπ̃t . . .Rπ̃t+s−1Rπt+sµ
∥∥

J

≤ 2e−βs ∑
v∈J

max
v′∈V

{
e−βd(v,v′)

∥∥∥(π̃t+s)v′
xt+s,z − (πt+s)v′

xt+s,z

∥∥∥}
.

Proof. Denote with ←−p t(·, ·) the reverse kernel with reference distribution the optimal filtering

distribution and with
←−̃
p t(·, ·) the reverse kernel with reference distribution the approximated

filtering distribution, i.e.:

←−p t(z, x) := p(x, z)∫
p(x̂, z)πt(dx̂)

and
←−̃
p t(z, x) := p(x, z)∫

p(x̂, z)π̃t(dx̂)

Then:

Rπ̃t . . .Rπ̃t+sµ(A)

=
∫
IA(xt)

←−̃
p t(xt+1, xt)π̃t(dxt) . . .

←−̃
p t+s(xt+s+1, xt+s)π̃t+s(dxt+s)µ(dxt+s+1),

Rπ̃t . . .Rπt+sµ(A)

=
∫
IA(xt)

←−̃
p t(xt+1, xt)π̃t(dxt) . . .←−p t+s(xt+s+1, xt+s)πt+s(dxt+s)µ(dxt+s+1).

Define the probability distributions:

ρz(A) :=
∫
IA(xt, . . . , xt+s)

←−̃
p t(xt+1, xt)π̃t(dxt) . . .←−p t+s(z, xt+s)πt+s(dxt+s),

ρ̃z(A) :=
∫
IA(xt, . . . , xt+s)

←−̃
p t(xt+1, xt)π̃t(dxt) . . .

←−̃
p t+s(z, xt+s)π̃t+s(dxt+s).
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The quantity of interest can be reformulated as follows:

∥∥Rπ̃t . . .Rπ̃t+s−1Rπ̃t+sµ−Rπ̃t . . .Rπ̃t+s−1Rπt+sµ
∥∥

J

= sup
A∈σ(XJ ))

∣∣∣∫ IA(xt)
←−̃
p t(xt+1, xt)π̃t(dxt) . . .

←−̃
p t+s(z, xt+s)π̃t+s(dxt+s)µ(dz)

−
∫
IA(xt)

←−̃
p t(xt+1, xt)π̃t(dxt) . . .←−p t+s(z, xt+s)πt+s(dxt+s)µ(dz)

∣∣∣
= sup

A∈σ(XJ ))

∣∣∣∫ [∫
IA(xt)

←−̃
p t(xt+1, xt)π̃t(dxt) . . .

←−̃
p t+s(z, xt+s)π̃t+s(dxt+s)

−
∫
IA(xt)

←−̃
p t(xt+1, xt)π̃t(dxt) . . .←−p t+s(z, xt+s)πt+s(dxt+s)

]
µ(dz)

∣∣∣
≤ sup

A∈σ(XJ ))

∫ ∣∣∣[∫
IA(xt)

←−̃
p t(xt+1, xt)π̃t(dxt) . . .

←−̃
p t+s(z, xt+s)π̃t+s(dxt+s)

−
∫
IA(xt)

←−̃
p t(xt+1, xt)π̃t(dxt) . . .←−p t+s(z, xt+s)πt+s(dxt+s)

]∣∣∣µ(dz)

≤ sup
z∈XV

{
sup

A∈σ(XJ ))

∣∣∣[∫
IA(xt)

←−̃
p t(xt+1, xt)π̃t(dxt) . . .

←−̃
p t+s(z, xt+s)π̃t+s(dxt+s)

−
∫
IA(xt)

←−̃
p t(xt+1, xt)π̃t(dxt) . . .←−p t+s(z, xt+s)πt+s(dxt+s)

]∣∣∣}
= sup

z∈XV

∥∥ρz − ρ̃z
∥∥

(t,J) .

Hence it is enough to find a bound for
∥∥ρz − ρ̃z

∥∥
(t,J) to guarantee the proof of the statement.

The Dobrushin theorem can be used on the distributions ρz, ρ̃z where the index set is I =⋃t+s
k=t(k,V ) and the subset is (t, J).

The first step is to bound Ci, j for all the possible combination of i, j ∈ I, as in (4.2) of theorem

4.1. In the following passages the notation x = (xt, . . . , xt+s) is considered, where xk ∈ XV for

k = t, . . . , t+ s and x \ xv
k := (xt, . . . , xV\v

k , . . . , xt+s) (and the same with a tilde).

• Consider i = (t,v) and v ∈V then:

(ρ̃z)(t,v)
x (A)=

∫
IA(x̃v

t )Ix\xv
t
(x̃ \ x̃v

t )
←−̃
p t(x̃t+1, x̃t)π̃t(dx̃t) . . .

←−̃
p t+s(z, x̃t+s)π̃t+s(dx̃t+s)∫

Ix\xv
t
(x̃ \ x̃v

t )
←−̃
p t(x̃t+1, x̃t)π̃t(dx̃t) . . .

←−̃
p t+s(z, x̃t+s)π̃t+s(dx̃t+s)

=
∫
IA(xv

t )
←−̃
p t(xt+1, xt)(π̃t)v

xt
(dxv

t )∫ ←−̃
p t(xt+1, xt)(π̃t)v

xt (dxv
t )

=
∫
IA(xv

t )pv(xv
t , xv

t+1)(π̃t)v
xt

(dxv
t )∫

pv(xv
t , xv

t+1)(π̃t)v
xt (dxv

t )
,

where the last passage follow from the independence of the numerator of the reverse kernel

from xt. Now the different cases in which ρ i
x can differ from ρ i

x̃, where xI\ j = x̃I\ j, must be

distinguished.

– If j = (t,v′) and v′ ∈V then: Ci, j ≤ C̃π̃t
v,v′ .
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– If j = (t+1,v′) and v′ ∈V then: Ci, j ≤


(
1− ε−

ε+

)
v′ = v

0 v′ 6= v
,

where the result follows from lemma 4.3, obtained by a majorization of the kernel

part.

– If j = (k,v′) with k > t+1 and v′ ∈V then: Ci, j = 0,

which is obvious given that in ρ i
x there is no dependence on xk with k > t+1.

• Consider i = (k,v) with t+1< k ≤ t+ s and v ∈ K ⊆V then:

(ρ̃z)(k,v)
x (A)

=
∫
IA(x̃v

k)Ix\xv
k
(x̃ \ x̃v

k)
←−̃
p t(x̃t+1, x̃t)π̃t(dx̃t) . . .

←−̃
p t+s(z, x̃t+s)π̃t+s(dx̃t+s)∫

Ix\xv
k
(x̃ \ x̃v

k)
←−̃
p t(x̃t+1, x̃t)π̃t(dx̃t) . . .

←−̃
p t+s(z, x̃t+s)π̃t+s(dx̃t+s)

=
∫
IA(xv

k)
←−̃
p k−1(xk, xk−1)

←−̃
p k(xk+1, xk)(π̃k)v

xk
(dxk)∫ ←−̃

p k−1(xk, xk−1)
←−̃
p k(xk+1, xk)(π̃k)v

xk (dxk)

=
∫
IA(x̃v

k)
←−̃
p k−1(xk, xk−1)pv(xv

k, xv
k+1)(π̃k)v

xk
(dxk)∫ ←−̃

p k−1(xk, xk−1)pv(xv
k, xv

k+1)(π̃k)v
xk (dxk)

= Nk

Dk
,

where xt+s+1 = z and everything follows the same procedure explained in the proof of

proposition 4.7, in particular:

Nk :=
∫
IA(xv)pv(xv

k−1, xv)pv(xv, xv
k+1)∫ ∏

f ∈Nm
f (K)

g f (xN( f )
K , yt)

∏
w∈Nm

v (K)\K
pw(xw

0 , xw
K )π̃V\K

k−1 (dxV\K
0 )ψV\K (x̃)ψv(dxv),

Dk :=
∫

pv(xv
k−1, xv)pv(xv, xv

k+1)∫ ∏
f ∈Nm

f (K)
g f (xN( f )

K , yt)
∏

w∈Nm
v (K)\K

pw(xw
0 , xw

K )π̃V\K
k−1 (dxV\K

0 )ψV\K (x̃)ψv(dxv).

– If j = (k′,v′) with k′ ≤ k−2 and v′ ∈V then: Ci, j = 0.

– If j = (k−1,v′) and v′ ∈V then Ci, j ≤


(
1− ε−

ε+

)
v′ = v

0 v′ 6= v
,

where the result follows from lemma 4.3, obtained by a majorization of the kernel

part.

– If j = (k,v′) and v′ ∈V then Ci, j ≤


(
1−κ2card(N(v)∩N(v′))

)
v′ ∈ N2(v)\ v

0 otherwise
,

where the result follows from lemma 4.3, obtained by a majorization of the observation

density part. Recall that the only factors that contain v are the one in N(v) so the

components that are connected to these factors are the one in N2(v).
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– If j = (k+1,v′) and v′ ∈V then Ci, j ≤


(
1− ε−

ε+

)
v′ = v

0 v′ 6= v
,

where the result follows from lemma 4.3, obtained by a majorization of the kernel

part.

– If j = (k′,v′) with k′ ≥ k+2 and v′ ∈V then: Ci, j = 0.

Given the previous results, for any v ∈V and t+1< k < t+ s:

∑
j∈I

em(i, j)Ci, j ≤


∑

v′∈V
eβd(v,v′)C̃π̃t

v,v′ + eβ
(
1− ε−

ε+

)
i = (0,v)

2eβ
(
1− ε−

ε+

)
+ ∑

v′∈N2(v)
(1−κ2card(N(v)∩N(v′)))eβd(v,v′) i = (k,v),

where m(i, j)=β|k−k′|+βd(v,v′) for i = (k,v) and j = (k′,v′) with k,k′ ∈ {t, . . . , t+ s} and v,v′ ∈V

is the pseudometric of interest on the index set I. But then by combining the above calculation

with the corollary 4.1:

max
i∈I

∑
j∈I

Ci, j ≤ �Corr(π̃t,β)+2eβ
(
1− ε−

ε+

)
+ e2βΥ(2)

(
1−κ2Υ̃

)
≤ 1

2
.

Given that
∑

j∈I Ci, j ≤∑
j∈I em(i, j)Ci, j then the Dobrushin theorem (theorem 4.1) can be applied,

meaning that:

∥∥Rπ̃t . . .Rπ̃t+s−1Rπ̃t+sµ−Rπ̃t . . .Rπ̃t+s−1Rπt+sµ
∥∥

J = sup
z∈XV

∥∥ρz − ρ̃z
∥∥

(t,J) ≤
∑
v∈J

∑
j∈I

D(t,v), jb j.

The second step is to control the quantities b j, as in (4.2) of theorem 4.1:

b j = sup
x∈XI

∥∥∥(ρz) j
x − (ρ̃z) j

x

∥∥∥ .

Remark that the form of (ρ̃z)i
x is already known from the study on Ci, j, hence it is enough to

compute (ρz)i
x and then compare it.

• If j = (k,v′) with k < t+ s and v′ ∈V then:

(ρz) j
x(A)= (ρ̃z) j

x(A),

because the difference is only on the final kernel which disappear as consequence of the

Markov property derived from the reversed kernel, hence:

b j = 0.
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• If j = (t+ s,v′) and v′ ∈V then:

ρ
(t+s,v′)
x (A)=

∫
IA(x̃v′

t+s)Ix\xv′
t+s

(x̃ \ x̃v′
t+s)

←−̃
p t(x̃t+1, x̃t)π̃t(dx̃t) . . .←−p t+s(z, x̃t+s)πt+s(dx̃t+s)∫

Ix\xv′
t+s

(x̃ \ x̃v′
t+s)

←−̃
p t(x̃t+1, x̃t)π̃t(dx̃t) . . .←−p t+s(z, x̃t+s)πt+s(dx̃t+s)

=
∫
IA(xv′

t+s)
←−̃
p t+s−1(xt+s, xt+s−1)←−p t+s(z, xt+s)(πt+s)v′

xt+s
(dxv′

t+s)∫ ←−̃
p t+s−1(xt+s, xt+s−1)←−p t+s(z, xt+s)(πt+s)v′

xt+s (dxv′
t+s)

=
∫
IA(xv′

t+s)
←−̃
p t+s−1(xt+s, xt+s−1)pv(xv

t+s, zv)(πt+s)v′
xt+s

(dxv′
t+s)∫ ←−̃

p t+s−1(xt+s, xt+s−1)pv(xv
t+s, zv)(πt+s)v′

xt+s (dxv′
t+s)

=
∫
IA(xv′

t+s)
←−̃
p t+s−1(xt+s, xt+s−1)(πt+s)v′

xt+s,z(dxv′
t+s)∫ ←−̃

p t+s−1(xt+s, xt+s−1)(πt+s)v′
xt+s,z(dxv′

t+s)
,

where the last few passages follow from: the factorization of the transition kernel p(x, z);

the fact that z is a constant and at the denominator of the reversed kernel the dependent

variable xt+s is integrated out; the fact that the numerator and the denominator can be

rewritten as integrals with respect to the one step forward conditional distribution. Now

from the same procedure as in(4.11) in proposition 4.8:

b j ≤ 2
(
ε+
ε−

)2
sup

xt+s,z∈XV

∥∥∥(π̃t+s)v′
xt+s,z − (πt+s)v′

xt+s,z

∥∥∥ .

Moreover, given that maxi∈I
∑
j∈I

em(i, j)Ci, j ≤ 1
2 then lemma 4.5 can be applied and so:

max
i∈I

∑
j∈J

em(i,J)D i, j ≤ 2.

By joining step one and step two it follows that:∥∥Rπ̃t . . .Rπ̃t+s−1Rπ̃t+sµ−Rπ̃t . . .Rπ̃t+s−1Rπt+sµ
∥∥

J = sup
z∈XV

∥∥ρz − ρ̃z
∥∥

(t,J)

≤ sup
z∈XV

∑
v∈J

∑
j∈I

D(t,v), jb j ≤
∑
v∈J

∑
v′∈V

D(t,v),(t+s,v′)b(t+s,v′)

≤ sup
z∈XV

∑
v∈J

∑
v′∈V

eβ|t+s−t|+βd(v,v′)D(t,v),(t+s,v′)e−β|t+s−t|−βd(v,v′)

2
(
ε+
ε−

)2
sup

xt+s,z∈XV

∥∥∥(π̃t+s)v′
xt+s,z − (πt+s)v′

xt+s,z

∥∥∥
≤ 4

(
ε+
ε−

)2
e−βs ∑

v∈J
max
v′∈V

{
e−βd(v,v′)

∥∥∥(π̃t+s)v′
xt+s,z − (πt+s)v′

xt+s,z

∥∥∥}
= 4

(
ε+
ε−

)2
e−βs ∑

v∈J
max
v′∈V

{
e−βd(v,v′)

∥∥∥(π̃t+s)v′
xt+s,z − (πt+s)v′

xt+s,z

∥∥∥}
.

�
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Proposition 4.10. Fix any collection of observations {y1, . . . , yT } and any partition K on the

set V . There exists a region R̃0 ⊆ (0,1)3, depending only on Υ̃,Υ and Υ(2), such that if, for given

(ε−,ε+,κ) ∈ R̃0,

ε− ≤ pv(xv, zv)≤ ε+ and κ≤ g f (xN( f ), yt)≤ 1
κ

,

for all x, z ∈ XV , f ∈ F,v ∈ V , t ∈ {1, . . . ,T}, then for β > log(2) small enough depending only on

Υ̃,Υ,Υ(2), ε−,ε+,κ, chosen according to corollary 4.1, for any t ∈ {1, . . . ,T} and m ∈ {0, . . . ,n}:

∥∥(πt)v
x1,z − (π̃t)v

x1,z
∥∥≤ τ(β,κ,m,K )eβ

eβ−2
, ∀t ∈ {1, . . . ,T},∀x1, z ∈XV ,

where π̃t is the approximated filtering distribution obtained through recursion 3.12,

τ(β,κ,m,K ) := 2
(
1−κa(K )

)
+4e−βm

(
1−κb(K ,m)

)
,

and a(K ) and b(m,K ) are as in proposition 4.2.

Proof. Consider the quantity of interest, it is possible to decompose it as follow:

∥∥(πt)v
x1,z − (π̃t)v

x1,z
∥∥≤ ∥∥(Ftπt−1)v

x1,z − (Ftπ̃t−1)v
x1,z

∥∥+∥∥(Ftπ̃t−1)v
x1,z − (F̃m

t π̃t−1)v
x1,z

∥∥ ,

where the second quantity can be controlled using proposition 4.2 given that corollary 4.1 holds,

from the choices of β,ε−,ε+,κ, while for the first quantity the Dobrushin machinery must be used.

Consider the probability distributions:

ρ(A) :=
∫
IA(x0, xv

1)
∏

f ∈N(v) g f (xN( f )
1 , yt)pv(xv

0, xv
1)πt−1(dx0)pv(xv

1, zv)ψv(xv
1)∫ ∏

f ∈N(v) g f (xN( f )
1 , yt)pv(xv

0, xv
1)πt−1(dx0)pv(xv

1, zv)ψv(xv
1)

,

ρ̃(A) :=
∫
IA(x0, xv

1)
∏

f ∈N(v) g f (xN( f )
1 , yt)pv(xv

0, xv
1)π̃t−1(dx0)pv(xv

1, zv)ψv(xv
1)∫ ∏

f ∈N(v) g f (xN( f )
1 , yt)pv(xv

0, xv
1)π̃t−1(dx0)pv(xv

1, zv)ψv(xv
1)

.

It can be observed that:

∥∥ρ− ρ̃∥∥
(1,v) =

∥∥(Ftπt−1)v
x1,z − (Ftπ̃t−1)v

x1,z
∥∥ .

So again the Dobrushin theorem can be applied to ρ, ρ̃ where the index set is I = (0,V )∪ (1,v).

The first step is to bound Ci, j for all the possible combination of i, j ∈ I, as in (4.2) of theorem

4.1.
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• Consider i = (0,b) and b ∈V then:

ρ̃
(0,b)
x0,x1(A)

=
∫
IA(x̃b

0 )I{xV\b
0 ,xv

1}(x̃
V\b
0 , x̃v

1)
∏

f ∈N(v) g f (x̃N( f )
1 , yt)pv(x̃v

0, x̃v
1)π̃t−1(dx̃0)pv(x̃v

1, zv)ψv(x̃v
1)∫

IX(x̃b
0 )I{xV\b

0 ,xv
1}(x̃

V\b
0 , x̃v

1)
∏

f ∈N(v) g f (x̃N( f )
1 , yt)pv(x̃v

0, x̃v
1)π̃t−1(dx̃0)pv(x̃v

1, zv)ψv(x̃v
1)

=
∏

f ∈N(v) g f (xN( f )
1 , yt)pv(xv

1, zv)∏
f ∈N(v) g f (xN( f )

1 , yt)pv(xv
1, zv)

∫
IA(x̃b

0 )I{xV\b
0 ,xv

1}(x̃
V\b
0 , x̃v

1)pv(x̃v
0, x̃v

1)π̃t−1(dx̃0)ψv(x̃v
1)∫

IX(x̃b
0 )I{xV\b

0 ,xv
1}(x̃

V\b
0 , x̃v

1)pv(x̃v
0, x̃v

1)π̃t−1(dx̃0)ψv(x̃v
1)

=
∫
IA(xb

0 )pb(xb
0 , xb

1 )(π̃t−1)b
x0

(dxb
0 )∫

pb(xb
0 , xb

1 )(π̃t−1)b
x0(dxb

0 )
.

– If j = (0,b′) and b′ ∈V then: Ci, j ≤ C̃π̃t−1
b,b′ .

– If j = (1,v) then by lemma 4.3: Ci, j ≤


(
1− ε−

ε+

)
b = v

0 otherwise
,

where the kernel part is upper bounded.

• Consider i = (1,v) then:

ρ̃
(1,v)
x0,x1(A)=

∫
IA(x̃v

1)Ix0(x̃V
0 )

∏
f ∈N(v) g f (x̃N( f )

1 , yt)pv(x̃v
0, x̃v

1)π̃t−1(dx̃0)pv(x̃v
1, zv)ψv(x̃v

1)∫
IX(x̃v

1)Ix0(x̃V
0 )

∏
f ∈N(v) g f (x̃N( f )

1 , yt)pv(x̃v
0, x̃v

1)π̃t−1(dx̃0)pv(x̃v
1, zv)ψv(x̃v

1)

=
∫
IA(xv

1)
∏

f ∈N(v) g f (xN( f )
1 , yt)pv(xv

0, xv
1)pv(xv

1, zv)ψv(dxv
1)∫ ∏

f ∈N(v) g f (xN( f )
1 , yt)pv(xv

0, xv
1)pv(xv

1, zv)ψv(dxv
1)

.

– If j = (0,b) and b ∈V then by lemma 4.3: Ci, j ≤


(
1− ε−

ε+

)
b = v

0 otherwise
,

where the kernel part is upper bounded.

– If j = (1,v) then: Ci, j = 0.

But then:

max
i∈I

∑
j∈I

em(i, j)Ci, j ≤ �Corr(π̃t−1,β)+ eβ
(
1− ε−

ε+

)
.

Given that β > log(2) is desired, ε−,ε+,κ,β can not be chosen according to corollary 4.1. To

overcome this it is enough to modify the region R0:

R̃0 :=
(ε−,ε+,κ) ∈ (0,1)3 :

κ2Υ−8
(
1− ε−

ε+

)
4Υ(2)

(
1−κ2Υ̃

)
κ2Υ

> 4 and

1−4
(
1− ε−

ε+

)
6Υ(2)(1−κ2Υ̃)+4

(
1− ε−

ε+

) > 4

 .
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hence for (ε−,ε+,κ) ∈ R̃0 and β as in corollary 4.1:

�Corr(π̃t−1,β)+ eβ
(
1− ε−

ε+

)
≤ 1

2
.

Hence the Dobrushin theorem applies:

∥∥ρ− ρ̃∥∥
(1,v) ≤

∑
j∈I

D(1,v), jb j.

The second step is to control the quantities b j, as in (4.2) of theorem 4.1. Remark that the

conditional distributions of ρ have the same form of the ones of ρ̃ with π̃t−1 instead of πt−1

• If j = (0,b′) and b′ ∈V then:

ρ
(0,b′)
x0,x1 (A)=

∫
IA(xb′

0 )pb′
(xb′

0 , xb′
1 )(πt−1)b′

x0
(dxb′

0 )∫
pb′(xb′

0 , xb′
1 )(πt−1)b′

x0(dxb′
0 )

,

hence:

b j = sup
x0,x1∈XV

∥∥∥(πt−1)b′
x0,x1

− (π̃t−1)b′
x0,x1

∥∥∥ .

• If j = (1,v) then:

ρ̃
(1,v)
x0,x1(A)=

∫
IA(xv

1)
∏

f ∈N(v) g f (xN( f )
1 , yt)pv(xv

0, xv
1)pv(xv

1, zv)ψv(dxv
1)∫ ∏

f ∈N(v) g f (xN( f )
1 , yt)pv(xv

0, xv
1)pv(xv

1, zv)ψv(dxv
1)

.

hence:

b j = 0,

because the only difference between ρ, ρ̃ is on πt−1 and π̃t−1.

By putting all together, it can be concluded that:∥∥(Ftπt−1)v
x1,z − (Ftπ̃t−1)v

x1,z
∥∥≤ ∑

j∈I
D(1,v), jb j

≤ ∑
b′∈V

D(1,v),(0,b′)eβd(v,b′)+βe−βd(v,b′)−β sup
x0,x1∈XV

∥∥∥(πt−1)b′
x0,x1

− (π̃t−1)b′
x0,x1

∥∥∥
≤ 2e−β sup

b′∈V

{
e−βd(v,b′) sup

x0,x1∈XV

∥∥∥(πt−1)b′
x0,x1

− (π̃t−1)b′
x0,x1

∥∥∥}
.

By joining this with proposition 4.2 in equation 1:

∥∥(πt)v
x1,z − (π̃t)v

x1,z
∥∥≤ 2e−β sup

b′∈V

{
e−βd(v,b′) sup

x0,x1∈XV

∥∥∥(πt−1)b′
x0,x1

− (π̃t−1)b′
x0,x1

∥∥∥}
+τ(β,κ,m,K ).
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This result can be iteratively applied. Indeed given that:

∥∥(π1)v
x1,z − (π̃1)v

x1,z
∥∥≤ 2e−β sup

b′∈V

{
e−βd(v,b′)sup

x0,x1∈XV

∥∥∥(δx)b′
x0,x1

− (δx)b′
x0,x1

∥∥∥}
+τ(β,κ,m,K )

= τ(β,κ,m,K ),

then: ∥∥(πt)v
x1,z − (π̃t)v

x1,z
∥∥≤ τ(β,κ,m,K )

t−1∑
j=0

(2e−β) j ≤ τ(β,κ,m,K )eβ

eβ−2
,

where the last passage follow trivially from the definition of geometric sum and β> log(2). �

Proposition 4.11. Fix any collection of observations {y1, . . . , yT } and any partition K on the

set V . There exists a region R̃0 ⊆ (0,1)3, depending only on Υ̃,Υ and Υ(2), such that if, for given

(ε−,ε+,κ) ∈ R̃0,

ε− ≤ pv(xv, zv)≤ ε+ and κ≤ g f (xN( f ), yt)≤ 1
κ

,

for all x, z ∈ XV , f ∈ F,v ∈ V , t ∈ {1, . . . ,T}, then for β > log(2) small enough depending only on

Υ̃,Υ,Υ(2), ε−,ε+,κ, chosen according to corollary 4.1, for any t ∈ {1, . . . ,T} and m ∈ {0, . . . ,n}:∥∥(πt)v
x1
− (π̃t)v

x1

∥∥≤ τ(β,κ,m,K )eβ

eβ−2
,

for all t ∈ {1, . . . ,T},∀x1, z ∈ XV , where π̃t is the approximated filtering distribution obtained

through recursion 3.12,

τ(β,κ,m,K ) := 2
(
1−κa(K )

)
+4e−βm

(
1−κb(K ,m)

)
,

and a(K ) and b(m,K ) are as in proposition 4.2.

Proof. The proof of this result follows the same procedure of proposition 4.10, the only difference

is that pv(xv
1, zv) is missing. �

4.3.3 Proof of theorem 3.2

Proof. Let J ⊆ K ∈K , then by the triangular inequality:∥∥Rπ̃t π̃t+1|T −Rπtπt+1|T
∥∥

J ≤ ∥∥Rπ̃t . . .Rπ̃T−1 π̃T −Rπ̃t . . .Rπ̃T−1πT
∥∥

J

+
T−t+1∑

s=0

∥∥Rπ̃t . . .Rπ̃t+s−1Rπ̃t+sπt+s+1|T −Rπ̃t . . .Rπ̃t+s−1Rπt+sπt+s+1|T
∥∥

J .

Given that β,ε−,ε+,κ are chosen such that both corollary 4.1 and proposition 4.7 and proposition

4.9 hold then:

∥∥π̃t|T −πt|T
∥∥

J ≤ 2e−β(T−t) ∑
v∈J

max
v′∈V

{
e−βd(v,v′) sup

xT−1,xT∈XV

∥∥∥∥∥
π̃T−1←−−
(π̃T )v′

xT−1,xT
−
π̃T−1←−−
(πT )v′

xT−1,xT

∥∥∥∥∥
}

+
T−t+1∑

s=0
2e−βs ∑

v∈J
max
v′∈V

{
e−βd(v,v′)

∥∥∥(π̃t+s)v′
xt+s,z − (πt+s)v′

xt+s,z

∥∥∥}
.
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Similarly also proposition 4.10, proposition 4.11 and proposition 4.8 apply:

∥∥π̃t|T −πt|T
∥∥

J ≤ 4
(
ε+
ε−

)2
e−β(T−t) ∑

v∈J
max
v′∈V

{
e−βd(v,v′) sup

x1∈XV

∥∥∥(πT )v′
x1
− (π̃T )v′

x1

∥∥∥}

+4
(
ε+
ε−

)2 T−t−1∑
s=0

e−βs ∑
v∈J

max
v′∈V

{
e−βd(v,v′) τ(β,κ,m,K )eβ

eβ−2

}
≤ 4

(
ε+
ε−

)2
e−β(T−t) ∑

v∈J
max
v′∈V

{
e−βd(v,v′) τ(β,κ,m,K )eβ

eβ−2

}
+4

(
ε+
ε−

)2 T−t−1∑
s=0

e−βs ∑
v∈J

max
v′∈V

{
e−βd(v,v′) τ(β,κ,m,K )eβ

eβ−2

}
≤ 4

(
ε+
ε−

)2
e−β(T−t) τ(β,κ,m,K )eβ

eβ−2
card(J)

+4
(
ε+
ε−

)2 eβ

eβ−1
τ(β,κ,m,K )eβ

eβ−2
card(J)

= 4
(
ε+
ε−

)2 [
e−β(T−t) eβ

eβ−2
+ eβ

eβ−1
eβ

eβ−2

]
card(J)

[
2

(
1−κa(K )

)
+4e−βm

(
1−κb(K ,m)

)]
≤α2(β,ε−,ε+)

(
1−κa(K )

)
card(J)+γ2(β,ε−,ε+)

(
1−κb(K ,m)

)
card(J)e−βm,

�
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5
DYNAMIC BAYESIAN NEURAL NETWORKS

This chapter proposes a new hybrid model between an FHMM and a Bayesian neural

network called a Hidden Markov neural network (HMNN). Section 5.1 and 5.2 introduces

the background and all the main steps to build HMNNs. Section 5.3 compares HMNNs

with different baselines on multiple scenarios. As already mentioned, a significant part of this

chapter has been submitted to publication and it is available in Rimella and Whiteley [2020].

5.1 Introduction and literature review

Hidden Markov models (HMMs) are an efficient statistical tool to identify patterns in dynamic

dataset, with applications ranging from speech recognition [Rabiner and Juang, 1986] to com-

putational biology [Krogh et al., 2001]. Neural networks (NNs) are nowadays some of the most

popular models in machine learning and artificial intelligence, and they have shown outstanding

performances in several fields. This chapter proposes a novel hybrid model called a Hidden

Markov neural network (HMNN), which combines a Factorial hidden Markov model [Ghahramani

and Jordan, 1997] with a Bayesian neural network.

Intuitively, the aim is to perform Bayesian inference on a time-evolving NN. However, even

computing the conditional distribution of the weights given the data of a single NN is a complex

task and is generally intractable. Monte Carlo sampling techniques provide a way to approxi-

mate an evolving posterior distribution, however, they suffer from the curse of dimensionality

[Rebeschini and Van Handel, 2015] and high computational cost [Rimella and Whiteley, 2019].

The rich literature on variational Bayes [Blei et al., 2017] and its success on Bayesian inference

for NN [Graves, 2011, Kingma and Welling, 2013, Blundell et al., 2015] have motivated the use

of this technique in HMNNs. In particular, the resulting procedure ends up being a sequential

101



CHAPTER 5. DYNAMIC BAYESIAN NEURAL NETWORKS

counterpart of the algorithm Bayes by Backprop proposed by Blundell et al. [2015]. As for Blun-

dell et al. [2015] a pivotal role is played by the reparameterization trick [Kingma and Welling,

2013], which generates unbiased estimates of the considered gradient.

HMNNs find their place in time series forecasting and, in particular, in the continual learning

field. As pointed out by Kurle et al. [2019], the majority of researchers focused on preventing

forgetting [Kirkpatrick et al., 2017, Nguyen et al., 2017, Ritter et al., 2018], however sudden

changes of the statistics of the data may be an intrinsic property of the generating process itself.

In this case, preserving full knowledge is not desirable and the useless information should be

forgotten. This operation can be done through the application of a stochastic transition kernel

[Kurle et al., 2019], which can be thought of as the Markov transition kernel of an HMM. In this

sense, HMNNs embrace the adaption idea of Kurle et al. [2019] and presents it through the well-

established HMMs with the further generalization to a bigger class of variational approximations

and stochastic transition kernels.

From NNs-HMMs hybrids to continual learning, there are multiple related works. The

following paragraphs group similar works together and review them.

Combining NNs and HMMs. Multiple attempts have been accomplished in the literature to

combine HMM and NN. In Franzini et al. [1990] an NN is trained to approximate the emission

distribution of an HMM. Bengio et al. [1990] and Bengio et al. [1991] preprocess the data with

an NN and then use the output as the observed process of a discrete HMM. Krogh and Riis

[1999] proposes Hidden neural networks where NNs are used to parameterize Class HMM, an

HMM with a distribution over classes assigned to each state. In neuroscience, Aitchison et al.

[2014] explores the idea of updating measures of uncertainty over the weights in a mathematical

model of a neuronal network as part of a "Bayesian Plasticity" hypothesis of how synapses

take uncertainty into account during learning. However, they did not focus on artificial neural

networks and the computational challenges of using them for data analysis when network weights

are statistically modelled as being time-varying.

Bayesian DropConnect & DropOut. DropConnect [Wan et al., 2013] and DropOut [Sri-

vastava et al., 2014] are well-known techniques to prevent NN from overfitting. Kingma et al.

[2015] proposes variational DropOut where they combined fully factorized Gaussian variational

approximation with the local reparameterization trick to re-interpret DropOut with continuous

noise as a variational method. Gal and Ghahramani [2016] extensively treat the connections

between DropOut and Gaussian processes, and they show how to train NNs with DropOut (or

DropConnect [Mobiny et al., 2019]) through a variational Bayes setting. Variational DropConnect

has several common aspects with the cited works, but the whole regularization is induced by the

variational approximation’s choice and the corresponding reformulation of the reparameterization

trick, which is a novel approach.
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Bayesian filtering. There are multiple examples of NN training through Bayesian filtering

[Puskorius and Feldkamp, 1991, 1994, 2001, Shah et al., 1992, Feldkamp et al., 2003, Ollivier

et al., 2018]. In particular, the recent work of Aitchison [2018] proposed AdaBayes and AdaBayes-

SS where updates resembling the Kalman filter are employed to model the conditional distribution

over a weight of an NN given the data and the states of all the other weights. However, the

main difference with HMNN is the dynamical evolution of the underlying NN, indeed Bayesian

filtering methods for NN do not consider any change in time.

Continual learning. There are multiple similarities between the proposed work and continual

learning methods. This paragraph gives a quick overview of the most popular ones. Elastic Weight

Consolidation (EWC) [Kirkpatrick et al., 2017] uses an L2-regularization that guarantees the

weights of the NN for the new task being in the proximity of the ones from the old task. Variational

continual learning (VCL) [Nguyen et al., 2017] learns a posterior distribution over the weights of

an NN by approximating sequentially the true posterior distribution through variational Bayes

and by propagating forward the previous variational approximation (this is like setting the

transition kernel of the HMNN to a Dirac delta). Online Laplace approximation [Ritter et al.,

2018] proposes a recursive update for the parameters of a Gaussian variational approximation

which involves the Hessian of the newest negative log-likelihood. None of the cited techniques

builds dynamic models, and even if this could be solved by storing the weights at each training step

there is no forgetting, meaning that EWC, VCL, Online Laplace focus on overcoming catastrophic

forgetting (see section 1.2) and they are not able to avoid outdated information. Lastly, the most

similar procedure to HMNNs is the one proposed by Kurle et al. [2019], where the authors

perform model adaption with Bayes forgetting through the application of a stochastic kernel.

However, HMMs are not even cited and the form of the kernel and variational approximation

are straightforward (they do not use mixtures). For these reasons the proposed work differs from

Kurle et al. [2019] not only from a presentation point of view but also in terms of generalization

properties, in the sense that Kurle et al. [2019] is a simplified HMNN.

5.1.1 Contributions

This chapter develops an evolving-in-time neural network called a Hidden Markov neural network

(HMNN), which is able to forget the useless information and adapt to new changes in the data.

The main contributions of HMNNS are the following.

• They are FHMMs where the Markov chain models the evolution in time of the weights

of a neural network and the emission distribution is given by the output of the neural

network. This motivates the forgetting procedure proposed in Kurle et al. [2019] through

the well-known HMMs and extends it to any form of transition kernel.
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• The algorithm Bayes by Backprop [Blundell et al., 2015] is used sequentially to train

HMNNs and the reparameterization trick [Graves, 2011, Kingma and Welling, 2013,

Blundell et al., 2015] is reformulated for a class of Gaussian mixtures, which induces

a regularization (i.e. penalizing the complexity of the neural network) over the neural

network similar to DropConnect, called a Variational DropConnect.

• Experimentally, Variational DropConnect outperforms Bayes by Backprop on MNIST, where

the performance is measured in terms of classification accuracy.

• They compare favourably against multiple baselines in conceptual drift applications (i.e.

the statistical properties of the data change over time).

• The proposed model can be used to forecast the next frame in a video, and it performs better

than competitors like Long short-term memory (LSTM).

5.2 Hidden Markov Neural Networks

A factorial hidden Markov model (Wt,Dt)t≥0, as in subsection 2.1.1, with latent state-space RV ,

is called Hidden Markov Neural Network (HMNN) if the hidden process (Wt)t≥0 outlines the

evolution over time of the weights of a neural network. Here the finite set V collects the location

of each weight, hence v ∈ V can be thought of as a triplet (l, i, j) saying that the weight Wv
t

is a weight of the NN at time t, and precisely related to the connection of the hidden unit i

(or input feature i if l −1 = 0) in the layer l −1 with the hidden unit j in the layer l (which

might be the output layer). Similarly to chapter 2, use the notation: λ0(·) for the probability

density function of W0 (initial density); p(wt−1, ·) for the conditional probability density function

of Wt given Wt−1 = wt−1 (transition density of the Markov chain); g(wt,Dt) for the conditional

probability mass or density function of Dt given Wt = wt (emission density). Remark that, as in

subsection 2.1.1, an HMNN is also an FHMM hence the weights evolve independently from each

other:

p(w′,w)= ∏
v∈V

pv((w′)v,wv), w′,w ∈RV .

There is no restriction on the form of the neural network and the data Dt, however, HMNN is

presented with feed-forward neural networks and under a supervised learning scenario, where

the observed process Dt is composed by an input xt and an output yt, such that the neural

network associated to the weights Wt maps the input into a probability density or mass function

over the output space, which is done by the emission density g(wt,Dt) for Wt = wt. Figure 5.1

shows the evolution over time of an HMNN and the input-output flow when Dt is composed by an

input xt and an output yt.

Throughout the chapter, it is assumed for simplicity that the considered probability measures

have the Lebesgue measure on RV as reference measure. Moreover, the same notation is used for
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Dt = (xt, yt)

. . . Wt−1

Dt−1

Wt

Dt

Wt+1

Dt+1

. . .

W (·,·,1)
t W (·,·,2)

t W (·,·,3)
t

xt yt

Figure 5.1: On the bottom: diagram explaining the evolution over time of an HMNN. Lines
between Wt−1 and Wt stand for the multidimensional nature of Wt, while lines between Wt and
Dt are used to represent the input-output flow through the NN when Dt = (xt, yt). On the top: the
input-output flow when the NN has three layers.

both the density and the corresponding probability measure, for instance, λ0 refers to both the

probability density and the probability measure (the use of one or the other should be clear from

the context).

5.2.1 Filtering algorithm for HMNN

As in subsection 2.1.2, denote with πt the filtering distribution of the HMNN, i.e. the conditional

distributions of Wt given the data D1, . . . ,Dt. The filtering distribution is computed through

recursion (2.4), which is included below for completeness.

(5.1) π0 :=λ0, πt :=Ftπt−1, Ft :=CtP, t ∈ {1, . . . ,T},
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where given the probability measure ρ (with density ρ) the “prediction” operator P and the

“correction” operator Ct are defined as:

Pρ(A) :=
∫
IA(w)p(w′,w)ρ(w′)dw′dw, Ctρ(A) :=

∫
IA(w)g(w,Dt)ρ(w)dw∫

g(w,Dt)ρ(w)dw
, A ∈σ(RV ).

Recursion (5.1) is intractable for any chosen non-linear architecture of the underlying neural

network.

The aim is then to build an approximate filtering recursion on the same flavour of the Graph

Filter, see subsection 3.3.2. Variational inference can be used to approximate sequentially the

target distribution πt with a variational approximation qθt belonging to a pre-specified class of

distributions Q. The approximate distribution qθt is uniquely identified inside the class Q by a

vector of parameters θt, which is picked up by minimizing a Kullback-Leibler (KL) divergence

criteria:

qθt = arg min
qθ∈Q

KL(qθ||πt)= arg min
qθ∈Q

KL(qθ||CtPπt−1),(5.2)

the above equation is choosing the q ∈Q closest to the filtering distribution πt.

However, equation (5.2) is still intractable because it requires the filtering distribution at

time t−1, i.e. πt−1, which is approximated by qθt−1 and not available in closed form.

Under a proper minimization procedure, qθt ≈πt when πt−1 is known, qθt−1 ≈πt−1 when πt−2

is known, and so on. Given that π0 is the prior knowledge λ0 on the weights before training, a

qθ1 approximating π1 using (5.2) can be found and propagated forward by following the previous

logic. In this way an HMNN is trained sequentially using (5.2), by substituting the filtering

distribution with the latest variational approximation. The approximated filtering recursion is

then defined as follows:

(5.3) qθ0 :=λ0, qθt :=VQCtPqθt−1 t ∈ {1, . . . ,T},

where the operators P,Ct are as in recursion (5.1) and for a probability distribution ρ the operator

VQ is defined as follows:

VQ(ρ) := arg min
qθ∈Q

KL(qθ||ρ),

where Q is a chosen class of probability distributions as explained before. Note that there is the

implicit assumption that λ0 ∈Q.

Notes on the KL-divergence The Kullback-Leibler divergence can be rewritten as:

KL(qθ||CtPπt−1)= const.+KL(qθ||Pπt−1)−Eqθ(w) [log(g(w,Dt))] ,(5.4)

indeed for a general time step t:

KL(qθ||CtPπt−1) := Eqθ(w) [log(qθ(w))− log(CtPπt−1(w))]

= const.+Eqθ(w) [log(qθ(w))− log(g(w,Dt))− log(Pπt−1(w))]

= const.+KL(qθ||Pπt−1)−Eqθ(w) [log(g(w,Dt))] ,
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where:

logCtPπt−1(w)= log
(

g(w,Dt)Pπt−1(w)∫
g(w,Dt)Pπt−1(w)dw

)
= log(g(w,Dt))+ log(Pπt−1(w))− log

(∫
g(w,Dt)Pπt−1(w)dw

)
.

Note that for recursion 5.3 πt is substituted by qθt .

Alternatively, one could maximize the ELBO:

ELBO(θ;Dt) := Eqθ(w) [log(g(w,Dt))]−KL(qθ||Pπt−1).

5.2.2 Sequential reparameterization trick

The minimization procedure exploited in recursion (5.3) cannot be solved in a closed form and

a suboptimal solution can be found through gradient descent. This requires an estimate of the

gradient of KL(qθ||CtPqθt−1).

As explained in Blundell et al. [2015], derivatives of expectations can be written as expec-

tations of derivatives under some conditions, this is summarized in the following proposition

(proposition 1 of Blundell et al. [2015]).

Proposition 5.1. Let ε be a random variable having a probability density given by qθ(w) and let

w = h(θ,ε) where h(θ,ε) is a deterministic function. Suppose further that the marginal probability

density of w, qθ(w), is such that qθ(w)dw = ν(ε)dε. Then for a function f with derivatives in w:

∂Eqθ [ f (w,θ)]
∂θ

= Eν
[
∂ f (w,θ)
∂w

∂w
∂θ

+ ∂ f (w,θ)
∂θ

]
.

Proof. The proof is provided in Blundell et al. [2015]. �

Hence if the variational approximation qθ(w) is chosen such that it can be rewritten as a

probability distribution ν through a deterministic transformation h, i.e. w = h(θ,ε), then:

∂KL(qθ||CtPqθt−1)
∂θ

= Eν
[
∂ log(qθ(w))

∂w
∂w
∂θ

+ ∂ log(qθ(w))
∂θ

− ∂ log
(
Pqθt−1(w)

)
∂w

∂w
∂θ

]
w=h(θ,ε)

−Eν
[
∂ log(g(w,Dt))

∂w
∂w
∂θ

]
w=h(θ,ε)

(5.5)

where (5.4) is used with qθt−1 instead of πt−1 to propagate forward the approximation. This

is a reformulation of the reparameterization trick [Opper and Archambeau, 2009, Kingma

and Welling, 2013, Rezende et al., 2014, Blundell et al., 2015], and precisely an application of

proposition 5.1 where f is log(qθ(w))− log
(
CtPqθt−1(w)

)
.

Given (5.5) the expectation Eν can be estimated via straightforward Monte Carlo sampling:

∂KL(qθ||CtPqθt−1)
∂θ

≈ 1
N

N∑
i=1

{[
∂ log(qθ(w))

∂w
∂w
∂θ

+ ∂ log(qθ(w))
∂θ

− ∂ log
(
Pqθt−1(w)

)
∂w

∂w
∂θ

]
w=h(θ,ε)

−
[
∂ log(g(w,Dt))

∂w
∂w
∂θ

]
w=h(θ,ε)

}
ε=ε(i)

(5.6)
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with ε(i) ∼ ν. Given the Monte Carlo estimate of the gradient, the parameters θ, related to the

variational approximation at time t, can be updated according to any gradient descent technique.

Algorithm 6 displays this procedure and, for the sake of simplicity, the algorithm is written with

an update that follows a vanilla gradient descent.

Algorithm 6 Approximate filtering recursion

Require: T;λ0(·); (pv(·, ·))v∈V ; (Dt)t=1,...,T ; (θ(0)
t )t=1,...,T ;h(·, ·); l

1: Set: π̃0 =λ0
2: for t = 1, . . . ,T do
3: Set the initial condition: θt = θ(0)

t
4: repeat
5: ε(i) ∼ ν, i = 1, . . . , N
6: Estimate the gradient ∇ with (5.6) and θ = θt
7: Update the parameters: θt = θt + l∇
8: until maximum number of iterations
9: Set: π̃t = qθt

10: return (θt)t=1,...,T

As suggested in the literature [Graves, 2011, Blundell et al., 2015], the cost function in (5.4)

is suitable for minibatches optimization. This might be useful when, at each time step, Dt is

made of multiple data and so a full computation of the gradient is computationally prohibitive.

5.2.3 Gaussian case

A fully Gaussian model, i.e. when both the transition kernel and the variational approximation

are Gaussian distributions, is not only convenient because the form of h(θ,ε) is trivial, but also

because there exists a closed-form solution for Pqθt−1 (w). Another appealing aspect of the Gaussian

choice is that similar results hold for the scale mixture of Gaussians, which allows us to use a

more complex variational approximation and a transition kernel of the same form as the prior in

Blundell et al. [2015]. In this chapter we use the notation N (·|m, s2) for a Gaussian density with

mean m and variance s2, while when sampling use N(m, s2) for the Gaussian distribution with

mean m and variance s2 and Be(γ) for the Bernoulli distribution with parameter γ.

Start by considering the variational approximation. Choose qθ := ⊗
v∈V qv

θ
where qv

θ
is a

mixture of Gaussian with parameters θv = (mv, sv) and γv hyperparameter. Precisely, for a given

weight wv of the feed-forward neural network:

qv
θ(wv) := γvN

(
wv|mv, (sv)2)+ (1−γv)N

(
wv|0,(sv)2)

,(5.7)

where γv ∈ (0,1], mv ∈ R, (sv)2 ∈ R+. This technique is called variational DropConnect because

it can be interpreted as setting around zero with probability 1−γv the weight in position v of

the neural network and so it plays a role of regularization similar to Wan et al. [2013]. Under

variational DropConnect the deterministic transformation h(θ,ε) is still straightforward. Indeed,
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given that qθ factorises, then h(θ,ε) = (hv(θv,εv))v∈V (each wv depends only on θv ) and wv is

distributed as (5.7) which is equivalent to consider:

wv = ηmv +ξsv, with η∼Be(γv),ξ∼N(0,1).

Hence hv(θv,εv)= ηmv +ξsv, where θv = (mv, sv) and εv = (η,ξ) with η Bernoulli with parameter

γv and ξ standard Gaussian, meaning that it is enough to sample independently from a Bernoulli

distribution and a Gaussian distribution. The collection of hyperparameters (γv)v∈V represents

the variational DropConnect rate per each weight in the NN and generally γv = γṽ per each

v, ṽ ∈V . Remark that (γv)v∈V must be considered as fixed and cannot be learnt during training,

because from (5.5) the distribution of ε has not to be dependent from the learnable parameters

(this can be relaxed with the concrete distribution [Maddison et al., 2016]).

Consider now the transition kernel. It is chosen to be a scale mixture of Gaussians with

parameters π,α,σ, c,µ:

p(w′,w) :=πN
(
w|µ+α(w′−µ),σ2IV

)+ (1−π)N
(
w|µ+α(w′−µ), (σ2/c2)IV

)
,(5.8)

where π ∈ (0,1), µ ∈ RV , α ∈ (0,1), σ ∈ R+, IV is the identity matrix on RV ,V , c ∈ R+ and c > 1.

Intuitively, the transition kernel tells how the weights are expected to be in the next time step

given the states of the weights at the current time. It can be interpreted, along with the previous

variational approximation, as playing the role of an evolving prior which constraints the new

distribution in regions that are determined from the previous training step. The choice of the

transition kernel is crucial. A too conservative kernel would constrain too much the training of

the weights and the algorithm would not be able to learn patterns in new data. On the contrary,

a too flexible kernel could just forget what was learnt before and adapt to the new data only.

The term Pqθt−1(w) has a closed form solution when transition kernel and the variational

approximation are as in (5.7) and (5.8). Consider a general weight v ∈ V and call (Pqθt−1)v the

marginal density of Pqθt−1 on the component v. If mv
t−1, sv

t−1 are the estimates of mv, sv at time

t−1 then:

(Pqθt−1 )v(wv)= γvπN
(
wv|µv −α(µv −mv

t−1),σ2 +α2(sv
t−1)2

)
+ (1−γv)πN

(
wv|µv −αµv,σ2 +α2(sv

t−1)2
)

+γv(1−π)N
(
wv|µv −α(µv −mv

t−1),σ2/c2 +α2(sv
t−1)2

)
+ (1−γv)(1−π)N

(
wv|µv −αµv,σ2/c2 +α2(sv

t−1)2
)
.

(5.9)
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The closed form in equation (5.9) is derived from the following integral:

(Pqθt−1)v(wv)=
∫

p(w̃v,wv)(qθt−1)v(w̃v)dw̃v

= γvπ

∫
N

(
wv|µv +α(w̃v −µv),σ2)

N
(
w̃v|mv

t−1, (sv
t−1)2)

dw̃v

+ (1−γv)π
∫

N
(
wv|µv +α(w̃v −µv),σ2)

N
(
w̃v|0,(sv

t−1)2)
dw̃v

+γv(1−π)
∫

N
(
wv|µv +α(w̃v −µv),σ2/c2)

N
(
w̃v|mv

t−1, (sv
t−1)2)

dw̃v

+ (1−γv)(1−π)
∫

N
(
wv|µv +α(w̃v −µv),σ2/c2)

N
(
w̃v|0,(sv

t−1)2)
dw̃v,

(5.10)

the formulation in (5.9) can be achieved by applying the following lemma to each element of the

sum in (5.10).

Lemma 5.1. Consider a Gaussian random variable W ∼N
(
µ1,σ2

1
)

and let:

(5.11) W̃ =µ2 −α(µ2 −W)+σ2
2ξ,

with ξ∼N(0,1). Then the distribution of W̃ is again Gaussian:

W̃ ∼N(µ2 −α(µ2 −µ1),σ2
2 +α2σ2

1).

Proof. Note that the distribution of W̃ |W is a Gaussian distribution, so the marginal distribution

of W̃ is going to be computed with an integral of the same form of the ones in (5.10). The

distribution of W̃ can be directly computed by noting that W̃ is a linear combination of two

Gaussians and a scalar, and consequently it is Gaussian itself. The lemma is proved by computing

the straightforward mean and variance from formulation (5.11). �

Note that (5.9) is again a scale mixture of Gaussians, where all the variances are influenced

by the variances at the previous time step according to α2. On the one hand, the variational

DropConnect rate γv tells how to scale the mean of the Gaussians according to the previous

estimates mv
t−1. On the other hand, π controls the entity of the jumps by allowing the weights

to stay in place with a small variance σ2/c2 and permitting big-jumps with σ2 if necessary. As

in Blundell et al. [2015] the variance is not considered in practice because of underflow issues,

hence a transformation s̃t is used, precisely: st = log(1+exp(s̃t)).

5.3 Numerical results

In this section, the performances of HMNNs are going to be tested empirically. The first aspect to

test is about the variational approximation form: the aim is to prove that variational DropConnect,

i.e. using (5.7) as variational approximation, yields better performance than Bayes by Backprop

[Blundell et al., 2015] on MNIST [LeCun et al., 1998]. The second aspect concerns a concept
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drift scenario, which refers in the machine learning literature to the case where the statistical

properties of the target variable change over time. Firstly, the ability of HMNNs to retrieve the

evolution of the true parameters is tested in a simple conceptual drift scenario [Kurle et al., 2019].

In particular, this shows that using a more complex variational approximation, compared to the

ones in Kurle et al. [2019], does not affect for worse the parameters retrieval procedure. The

experiment is then followed by a more complex conceptual drift framework, which is built from

MNIST. Under this setting HMNNs are compared with multiple continual learning baselines

[Kirkpatrick et al., 2017, Nguyen et al., 2017, Kurle et al., 2019]. The final experiment shows that

HMNNs can be also applied in one-step-ahead forecasting for time series, precisely a next frame

prediction in the dynamic video texture of a waving flag is considered [Chan and Vasconcelos,

2007, Boots et al., 2008, Basharat and Shah, 2009]. As for Blundell et al. [2015] the studies are

focused on simple feed-forward neural networks.

The experiments were run on three different clusters: BlueCrystal Phase 4 (University of

Bristol), Cirrus (one of the EPSRC Tier-2 National HPC Facilities) and The Cambridge Service

for Data Driven Discovery (CSD3) (University of Cambridge).

Computational cost When running the experiments, the computational cost per time step

of an HMNN was comparable with Bayes by Backprop. Indeed, for a fixed time step, training

HMNN is equivalent to use Bayes by Backprop with a more complicated prior and variational

approximation.

5.3.1 Variational DropConnect

The experiment aims to understand if using a Gaussian mixture as variational approximation

can help to improve Bayes by Backprop.

Training is performed on the MNIST [LeCun et al., 1998] dataset, consisting of 60000

images of handwritten digits with size 28 by 28, where each image is preprocessed by di-

viding each pixel by 126. 50000 images are used as training set and 10000 as the valida-

tion set. The test set is composed by 10000 images. MNIST dataset can be downloaded from

“http://yann.lecun.com/exdb/mnist/” .

As for Blundell et al. [2015] an ordinary feed-forward neural network without any convolu-

tional layers is used. The architecture is given by: the vectorized image as input, two hidden

layers with 400 rectified linear units [Nair and Hinton, 2010, Glorot et al., 2011] and a softmax

layer on 10 classes as output. A cross-entropy loss and a fully Gaussian HMNN with a single time

step are considered. The Variational Dropconnect technique is applied only to the internal linear

layers of the network, i.e. the initial and the final layers are excluded from variational Drop-

Connect as for DropConnect [LeCun et al., 1998]. Observe that a single time step HMNN with

γv = 1,α= 0 and µ= 0 (vector of zeros) is equivalent to Bayes by Backprop. For this reason, the

proposed implementation of HMNN includes Bayes by Backprop, and both methods can be tested
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with the same algorithm by simply considering a grid of values of γv that includes both γv = 1

and γv 6= 1. Set then T = 1,α = 0,µ = 0 and consider γv ∈ {0.25,0.5,0.75,1}, π ∈ {0.25,0.5,0.75},

− log(σ) ∈ {0,1,2}, , log(c) ∈ {6,7,8}, learning rate l ∈ {10−5,10−4,10−3}. Training is performed on

about 50 combination of the parameters (γv,π,σ, c) and the learning rate, which are randomly ex-

tracted from the pre-specified grids. For each value of γv we report in Figure 5.2 the performance

on the validation set of the three best models.
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Figure 5.2: Performance of HMNN (and Bayes by Backprop) on the validation set of a Bayes by
Backprop with and without variational DropConnect. The plot on the bottom is a zoom-in of the
plot on the top.

Model selection is done according to the validation score for each possible value of γv. Test

performances are reported in Table 5.1. We find out that the smaller the values of γv the better

the performance.

Table 5.1: Classification accuracy of HMNN (and Bayes by Backprop) on MNIST’s test set
(the bigger is the better). γv = 1 refers to the case of Bayes by Backprop without variational
DropConnect.

Parameter value Accuracy
γv = 0.25 0.9838
γv = 0.5 0.9827
γv = 0.75 0.9825
γv = 1 [Blundell et al., 2015] 0.9814
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5.3.2 Concept drift: Logistic regression

In this subsection, HMNN and the adaption with Ornstein-Uhlenbeck process proposed by

Kurle et al. [2019] are compared on a simple concept drift scenario. As in Kurle et al. [2019] a

2-dimensional logistic regression problem with evolving weights is considered. Precisely, there

are two weights which evolves with the following laws:

w(1)
t = 10sin(βt) and w(2)

t = 10cos(βt),

where β= 5deg/sec (degrees over seconds) and t ≥ 0.

Consider then 700 time steps and each time step being composed by 10000 data which are

generated in the following manner:

xk
t ∼U(−3,3), yk

t ∼Be(sigmoid(xk
t ,wt))

where U(a,b) stands for the Uniform distribution on the interval [a,b]⊆R, wt = (w(1)
t ,w(2)

t ) and

sigmoid(xk
t ,wt) is the sigmoid function with weights wt and input xk

t . The above procedure builds

the training set to be used to train HMNN and the method proposed by Kurle et al. [2019]. Note

that this is enough for the experiment, indeed the aim of the section is to empirically test how

HMNNs do in recovering the oscillating nature of the true weights compared to the method in

Kurle et al. [2019]. Studies on the prediction quality of HMNNs for concept drift are left to the

next subsection.

Given the training set, a fully Gaussian HMNN is run under multiple combinations of

hyperparameters. The experiments showed recovery of the sinusoidal evolution of the weights in

each combination. The hyperparameters setting is given by: T = 700,α= 1,µ= mt−1 (to encourage

a strong memory of the past), γv = 0.75, π= 0.5, − log(σ)= 0, − log(c)= 6, learning rate l = 10−3,

the results are reported in figure 5.3, along with the output from Kurle et al. [2019]. Figure 5.3

not only displays that both methods are able to recover the oscillating nature of the ground truth,

but also that the mean estimates from HMNNs are generally noisier than the ones from Kurle

et al. [2019]. It can be concluded that using a more complicated variational approximation does

not affect the recovery of the ground truth, or at least not in the case of a simple conceptual drift.

5.3.3 Concept drift: Evolving classifier on MNIST

In this subsection, HMNNs are compared with continual learning baselines when the data

generating distribution is dynamic. This is similar to the previous subsection, indeed the data

generating distribution changes over time. However, a simple conceptual drift is not enough,

hence a dataset is artificially generated from MNIST with the following procedure.

1. As for subsection 5.3.1 each image is preprocessed by dividing each pixel by 126.

2. Define two labellers: C1, naming each digit with its label in MNIST; C2, labelling each digit

with its MNIST’s label shifted by one unit, i.e. 0 is classified as 1, 1 is classified as 2, . . . , 9

is classified as 0.
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Figure 5.3: Mean of the approximate posterior distributions over 700 steps, credible intervals are
built from multiple runs. Orange stands for w(1)

t , blue stands for w(2)
t and green is used for the

bias. On the top, HMNN. On the bottom, adaption with Ornstein-Uhlenbeck process by Kurle
et al. [2019].

3. Consider 19 time steps where each time step t is associated with a probability f t ∈ [0,1]

and a portion of the MNIST’s dataset Dt.

4. At each time step, t randomly label each digit in Dt with either C1 or C2 according to the

probabilities f t,1− f t.

The resulting (Dt)t=1,...,19 is a collection of images where the labels evolve in t by switching

randomly from C1 to C2 and vice-versa. The above procedure builds both training, validation and

test sets. The sample size of each time step is 10000 for training, 5000 for validation and and

5000 for test (the desired sample size is obtained by resampling from MNIST). To validate and

test the models the mean classification accuracy over time is considered:

(5.12) A (D1:T ,D̂1:T ) := 1
T

T∑
t=1

1
card(Dt)

∑
x,y∈Dt

Iy( ŷ(x)),

where Dt is the generated dataset of images x and labels y, D̂t is the collection of images x and

predictions ŷ(x) on the images x using the considered model, card(Dt) is the number of elements

in Dt, i.e. the total number of labels or images.

In such a scenario, one would ideally want to be able to predict the correct labels by learning

sequentially a classifier that is capable of inferring part of the information from the previous

time step and forgetting the outdated one. Remark that when f t = 0.5 the best is a classification

accuracy of 0.5, because C1 and C2 are indistinguishable.
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Figure 5.4: On the top, performances on the validation set of time of evolving classifiers obtained
with different algorithms. BBP refers to Bayes by Backprop trained sequentially. BBP (T=1)
refers to training of Bayes by Backprop on the whole dataset. On the bottom, in brown evolution
in time of the probability f t of choosing the labeller C1; in yellow the value 0.5.

Consider a fully Gaussian HMNN with µ = mt−1, to encourage a strong memory on the

previous posterior distribution. The evolving in time NN is composed by the vectorize image as

input, two hidden layers with 100 rectified linear units and a softmax layer on 10 classes as output

with a cross-entropy loss. The Variational DropConnect technique is again applied to the internal

linear layers of the network only. The parameters α ∈ {0.25,0.5,0.75,1} and γ ∈ {0.25,0.5,0.75,1}

are selected through the validation set (using the metric (5.12)) while the other parameters are:

π= 0.5,− log(σ)= 2,log(c)= 4,γ= 10−3, N = 1. Other values for π,σ, c,γ, N were tested, but there

were no significant changes in the performances. All the possible combinations of α,γ are used

and training is pursued for 19 time steps and 100 epochs per each Dt. Remark that a single Dt is

a collection of images and labels, which can be seen as a whole dataset itself.

The method is compared with four algorithms. The architecture of the NN is the same as for

the HMNN.
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• Sequential Bayes by Backprop. At each time step t training is pursued for 100 epochs on

Dt. The parameters are π= 0.5,− log(σ)= 2,log(c)= 4,γ= 10−3, N = 1. The Bayesian NN at

time t is initialize with the previous estimates mt−1, st−1.

• Bayes by Backprop on the whole dataset. Training is run for 100 epochs on the whole

dataset (no time, the sample size is 190000) a Bayesian NN with Bayes by Backprop. The

parameters are π= 0.5,− log(σ)= 2,log(c)= 4,γ= 10−3, N = 1.

• Elastic Weight Consolidation. At each time step t training is run for 100 epochs on Dt. The

tuning parameter is chosen from the grid {10,100,1000,10000} through the validation set

and the metric (5.12). ADAM is used to update the parameters. Remark that this method

is not Bayesian, but it is a well-known baseline for continual learning.

• Variational Continual Learning. At each time step t training is pursued for 100 epochs

on Dt. The learning rate is extracted from the grid {10−3,10−4,10−5} through validation

and the metric (5.12). The method does not use a coreset, because none of the considered

methods is rehearsal.

To test the method the mean over time of the classification accuracy is reported in Table

5.2. For HMNN, Kurle et al. [2019], Bayes by Backprop, EWC and VCL the parameters that

perform the best on validation are chosen and the corresponding accuracy is then reported in the

table. HMNN, the model by Kurle et al. [2019] and a sequential training of Bayes by Backprop

perform the best. It is not surprising that continual learning methods fall behind. Indeed, EWC

and VCL are built to preserve knowledge on the previous tasks, which might mix up C1 and C2

and confuse the network.

Table 5.2: Classification accuracy for the evolving classifier (the bigger is the better). BBP refers
to Bayes by Backprop trained sequentially. BBP (T=1) refers to a training of Bayes by Backprop
on the whole dataset.

Model Accuracy
BBP (T=1) 0.503
VCL 0.744
EWC 0.760
BBP 0.780
Kurle et al. Kurle et al. [2019] 0.784
HMNN 0.786

5.3.4 One-step ahead prediction for flag waving

The latest step is testing HMNNs in predicting the frames of a video. The dataset is a sequence

of images extracted from a video of a waving flag [Basharat and Shah, 2009, Venkatraman et al.,
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2015].

The idea is to create an HMNN where the neural network at time t can predict the next

frame, i.e. the NN maps frame t to frame t+1. To measure the performance the metric suggested

in Venkatraman et al. [2015] is used. This is a standardized version of the RMSE on a chosen

test trajectory:

(5.13) M (y1:T , ŷ1:T ) :=
√√√√∑T

t=1 ‖yt − ŷt‖2
2∑T

t=1 ‖yt‖2
2

,

where y1:T is the ground truth on frames 1, . . . ,T and ŷ1:T are the predicted frames. Unless

specified differently, ŷ1:T is a sequence of one step ahead predictions. To have a proper learning

procedure multiple frames per time step are need, otherwise, the neural network would just

learn the current frame. To overcome this problem a sliding window with 36 frames is used,

meaning that at time step t training is pursued on predicting frames t−35, . . . , t from frames

t−36, . . . , t−1, with t > 36. The choice of the length for the sliding window was empirical, multiple

lengths were considered and 36 was the first one that was not overfitting on the data inside the

window (HMNNs along with baselines are all considered in such choice).

The preprocessing phase is similar to MNIST: the video is converted in a sequence of frames

in grayscale, in addition, each frame is divided by 126 and converted in a vector form. The

dimension is reduced with PCA (130 principal components). A total of 300 frames is used, the

first 100 are used for training, validation is pursued on the frames from 100 to 150 and the last

150 frames are used for testing. Note that a single video is available, hence validation and test

must be performed online, meaning that validation and test sets are also part of the training, but

they are not seen in advance. Precisely, during validation training is pursued on the full path

from 1 to 150, then the prediction is made on the frames from 100 to 150 using HMNN from time

99 to 149. The validation score is given by the metric (5.13) on the considered path, which allows

model selection. Then training flows on the next frames and the test performance equivalently.

Table 5.3: Metric M value on the test set (the smaller is the better).

Model M

Trivial Predictor 0.2162
LSTM 0.2080
DropConnect 0.2063
BBP 0.1932
HMNN 0.1891

Consider a fully Gaussian HMNN with a simple architecture of three layers with 500, 20, 500

rectified linear units, the vectorized previous frame as input and the vectorized current frame as

output, and an MSE loss. Apply Variational DropConnect to all the linear layers. The parameters
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HMNN BBP dropConnect LSTM frame t−1 frame t

Figure 5.5: The grey columns show the prediction for different algorithms. The orange column
shows the target frame for prediction and the purple column shows the frame at the previous
time step. The rows display different frames, i.e. different time steps.

α ∈ {0.25,0.5,0.75}, γ ∈ {0.3,0.8,1}, π= {0.25,0.5,0.75} are chosen according to the validation set

while µ= mt−1 to encourage a strong memory of the past. For the other parameters, the setting

− log(σ)= 2,log(c)= 8, l = 10−4, N = 1 was found to perform the best. 150 epochs are used on each

sliding window.

HMNNs are compared with four models: Bayes by Backprop trained sequentially on the

sliding windows, DropConnect trained sequentially on the sliding windows, LSTM trained with

the same sliding window size, a trivial predictor that uses the previous frame as forecasting for the

current frame. The architectures for sequential Bayes by Backprop and sequential DropConnect

are the same as HMNN. For implementation purposes, an architecture of three layers with 500,

500, 500 rectified linear units is used for the LSTM.

• Sequential Bayes by Backprop. At each time step t training is pursued on the current

sliding window for 150 epochs. The parameter π= {0.25,0.5,0.75} is chosen with grid search

and − log(σ) = 2,log(c) = 8, l = 10−4, N = 1. Other choices of σ, c, l, N do not improve the

performance. The Bayesian neural network at time t is initialized with the estimates at

time t−1.
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• Sequential DropConnect. At each time step t training is done on the current sliding window

for 150 epochs. The learning rate l = {10−3,10−4,10−5} is chosen with grid search using the

validation score. The neural network at time t is initialized with the estimates at time t−1.

This is not a Bayesian method.

• LSTM. The window size is set to 36 and the learning rate l ∈ {10−3,10−4,10−5} is chosen

with grid search using the validation score. This is not a Bayesian method.

• Trivial predictor. Frame t is predicted with frame t−1.This trivial baseline is included as

an indicator of overfitting on the current window.

Figure 5.5 compares HMNN predictions with the considered baselines: Bayes by Backprop

trained sequentially on the sliding windows (column named BBP), DropConnect trained sequen-

tially on the sliding windows (column named DropConnect), LSTM trained with the same sliding

window size (column named LSTM), a trivial predictor that uses the previous frame as forecasting

for the current frame (column named: frame t−1). Notice that LSTM is prone to overfit on the

sliding window and so to predict frame t with the latest frame seen without any uncertainty.

Similar issues appear in sequential DropConnect. This unwanted behaviour is probably due to

the absence of uncertainty quantification and so overconfidence in the considered predictions.

HMNN and sequential BBP are less certain about prediction and they create blurred regions

where they expect the image to change. This phenomenon is particularly evident in the last

row of Figure 5.5. Table 5.3 summarizes the performances using metric (5.13). Overall, HMNN

performs better than the baselines and it is directly followed by the sequential BBP.
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6
INFERENCE IN STOCHASTIC EPIDEMIC MODELS VIA MULTINOMIAL

APPROXIMATIONS

Section 6.1 introduces the problem, what are the common approaches in the literature to perform

inference in compartmental models and the contribution of this thesis in this framework. Section

6.2 sets the mathematical framework. Section 6.3 proposes the multinomial approximation, by

showing what are the main step and results to be proved. Section 6.4 concludes the chapter with

epidemiological experiments. As already mentioned, a significant part of this chapter has been

published in AISTAT2021 and it is available in Whiteley and Rimella [2021].

6.1 Introduction and literature review

Compartmental models are used for predicting the scale and duration of epidemics, estimat-

ing epidemiological parameters such as reproduction numbers, and guiding outbreak control

measures [Brauer, 2008, O’Neill, 2010, Kucharski et al., 2020]. They are increasingly important

because they allow joint modelling of disease dynamics and multimodal data, such as medical test

results, cell phone and transport flow data [Rubrichi et al., 2018, Wu et al., 2020], census and de-

mographic information [Prem et al., 2020]. However, statistical inference in stochastic variants of

compartmental models is a major computational challenge [Bretó, 2018]. The likelihood function

for model parameters is usually intractable because it involves summation over a prohibitively

large number of configurations of latent variables representing counts of subpopulations in

disease states which cannot be observed directly.

This has lead to the recent development of sophisticated computational methods for approxi-

mate inference involving various forms of stochastic simulation [Funk and King, 2020]. Examples

include Approximate Bayesian Computation (ABC) [Kypraios et al., 2017, McKinley et al., 2018,
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Brown et al., 2018, 2016], Data Augmentation Markov Chain Monte Carlo (MCMC) [Lekone

and Finkenstädt, 2006], Particle Filters [Murray et al., 2018], Iterated Filtering [Stocks, 2019],

and Synthetic Likelihood [Fasiolo et al., 2016]. These methods continue to have a real public

health impact, for example, the ABSEIR R package of [Brown et al., 2018] features in the UK

COVID-19 surveillance protocols [de Lusignan et al., 2020]. However, the intricacy of these

methods, their substantial computational cost arising from the use of stochastic simulation, and

their dependence on tuning parameters are obstacles to their wider use and scalability.

6.1.1 Contributions

This chapter introduces a new approach to inference in compartmental epidemic models, through

the approximation of the posterior distribution over the compartments with a Multinomial

distribution. The main advantages of this method are listed below.

• It applies to a class of finite population, partially observed, discrete-time, stochastic models.

In contrast to ODE models, these models can account for statistical variability in disease

dynamics.

• It allows approximate evaluation of the likelihood function for model parameters and of fil-

tering /smoothing for compartment occupation numbers, without any stochastic simulation

or algorithm tuning parameters, in contrast to state-of-the-art techniques such as ABC.

• It revolves around a computationally simple filtering recursion. The resulting likelihood and

smoothing approximations can be combined with e.g., MCMC or Expectation Maximization

techniques for parameter estimation.

• It is shown to recover ground truth parameter values from synthetic data, and to compare

favourably against Data Augmentation MCMC [Lekone and Finkenstädt, 2006], ABC using

the ABSEIR R package [Brown et al., 2018] and ODE [Chowell et al., 2004] alternatives

analyzing real Ebola outbreak data under a model from Lekone and Finkenstädt [2006].

• It is used to extend a method of Kucharski et al. [2020] for estimating the time-varying

reproduction number of COVID-19 in Wuhan, China, from an ODE compartmental model

to a stochastic model.

6.2 Preliminaries

The well-known Susceptible-Exposed-Infective-Recovered (SEIR) model is used as a simple

running example. The new methods proposed in this chapter are then applied to more realistic

and complex models in section 6.4.

Perhaps the most widely applied formulation of a compartmental model is as a system of

ordinary differential equations.
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SEIR example. For a population of size n, the SEIR ODE model is:

dS
dt

=−βSI
n

,
dE
dt

= βSI
n

−ρE,
dI
dt

= ρE−γI,
dR
dt

= γI,

initialized with nonnegative integers in each of the compartments (S0,E0, I0,R0) such that

S0 +E0 + I0 +R0 = n.

The most obvious drawback of ODE models is that, once model parameters and the initial

population are fixed, any discrepancy between observed data and the solution of the ODE has

to be explained as observation error, which is a serious restriction from a modelling point of

view. In practice, one can try to estimate unknown parameters and/or the initial condition by

numerically minimizing this discrepancy, e.g. under squared error loss. Standard errors for

parameter estimates can be derived using asymptotic theory for nonlinear least squares, but the

calculation of them in practice involves numerical differentiation of the ODE solution flow w.r.t.

parameters [Chowell et al., 2004].

When a probabilistic observation model is specified, Bayesian approaches allow for uncertainty

quantification over parameters via posterior distributions, but evaluating the likelihood function

for model parameters still involves numerical solution of the ODE.

6.2.1 Difficulties of inference in stochastic compartmental models

In epidemiology, one typically observes times series of count data associated with some subset of

the compartments, perhaps subject to random error, or under-reporting. Given such data, when

using stochastic models, evaluating the likelihood function of the model parameters and initial

condition requires the variables associated with unobserved compartments to be marginalized

out. This operation involves summing over all the possible configurations of the unobserved

compartments, which depends on the total population size n and the number of compartments,

making it unfeasible for models with anything but a small n and a small number of compartments.

SEIR example. The discrete-time stochastic SEIR model is:

St+1 = St −Bt,

E t+1 = E t +Bt −Ct,

I t+1 = I t +Ct −Dt,

Rt+1 = Rt +Dt,

(6.1)

with conditionally independent, binomially-distributed random variables:

Bt ∼Bin(St,1− e−hβI t/n)

Ct ∼Bin(E t,1− e−hρ),

Dt ∼Bin(I t,1− e−hγ),

(6.2)
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where h > 0 is a time-step size, β,ρ,γ are model parameters, and the process is initialized with

nonnegative integers in each of the compartments (S0,E0, I0,R0) such that S0 +E0 + I0 +R0 = n

and n is the total population size. The interpretation of β is the rate at which an interaction

between a susceptible individual and the infective proportion of the population results in the

disease being passed to that individual. The mean exposure and infective periods are respectively

1/ρ and 1/γ. The sequence (St,E t, I t,Rt)t≥0 is a Markov chain.

Stochastic compartmental models also commonly arise in the form of continuous-time pure

jump Markov processes, in which transitions of individuals between compartments occur in an

asynchronous manner [Bretó, 2018]. Likelihood-based inference for such processes is similarly

intractable in general.

6.2.2 Notation

In the remainder of chapter 6, bold upper-case and bold lower-case characters are respectively

matrices and column vectors, e.g., A and b, with generic elements a(i, j) and b(i). The length-m

column vector of 1’s is denoted 1m. A vector is called a probability vector if its elements are

nonnegative and sum to 1. A matrix is called row-stochastic if its elements are nonnegative

and its row sums are all 1. The indicator function is denoted I[·]. The element-wise product

of matrices is denoted A ◦B and the outer product of vectors is denoted a⊗b. Element-wise

natural logarithm and factorial are denoted logA and A!. For positive integers m and n, define

Cm := {1, . . . ,m} and Sm,n := {x = [x(1) · · · x(m)]T : x(i) ≥ 0, i = 1, . . . ,m;
∑m

i=1 x(i) = n}. For x ∈ Sm,n,

define η(x) := [x(1)/n · · · x(m)/n]T. For a matrix P (resp. a vector π) with nonnegative elements

summing to 1, Mult(n,P) (resp. Mult(n,π)) denotes the distribution of the random matrix (resp.

vector) whose elements are the incidence counts obtained from sampling n times with replacement

according to P (resp. π). This is the usual definition of a multinomial distribution.

This chapter focus on the specific case of distributions over Sm,n, such as Mult(n, ·), and

probability vectors on Cm. Moreover, when considering a stochastic process (xt)t≥0 the notation

p(xt) is used for the probability distribution of xt and p(xt|·) is used for the conditional probability

distribution of xt given ·.

6.2.3 Compartmental models as hidden Markov models

Let m be the number of compartments and n be the total population size. Define the location of

individual k ∈ {1, . . . ,n} at time t ≥ 0 as the random variable ξ(k)
t , then the population at time t ≥ 0

is the set of n random variables {ξ(1)
t , . . . ,ξ(n)

t }, each valued in Cm. Collect the counts of individuals

in each of the m compartments at time t in a vector xt = [x(1)
t · · ·x(m)

t ]T ∈Sm,n, where:

x(i)
t :=

n∑
k=1

I[ξ(k)
t = i], i = 1, . . . ,m.
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For t ≥ 1 let Zt be the m×m matrix with elements z(i, j)
t counting the individuals transitioning

from compartment i at t−1 to j at t, hence:

z(i, j)
t :=

n∑
k=1

I[ξ(k)
t−1 = i,ξ(k)

t = j], i, j = 1, . . . ,m.

Let π0 be a length-m probability vector and for each t ≥ 1 let η 7→ Kt,η be a mapping from

length-m probability vectors to m×m row-stochastic matrices. Given π0 and Kt,η, the sequence

{ξ(1)
t , . . . ,ξ(n)

t }t≥0 is constructed to be a Markov chain where {ξ(1)
0 , . . . ,ξ(n)

0 } are i.i.d. with:

p(ξ(k)
0 = j)=π( j)

0

and {ξ(1)
t , . . . ,ξ(n)

t } are conditionally independent given {ξ(1)
t−1, . . . ,ξ(n)

t−1}, with ξ(k)
t drawn from the

ξ(k)
t−1’th row of Kt,η(xt−1), i.e.:

p(ξ(k)
t = j|ξ(1)

t−1, . . . ,ξ(n)
t−1)=K(ξ(k)

t−1, j)
t,η(xt−1)

It follows from this prescription that the sequence of matrices (Zt)t≥0 is also a Markov chain.

Indeed, conditional on Zt−1, and hence automatically on xt−1 since Zt1m = xt−1, the rows of Zt

are independent, and the distribution of the i-th row of Zt is Mult(x(i)
t−1,K(i,·)

t,η(xt−1)), where K(i,·)
t,η(xt−1)

is the ith row of Kt,η(xt−1). Moreover, noting 1T
mZt = xT

t , it can be observed that (xt)t≥1 is also a

Markov chain, but an explicit formula for its transition probabilities is not going to be needed.

SEIR example The SEIR model in (6.1)-(6.2) is equivalent to the above described compart-

mental model with m = 4 and

(6.3)
(
Kt,η

)(i, j) =


e−hβη(3)

1− e−hβη(3)
0 0

0 e−hρ 1− e−hρ 0

0 0 e−hγ 1− e−hγ

0 0 0 1


for all t ≥ 1, and identifying [x(1)

t x(2)
t x(3)

t x(4)
t ]T with respectively the counts of susceptible, exposed,

infective and recovered individuals at time t. The h in Kt,η represents the time resolution.

Generally, h is set to 1, but one could even do multistep ahead predictions with lower resolution.

Consider now two observations models. One relates to (xt)t≥1 and the other to (Zt)t≥1. These

are going to be the emission distribution of the HMMs.

Observations derived from (xt)t≥1 In this scenario, the observation at time t ≥ 1 is a length-

m vector yt with elements y(i)
t which are conditionally independent given xt, and:

(6.4) y(i)
t ∼Bin(x(i)

t , q(i)
t ).

The parameters q(i)
t ∈ [0,1] are collected in a length-m vector qt. When conducting likelihood-

based inference for xt using this model, if y(i)
t is a missing observation, then in the likelihood

function associated with (6.4) one should take y(i)
t to be 0, and set q(i)

t = 0.
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Observations derived from (Zt)t≥1 In this scenario, the observation at time t ≥ 1 is a m×m

matrix Yt with elements y(i, j)
t which are conditionally independent given Zt, and:

(6.5) y(i, j)
t ∼Bin(z(i, j)

t , q(i, j)
t ).

The parameters q(i, j)
t ∈ [0,1] from (6.5) are collected into a m×m matrix Qt. Missing data are

handled by putting a 0 in place of the missing y(i, j)
t and setting q(i, j)

t = 0.

SEIR example In practice, one typically observes, at each time step, counts of new infectives

rather than the total number of infectives, subject to some random under-reporting or missing

data. How can such data be represented in the model? Due to the definition of Zt, the number of

new infectives at time t is exactly z(2,3)
t , since the only way an individual can transition to being

infective (compartment 3) is by first being exposed (compartment 2). Therefore in this case y(2,3)
t

following (6.5) is a count of newly infectives at time t, subject to binomial random under-reporting

with parameter q(2,3)
t , as required.

It can be concluded that (xt,yt)t≥1 and (Zt,Yt)t≥1 are HMMs with initial distribution, transi-

tion kernel and emission distribution derived from the previous construction. One can then run

the forward-filtering and backward-smoothing as in (2.4)-(2.6) to compute the filtering and the

smoothing distributions. However, as already mentioned, the cost of this operations is cubic in

the cardinality of the state-space, which is card(Sm,n) for the HMM (xt,yt)t≥1, and depends on

the total population size n.

6.3 Approximate filtering and smoothing

Given the HMMs (xt,yt)t≥1 and (Zt,Yt)t≥1 defined in subsection 6.2.3, this section proposes meth-

ods for approximating: the filtering distributions p(xt|y1:t), p(Zt|Y1:t); the marginal likelihoods

p(y1:t), p(Y1:t); the smoothing distributions p(xt|y1:T ), p(Zt|Y1:T ) for a fixed horizon T. Note that

the considered setting is taking in to account a discrete state-space, hence the measure theory

setting used in chapter 2 is simplified, i.e. the probability measures are probability vectors,

transition kernels are stochastic matrices, integrals are sums, and so on.

6.3.1 Multinomial filtering

Start from the HMM (xt,yt)t≥1 with emission density as in (6.4), in principle the filtering

distributions can be computed through a two-step recursion as explained in (2.4):

p(xt−1|y1:t−1)
prediction−→ p(xt|y1:t−1) correction−→ p(xt|y1:t).

However, the sums in the prediction and correction steps are prohibitively expensive, since they

involve summing over all possible values of xt−1 and require computing a probability vector over

Sm,n.
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Approximate prediction step for xt For each x = [x(1) · · · x(m)]T ∈ Sm,n and length-m prob-

ability vector η, let Mt(x,η, ·) be the probability mass function on Sm,n of (1T
mZ)T, where Z is

a random m× m matrix whose rows are independent, and whose i-th row has distribution

Mult(x(i),K(i,·)
t,η ). So by construction Mt(xt−1,η(xt−1),xt) is the transition kernel for the Markov

chain (xt)t≥0 defined in subsection 6.2.3. Thus the prediction operation can be written in terms of

Mt:

p(xt|y1:t−1)= ∑
xt−1∈Sm,n

p(xt−1|y1:t−1)p(xt|xt−1)

= ∑
xt−1∈Sm,n

p(xt−1|y1:t−1)Mt(xt−1,η(xt−1),xt).
(6.6)

It is proposed to approximate p(xt|y1:t−1) with a multinomial distribution and then to propagate

forward such approximation to the correction step. Precisely, assume a multinomial distribution

approximation to p(xt−1|y1:t−1) is available, then: replace p(xt−1|y1:t−1) with this approximation

in (6.6) and replace the vector η(xt−1) by its expectation under the given multinomial distribution.

The outcome of this procedure is a multinomial distribution which approximates p(xt|y1:t−1). The

following lemma formalizes this recipe. The proof is given in the appendix B.

Lemma 6.1. If for a given length-m probability vector π, µ(·) is the probability mass function

on Sm,n associated with Mult(n,π) and Eµ[η(x)] is the expected value of η(x) when x ∼ µ, then∑
x∈Sm,n µ(x)Mt(x,Eµ[η(x)], ·) is the probability mass function associated with Mult(n,πTKt,π).

Approximate correction step for xt For the compartmental model described in subsection

6.2.3, the correction operator in (2.4) is:

p(xt|y1:t)= p(yt|xt)p(xt|y1:t−1)
p(yt|y1:t−1)

, p(yt|y1:t−1)= ∑
xt∈Sm,n

p(yt|xt)p(xt|y1:t−1).(6.7)

Again the logic is to approximate p(xt|y1:t) with a multinomial distribution and then propagate

forward to the next prediction step. The core idea is to assume that a multinomial distribution

approximation to p(xt|y1:t−1) is available (this is given by the approximate prediction step) and it

is going to take the place of p(xt|y1:t−1) in (6.7), resulting in a shifted-multinomial distribution

whose mean vector is used to define a multinomial distribution approximation to p(xt|y1:t). The

following lemma formalizes this recipe. The proof is given in the appendix B.

Lemma 6.2. Suppose that x∼Mult(n,π) for a given length-m probability vector π, and assume

that given x, y is a vector with conditionally independent elements distributed: y(i) ∼Bin(x(i), q(i)).

Then the conditional distribution of x given y is equal to that of y+x?, where

(6.8) x? ∼Mult
(
n−1T

my,
π◦ (1m −q)

1−πTq

)
with q= [q(1) · · · q(m)]T, and the conditional mean of x given y is:

(6.9) E[x|y]= y+ (n−1T
my)

(
π◦ (1m −q)

1−πTq

)
.

127



CHAPTER 6. INFERENCE IN STOCHASTIC EPIDEMIC MODELS

Moreover, the marginal distribution of y has probability mass function given by:

log p(y)= log(n!)+yT(logπ+ logq)−1T
m log(y!)+ (n−1T

my) log(1−πTq)

− log((n−1T
my)!),

(6.10)

with the convention 0log0≡ 0.

Putting together the results of lemma 6.1 and lemma 6.2 in a recursive fashion leads to

algorithm 7; line 3 is motivated by lemma 6.1, line 4 is motivated by (6.8)-(6.9).

Algorithm 7 Multinomial filtering with observations derived from (xt)t≥1

1: initialize π0|0 ←π0
2: for t ≥ 1 do
3: πt|t−1 ← (πT

t−1|t−1Kt,πt−1|t−1)T

4: πt|t ← yt

n
+

(
1− 1T

myt

n

)
πt|t−1 ◦ (1m −qt)

1−πT
t|t−1qt

5: logwt ← log(n!)+yT
t (logπt|t−1 + logqt)−1T

m log(yt!)
6: +(n−1T

myt) log(1−πT
t|t−1qt)− log((n−1T

myt)!)

One may take as output from algorithm 7 the approximations:

p(xt|y1:t−1)≈Mult(n,πt|t−1),

p(xt|y1:t)
d≈ yt +x?t ,

where the
d≈ term indicates approximation of p(xt|y1:t) by the distribution of the sum of yt

(regarded as a constant) and a random variable x?t which is defined to have distribution:

x?t ∼Mult

(
n−1T

myt,
πt|t−1 ◦ (1m −qt)

1−πT
t|t−1qt

)
.

In view of (6.10), the quantities wt computed in algorithm 7 can be used to approximate the

marginal likelihood as follows:

(6.11) p(y1:t)= p(y1)
t∏

s=2
p(ys|y1:s−1)≈

t∏
s=1

ws.

Turning to the HMM (Zt,Yt)t≥1 with emission density as in (6.5), the filtering recursion as in

(2.4) is:

p(Zt−1|Y1:t−1)
prediction−→ p(Zt|Y1:t−1) correction−→ p(Zt|Y1:t),

and it shows the same computational issues as for (xt)t≥1. To build multinomial approximations

for (Zt,Yt)t≥1 the procedure is similar to the one above.
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Approximate prediction step for Zt Given Z and η, let M t(Z,η, ·) be the probability mass

function of a random m×m matrix, say Z̃, such that 1T
mZ= (Z̃1m)T with probability 1, and such

that given the row-sums Z̃1m, the rows of Z̃ are independent and the conditional distribution of

the ith row is Mult(x(i),K(i,·)
t,η ) where xT = 1T

mZ. So by construction M t(Zt−1,η(1T
mZt−1),Zt) gives

the transition probabilities of the Markov chain (Zt)t≥1 defined in subsection 6.2.3. Similarly to

the xt case, it is proposed to approximate the outcome of the prediction with a multinomial. The

following lemma formalizes this recipe. The proof is given in the appendix B.

Lemma 6.3. If for a given m×m matrix P, µ is the probability mass function associated with

Mult(n,P) and Eµ[η(1T
mZ)] is the expected value of 1T

mZ when Z∼Mult(n,P), then∑
Zµ(Z)M t(Z,Eµ[η(1T

mZ)], ·) is the probability mass function associated with Mult(n, (π⊗1m)◦Kt,π)

where πT = 1T
mP.

Approximate correction for Zt The correction operation is a Bayes’ rule update applied to

p(Zt|Y1:t−1). Again as for xt the correction operation applied to a multinomial generates a shifted

multinomial, which is going to be approximated with a multinomial and propagated forward. The

following lemma formalizes this recipe. The proof is given in the appendix B.

Lemma 6.4. Suppose that Z∼Mult(n,P) for a given m×m matrix P, and given Z, Y is a matrix

with conditionally independent entries distributed: y(i, j) ∼Bin(z(i, j), q(i, j)). Then the conditional

distribution of Z given Y is equal to that of Y+Z? where

Z? ∼Mult
(
n−1T

mY1m,
P◦ (1m ⊗1m −Q)
1−1T

m(P◦Q)1m

)
and

E [Z|Y]=Y+ (n−1T
mY1m)

P◦ (1m ⊗1m −Q)
1−1T

m(P◦Q)1m
.

Moreover

log p(Y)= log(n!)+1T
m(Y◦ logP)1m +1T

m(Y◦ logQ)1m −1T
m log(Y!)1m

+(n−1T
mY1m) log(1−1T

m(P◦Q)1m)− log((n−1T
mY1m)!).

Algorithm 8 is derived from lemma 6.3 and lemma 6.4. From algorithm 8 one may take the

approximations:

p(Zt|Y1:t−1)≈Mult(n,Pt|t−1),

p(Zt|Y1:t)
d≈Yt +Z?t ,

where

Z?t ∼Mult

(
n−1T

mYt1m,
Pt|t−1 ◦ (1m ⊗1m −Qt)

1−1T
m(Pt|t−1 ◦Qt)1m

)
.

The marginal likelihood is approximated using the same formula as in (6.11) but with the

wt’s computed as per algorithm 8.
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Algorithm 8 Multinomial filtering with observations derived from (Zt)t≥1

1: initialize π0|0 ←π0
2: for t ≥ 1 do
3: Pt|t−1 ← (πt−1|t−1 ⊗1m)◦Kt,πt−1|t−1

4: Pt|t ← Yt

n
+ Pt|t−1 ◦ (1m ⊗1m −Qt)

1−1T
m(Pt|t−1 ◦Qt)1m

−
(

1T
mYt1m

n

)
Pt|t−1 ◦ (1m ⊗1m −Qt)

1−1T
m(Pt|t−1 ◦Qt)1m

5: logwt ← log(n!)+1T
m(Yt ◦ logPt|t−1)1m

6: +1T
m(Yt ◦ logQt)1m −1T

m log(Yt!)1m
7: +(n−1T

mYt1m) log(1−1T
m(Pt|t−1 ◦Qt)1m)− log((n−1T

mYt1m)!)
8: πt|t ← (1T

mPt|t)T

6.3.2 Multinomial smoothing

Given a time horizon T ∈N (use the same notation as in the previous chapter, this should not be

confused with the transpose symbol T), start again from the HMM (xt,yt)t=1,...,T with emission

density as in (6.4), the smoothing distributions can be computed through the recursion (2.6),

which takes the form of an application of a reverse kernel:

p(xt|y1:T ) reverse←− p(xt+1|y1:T ).

Precisely, consider the identities:

p(x0:T |y1:T )= p(xT |y1:T )
T−1∏
t=0

p(xt|xt+1,y1:t)

p(xt|xt+1,y1:t)= p(xt|y1:t)p(xt+1|xt)
p(xt+1|y1:t)

(6.14)

p(xt+1|y1:t)=
∑

xt∈Sm,n

p(xt|y1:t)p(xt+1|xt),

with the conventions p(x0|x1,y1:0) ≡ p(x0|x1), p(x0|y1:0) ≡ p(x0). The smoothing distributions

p(xt|y1:T ), t = 0, . . . ,T, satisfy the backward recursion.

(6.15)
∑

xt+1∈Sm,n

p(xt+1|y1:T )p(xt|xt+1,y1:t)= p(xt|y1:T ).

All these formulae are standard identities for hidden Markov models [Briers et al., 2010], and

they are the discrete counterpart of recursion 2.6.

In order to approximate (6.15) each of the terms p(xt|xt+1,y1:t) is approximated. Consider

first the numerator in (6.14). Recall from subsection 6.3.1 that the transition probabilities of the

(xt)t≥0 process can be written in terms of (Mt)t≥1, so:

(6.16) p(xt|y1:t)p(xt+1|xt)= p(xt|y1:t)Mt+1(xt,η(xt),xt+1).

Replace p(xt|y1:t) in (6.16) by its multinomial approximation Mult(n,πt|t) obtained using algo-

rithm 7, and replace η(xt) in (6.16) by its expected value under this multinomial distribution, i.e.
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πt|t, to give

(6.17) p(xt|xt+1,y1:t)≈
µt|t(xt)Mt+1(xt,πt|t,xt+1)∑

x̃∈Sm,n µt|t(x̃)Mt+1(x̃,πt|t,xt+1)
,

where µt|t(·) is the probability mass function associated with Mult(n,πt|t). The following lemma

gives a multinomial formulation of (6.17), the proof is available in the appendix B.

Lemma 6.5. With xt+1 considered fixed, the function which maps xt to the right hand side of

(6.17) is the probability mass function associated with 1T
mZ̃, where Z̃ is an m×m random matrix

whose ith row has distribution Mult(x(i)
t+1,L(i,·)

t ) and Lt is the row-stochastic matrix with entries

l(i, j)
t =

π
( j)
t|t k( j,i)

t+1,πt|t

(πT
t|tKt+1,πt|t )(i)

,

where k(i, j)
t+1,πt|t

are the elements of Kt+1,πt|t .

Now considering (6.15) and the approximation (6.17), define the probability mass functions:

µt|T (xt) := ∑
xt+1∈Sm,n

µt+1|T (xt+1)
µt|t(xt)Mt+1(xt,πt|t,xt+1)∑

z∈Sm,n µt|t(z)Mt+1(z,πt|t,xt+1)
, t < T,

recalling from (6.17) that µT|T (·) is the probability mass function associated with Mult(n,πT|T ).

The following lemma gives a multinomial approximation for the smoothing distribution, the proof

is available in the appendix B.

Lemma 6.6. For 0≤ t ≤ T, µt|T (·) is the probability mass function associated with Mult(n,πt|T ),

where πt|T is computed as per algorithm 9.

Assuming that algorithm 7 has already been run up to a given time T and using lemma 6.6,

algorithm 9 can be derived, and it gives the approximation:

p(xt|y1:T )≈Mult(n,πt|T ).

Algorithm 9 Multinomial smoothing with observations derived from (xt)t≥1

1: for t = T −1, . . . ,0 do
2: let Lt be the matrix with elements l(i, j)

t ←π
( j)
t|t k( j,i)

t+1,πt|t
/(πT

t|tKt+1,πt|t )
(i)

3: πt|T ← (πT
t+1|TLt)T

Turning to the HMM (Zt,Yt)t=1,...,T with emission density as in (6.5) the smoothing distributions

can be computed through the recursion (2.6), which takes the form of an application of a reverse

kernel:

p(Zt|Y1:T ) reverse←− p(Zt+1|Y1:T ).
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As for the xt case, to derive our approximations start from the fact that (Zt,Yt)t≥1 is a hidden

Markov model, and consider the identities:

p(Z1:T |Y1:T )= p(ZT |Y1:T )
T−1∏
t=1

p(Zt|Zt+1,Y1:t)

p(Zt|Zt+1,Y1:t)= p(Zt|Y1:t)p(Zt+1|Zt)
p(Zt+1|Y1:t)

(6.18)

p(Zt+1|Y1:t)=
∑
Zt

p(Zt|Y1:t)p(Zt+1|Zt).

The backward recursion is in this case is:

(6.19)
∑
Zt+1

p(Zt+1|Y1:T )p(Zt|Zt+1,Y1:t)= p(Zt|Y1:T ).

Writing µt|t(·) for the probability mass function associated with Mult(n,Pt|t), our approximation

to (6.18) is:

(6.20) p(Zt|Zt+1,Y1:t)≈
µt|t(Zt)M t+1(Zt,πt|t,Zt+1)∑

Z̃µt|t(Z̃)M t+1(Z̃,πt|t,Zt+1)
.

where M t+1 was introduced in subsection 6.3.1 when building the approximate filtering for Zt

and in the setting of (6.20) has the explicit formula:

M t+1(Zt,πt|t,Zt+1)= I[1T
mZt = (Zt+11m)T]

 m∏
j=1

(Zt+11m)( j)!
m∏
`=1

(
k( j,`)

t+1,πt|t

)z( j,`)
t+1

z( j,`)
t+1 !

 .

The following lemma gives a formulation for (6.20), and it is proved in appendix B.

Lemma 6.7. With Zt+1 considered fixed, the function which maps Zt to the right hand side

of (6.20) is the probability mass function such that the columns of Zt are independent and the

distribution of the ith column is Mult((Zt+11m)(i),L
(i,·)
t ), where Lt is the row-stochastic matrix

with entries

l
(i, j)
s = p( j,i)

t|t /π(i)
t|t

where p(i, j)
t|t are the elements of Pt|t, and π(i)

t|t are the elements of πt|t := (1T
mPt|t)T with Pt|t computed

in algorithm 8.

Now considering (6.19) and the approximation (6.20), define the probability mass functions:

(6.21) µt|T (Zt) := ∑
Zt+1

µt+1|T (Zt+1)
µt|t(Zt)M t+1(Zt,πt|t,Zt+1)∑

Z̃µt|t(Z̃)M t+1(Z̃,πt|t,Zt+1)
, t < T,

where µT|T (·) is defined to be the probability mass function associated with Mult(n,PT|T ).

The following lemma is the key result to build the approximate smoothing, and it is proved in

the appendix B.
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Lemma 6.8. For 0≤ t ≤ T, µt|T (·) is the probability mass function associated with Mult(n,Pt|T ),

where Pt|T is computed as per algorithm 10.

Assuming algorithm 8 has already been run up to a given time T, the above lemma is used to

derive algorithm 10, from which the following approximation is obtained:

p(Zt|y1:T )≈Mult(n,Pt|T ).

Algorithm 10 Multinomial smoothing with observations derived from (Zt)t≥1

1: for t = T −1, . . . ,1 do
2: πt|T ←Pt+1|T1m

3: let Lt be the matrix with elements l
(i, j)
t ← p( j,i)

t|t /π(i)
t|t

4: Pt|T ← (1m ⊗πt|T )◦L
T
t

In algorithm 10, p(i, j)
t|t are the elements of Pt|t and π(i)

t|t are the elements of πt|t := (1T
mPt|t)T,

with Pt|t computed in algorithm 8.

6.3.3 Computational cost

The computational cost of algorithms 7 and 8 is independent of the overall population size n,

except through factorial terms such as log(n!) and log((n−1T
my)!). However these terms do not

depend on the model parameters Kt,η, qt etc., so can be pre-computed or even not computed

at all if the approximate marginal likelihood needs to be evaluated only up to a constant of

proportionality independent of model parameters. Leaving these factorial terms out the worst-

case costs of algorithms 7 and 8 are therefore respectively O (Tm2) and O (Tm3). Costs may be

substantially lower in practice as Kt,η and qt are typically sparse. Similar observations hold for

the smoothing algorithms.

This compares to O(Tmf (n)) to simulate (xt)t≥0 from the model where f (n) is the complexity

of sampling from Bin(n, p), assuming no more than two non-zero entries in each row of Kt,η. A

larger number of non-zero entries would imply a higher cost. Such a simulation is necessary

(but usually not sufficient) to approximately evaluate the likelihood in ABSEIR [Brown et al.,

2018]. The worst case is f (n)=O(n), but modest improvements are available if one accepts ‘with

high probability’ performance measures [Farach-Colton and Tsai, 2015]. The worst-case time

complexity of the Data Augmentation MCMC method [Lekone and Finkenstädt, 2006] is also

linear in n. Whilst the wall-clock time of any given algorithm is of course heavily dependent on

exactly how it is implemented, these considerations suggest that the proposed methods will have

attractive computational costs in many applications, where m is often many orders of magnitude

smaller than n

133



CHAPTER 6. INFERENCE IN STOCHASTIC EPIDEMIC MODELS

6.4 Numerical results

This section analyses the numerical results obtained with the multinomial approximations. The

experiments treat different aspects of the approximation: retrieve the ground truth parameters

from a synthetic data scenario; estimate the effect of control measures in the 1995 Ebola outbreak

in the Democratic Republic of Congo; assess the accuracy of the multinomial approximation for

the filtering distribution; estimate the reproduction number of COVID-19 during its initial stage

in Wuhan.

6.4.1 The 1995 Ebola outbreak in the Democratic Republic of Congo

Simulated and real data on the 1995 outbreak of Ebola in the Democratic Republic of Congo

under a discrete-time SEIR model used by [Lekone and Finkenstädt, 2006] are analysed to

investigate the impact of control interventions. The experiments follow closely those in [Lekone

and Finkenstädt, 2006] to allow comparisons with their Data Augmentation MCMC method.

Comparisons to the ABC method from the ABSEIR R package [Brown et al., 2018], and results of

least-squares fitting of an ODE model from [Chowell et al., 2004], which [Lekone and Finkenstädt,

2006] used as a benchmark, are included in the analysis.

Model The model of [Lekone and Finkenstädt, 2006] is the same as the SEIR model in (6.1)

with h = 1, except that β is replaced by a time-varying parameter:

βt =
β t < t?

βe−λ(t−t?) t ≥ t?
,

where t? is the time at which control measures began. Thus Kt,η is as in (6.3) but with β replaced

by this βt. Also following [Lekone and Finkenstädt, 2006], the data consist of daily counts of new

cases (i.e. new infectives) and new deaths (i.e. new removals). In [Lekone and Finkenstädt, 2006]

it was assumed these counts are observed directly, subject to known proportions of missing data.

In this thesis, a slightly more general observation model is chosen. As per subsection 6.2.3 the

observation model for Zt is considered with q(i, j)
t = 0 for all (i, j) except (2,3) and (3,4), and where

q(2,3)
t and q(3,4)

t are treated as constant-in-t but otherwise unknown and to be estimated. Thus

the parameters of the model to be estimated are:

Θ= (β,λ,ρ,γ, q(2,3), q(3,4)).

Note that the initial distribution is given and set as in Lekone and Finkenstädt [2006] for both

the synthetic and real scenario.

Synthetic data Using the following settings from [Lekone and Finkenstädt, 2006]:

β= 0.2, λ= 0.2, ρ = 0.2, γ= 0.143, t? = 130,
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Figure 6.1: Synthetic data: in red (y(2,3)
t )t≥1, which are daily numbers of reported new cases, and

in orange (y(3,4)
t )t≥1, which are the daily numbers of reported new deaths, simulated from the

Ebola model of Lekone and Finkenstädt [2006]. Blue lines indicate the day t? = 130 at which
control measures were introduced.

and S0 = 5,364,500, E0 = 1, I0 = R0 = 0, plus q(2,3)
t = 291/316 and q(3,4)

t = 236/316 for all t ≥ 1

informed by realistic proportions of non-missing data [Lekone and Finkenstädt, 2006], a SEIR

model is simulated until extinction, which took 175 time steps. The data are shown in figure 6.1.
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Figure 6.2: Traceplots and histograms for the MCMC method applied to synthetic data from the
Ebola model, with the ‘vague’ set of priors (left), the ‘informative’ set of priors (centre) and the
‘noncentered’ (right) set of priors specified by Lekone and Finkenstädt [2006]. Blue lines show
true parameter values.

The parameters are estimated either through MLE’s from an EM algorithm that uses the

approximate filtering and smoothing methods, or through marginal posterior means and standard

deviations, estimated using a Metropolis-within-Gibbs MCMC algorithm which incorporates

the approximate marginal likelihood from the multinomial approximation. Figure 6.2 shows

traceplots and histograms of the MCMC output from which posterior means and posterior

standard deviations are calculated. The MCMC chain is run for 5×105 iterations, the first 105

iterations are discarded for burn-in, and the remaining samples thinned to result in a sample

size of 104. Table 6.1 shows posterior means and standard deviations under three sets of prior
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distributions over (β,λ,ρ,γ) labelled ‘vague’, ‘informative’ and ‘noncentered’ by [Lekone and

Finkenstädt, 2006]. The basic reproduction number is R0 = β/γ. The results show an accurate

recovery of the true parameter values. More information about the MCMC and the EM algorithm

are available in appendix B.

Real data This paragraph analyses the same real Congo Ebola data as in [Lekone and Finken-

städt, 2006]. As for the previous paragraph, the parameters are estimated either through MLE’s

from an EM algorithm that uses the approximate filtering-smoothing method or through marginal

posterior means and standard deviations estimated using a Metropolis-within-Gibbs MCMC

algorithm which incorporates the approximate marginal likelihood from the multinomial approx-

imation. Traceplots and histograms for the MCMC method are displayed in figure 6.4, the ‘vague’

and ‘uninformative’ sets of priors are considered only.
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Figure 6.3: Data from the 1995 Ebola outbreak in the Democratic Republic of Congo per day from
March 1, 1995, to July 16, 1995. In red daily numbers of reported new cases and in orange daily
number of reported new deaths. Blue lines indicate the 9th of May when control measurements
were introduced.

Table 6.2 summarises the results of the multinomial approximation and the considered

baselines. There are several interesting findings. 1) The results from the proposed methods

are generally closer to those from the Data Augmentation MCMC sampler of [Lekone and

Finkenstädt, 2006] than those from the ABC method of [Brown et al., 2018]; the former targets

the true posterior distribution whilst the latter does so only approximately. 2) Under the ‘vague’

Table 6.1: Parameter estimates for synthetic data under the Ebola model using our EM and
MCMC methods under three sets of prior distributions specified by [Lekone and Finkenstädt,
2006]. For the MCMC results, the posterior means is reported as the point estimate and the
numbers in parentheses are posterior standard deviations.

Parameter β λ ρ γ q(2,3) q(3,4) R0
True value 0.2 0.2 0.2 0.143 0.92 0.75 1.40
MLE (EM-alg.) 0.20 0.18 0.21 0.139 1.00 0.81 1.44
MCMC (vague) 0.23 (0.028) 0.21 (0.080) 0.22 (0.076) 0.173 (0.024) 0.81 (0.140) 0.66 (0.119) 1.31 (0.088)
MCMC (infor.) 0.22 (0.020) 0.22 (0.065) 0.20 (0.035) 0.162 (0.017) 0.83 (0.130) 0.67 (0.112) 1.34 (0.082)
MCMC (noncent.) 0.32 (0.048) 0.35 (0.101) 0.17 (0.031) 0.256 (0.049) 0.79 (0.147) 0.64 (0.125) 1.28 (0.084)
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Figure 6.4: Traceplots and histogram for the MCMC on the Ebola data.
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Figure 6.5: Analysis of real Ebola data with our method. On the left, posterior smoothing
distributions for the number of new infectives per day and on the right posterior predictive
distributions for the associated observations, i.e., subject to under-reporting. Control measures
were introduced on day 70.
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Table 6.2: Parameter estimates for the real Ebola data. Numbers in parentheses in column 5 are
standard errors, for all other columns they are posterior standard deviations. For columns 2,3,4,6
the parameter estimates are posterior means. For each of β, λ, and 1/ρ the pairs of estimates in
column 1 were obtained from the respective bi-modal posteriors by applying k-means clustering,
with k = 2, to the MCMC output.

Parameter β λ 1/ρ 1/γ q(2,3) q(3,4) R0
Our MCMC method

vague prior
0.36 (0.049)
0.22 (0.025)

0.32 (0.140)
0.05 (0.008)

10.39 (1.554)
1.86 (0.487) 6.17 (1.042) 0.44 (0.103) 0.36 (0.088) 2.18 (0.227)

1.42 (0.102)
Our MCMC method

informative prior 0.26 (0.033) 0.12 (0.064) 6.07 (1.919) 6.86 (0.834) 0.50 (0.109) 0.41 (0.093) 1.64 (0.696)

[Lekone and Finkenstädt, 2006]
vague prior 0.24 (0.020) 0.16 (0.009) 9.43 (0.620) 5.71 (0.548) _ _ 1.38 (0.127)

[Lekone and Finkenstädt, 2006]
informative prior 0.21 (0.017) 0.15 (0.010) 10.11 (0.713) 6.52 (0.564) _ _ 1.36 (0.128)

ODE + least squares
[Chowell et al., 2004] 0.33 (0.006) 0.98 (unknown) 5.30 (0.230) 5.61 (0.190) _ _ 1.83 (0.060)

ABC ABSEIR
[Brown et al., 2018] 0.3 (0.088) 0.36 (0.325) 7.91 (2.703) 15.01 (32.863) _ _ 3.66 (6.592)

prior the proposed method finds bi-modal posterior distributions of β, λ, and 1/ρ. For β, one of

the modes roughly matches the posterior mean obtained using [Lekone and Finkenstädt, 2006]

whilst the other is more similar to the least-squares estimate from [Chowell et al., 2004]; one

can conjecture that the proposed MCMC sampler has better mixing than that of [Lekone and

Finkenstädt, 2006], allowing it to find these two modes. 3) The proposed method can report

estimates for q(2,3) and q(3,4), whilst the other methods do not. Figure 6.5 shows posterior and

posterior-predictive distributions for the counts of new infectives each day. The former estimates

for the true numbers gave rise to the under-reported data, whilst the latter shows coverage of the

data hence a good model fit [Gelman et al., 1996].

6.4.2 Accuracy: filtering bias and credible interval coverage

The purpose of this subsection is to study the accuracy of the approximate filtering distributions

obtained from algorithm 8 when applied to the Ebola model described in subsection 6.4.1. The

ground truth parameter values (β,λ,ρ,γ) in the synthetic data experiment were taken together

with q(2,3)
t = 291/316, q(3,4)

t = 236/316. Three population sizes n = 5× 102,5× 104,5× 106 are

considered, and in each case the initial distribution was π0 = [1−1/n,1/n,0,0]T. For each value of

n, 2×104 data sets are simulated from the model, each over 200 time steps.

To assess accuracy, consider bias and credible-interval coverage. The former is calculated from

the empirical bias associated with the mean vector of the approximation to p(xt|Y1:t) obtained

from algorithm 8 as an estimator of xt. The latter is obtained from the empirical coverage of

the nominal 95%-credible interval for the marginal over each x(i)
t , i = 1,2,3,4. For the true (i.e.

approximation-free) filtering distributions, asymptotically in the number of simulated data sets

the bias would be zero and the coverage would be 95%.

Figure 6.6 shows that for all three values of n, the bias at every time step and for every

compartment is less than 0.1 in magnitude. This shows the approximation is very accurate: the
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Figure 6.6: Empirical bias and empirical coverage of nominal 95%-credible intervals from 2×104

simulations over 200 time steps of the Ebola model. Columns from left to right: n = 5×102,5×
104,5×106. Top row: bias, bottom row: coverage. Red, yellow, blue, green correspond to x(i)

t ,
i = 1,2,3,4, i.e. susceptible, exposed, infective, removed.

true values of x(i)
t , i = 1,2,3,4 are always integers, and a bias less than 0.5 in magnitude means

that, on average, if the estimated number of individuals is rounded to the nearest integer, the true

number of individuals is recovered. The credible interval coverage reported in figure 6.6 shows

that the approximate filtering distributions tend to over-represent uncertainty: the empirical

coverage at all time steps for all compartments of the nominal 95% interval is between 97% and

100%. The bias and coverage appear robust to population size.

6.4.3 Estimating the time-varying reproduction number of COVID-19 in
Wuhan, China

A compartmental model for estimating the time-varying reproduction number of COVID-19

in Wuhan, China, has recently been published in [Kucharski et al., 2020]. The model has 15

compartments: susceptibles in Wuhan become exposed and either stay in Wuhan or depart inter-

nationally, then, in either case, pass through further stages being exposed, infective, symptomatic

and confirmed. The transmission rate is modelled as time-varying (βt)t≥0, a-priori by a geometric

random walk, and βt is considered proportional to the reproductive number Rt. [Kucharski et al.,

2020] proposed a Sequential Monte Carlo (SMC) algorithm to estimate (Rt)t≥0 which weights

samples of (βt)t≥0 by the likelihood of the associated ODE solution under a Poisson observation

model.

The multinomial approximation can be used to replace the ODE model in Kucharski et al.

[2020] with a discrete-time stochastic version of the compartmental model, and their Poisson

model can be replaced by the binomial observation model from section 6.2.3. Precisely, the
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compartments are the following:

• St which is the number of susceptible individuals in Wuhan (compartment 1);

• E(1,W)
t ,E(2,W)

t which are the numbers of exposed individuals in Wuhan in the first and

second stage of the incubation period (compartments 2&3);

• I(1,W)
t , I(2,W)

t which are the numbers of infective individuals in Wuhan in the first and second

stage of the disease (compartments 3&4);

• E(1,T)
t ,E(2,T)

t which are the numbers of individuals who were initially exposed whilst in

Wuhan and subsequently travelled to other countries, in their first and second stage of the

incubation period (compartments 5&6);

• I(1,T)
t , I(2,T)

t which are the numbers of infective individuals who were initially exposed whilst

in Wuhan and subsequently travelled to other countries, in their first and second stage of

the disease (compartments 7&8);

• Rt which is the number of removed individuals (compartment 9).

The evolution of the compartments are then:

St+1 = St −B(1,W)
t −B(1,T)

t ,

E(1,W)
t+1 = E(1,W)

t +B(1,W)
t −B(2,W)

t ,

E(2,W)
t+1 = E(2,W)

t +B(2,W)
t −C(1,W)

t ,

I(1,W)
t+1 = I(1,W)

t +C(1,W)
t −C(2,W)

t ,

I(2,W)
t+1 = I(2,W)

t +C(2,W)
t −DW

t ,

E(1,T)
t+1 = E(1,T)

t +B(1,T)
t −B(2,T)

t ,

E(2,T)
t+1 = E(2,T)

t +B(2,T)
t −C(1,T)

t ,

I(1,T)
t+1 = I(1,T)

t +C(1,T)
t −C(2,T)

t ,

I(2,T)
t+1 = I(2,T)

t +C(2,T)
t −DT

t ,

Rt+1 = Rt +D(W)
t +D(T)

t ,

where: 
B(1,W)

t

B(1,T)
t

St −B(1,W)
t −B(1,T)

t

∼Mult

St,


(1− f t)pt

f t pt

1− pt


 ,

B(2,W)
t ∼Bin

(
E(1,W)

t , pC

)
, B(2,T)

t ∼Bin
(
E(1,T)

t , pC

)
,

C(1,W)
t ∼Bin

(
E(2,W)

t , pC

)
, C(1,T)

t ∼Bin
(
E(2,T)

t , pC

)
,

C(2,W)
t ∼Bin

(
I(1,W)

t , pR

)
, C(2,T)

t ∼Bin
(
I(1,T)

t , pR

)
,

D(W)
t ∼Bin

(
I(2,W)

t , pR

)
, D(T)

t ∼Bin
(
I(2,T)

t , pR

)
,
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with

pt = 1− e−hβt(I
(1,W)
t +I(2,W)

t )/n, pC = 1− e−h2ρ, pR = 1− e−h2γ,

where f t is the fraction of cases that depart from Wuhan to other countries at time t and h is

generally chosen to be 1. The observations consist of the new infectives in Wuhan, y(3,4)
t , and

internationally, y(7,8)
t , at each time step, subject to random under-reporting:

y(3,4)
t ∼Bin

(
C(1,W)

t , q(W)
)
, y(7,8)

t ∼Bin
(
C(1,T)

t , q(T)
)
.

The resulting model is a compartmental model with m = 10 as the class of models described in

subsection 6.2.3. Remark that the ODE model of Kucharski et al. [2020] incorporates a number of

other compartments which are used to accumulate the numbers of individuals who have passed

through certain states, but which otherwise do not play an active role in the model, hence they

are not specified here.

The SMC algorithm from [Kucharski et al., 2020] is then modified such that the weights

samples of (βt)t≥0are substituted by their approximate marginal likelihoods, computed using the

multinomial filtering techniques. The full algorithm is shown in algorithm 11. Two of three data

sets from [Kucharski et al., 2020] are analysed: daily counts of new infectives by date of symptom

onset in Wuhan, and internationally exported from Wuhan.

The procedure of Kucharski et al. [2020] is then followed in producing the remainder of

the results: the algorithm is ran for 100 times with npart = 3×103, resulting in 100 samples

of (β̃t,P̃t|T , Z̃t)t=1,...,T (more sophisticated approaches to particle smoothing are available in the

literature, but they are not used in order to make fair comparisons with results from Kucharski

et al. [2020] ).

Figure 6.7 shows results in the format of [Kucharski et al., 2020], figure 6.8 shows the results

for the SMC algorithm by Kucharski et al. [2020] applied to the same data as in this thesis

method, i.e. with the evacuation flights data left out of the analysis. The quantities reported in

figures 6.7 and 6.8 are specified in the following list, where κ is the rate of reporting (the same

numerical value as in Kucharski et al. [2020]) and F (W), F (T) are auxiliary compartments.

1. The time-varying reproduction number (first row of the figures) Rt = β̃t/γ for t = 1, . . . ,T;

2. The new confirmed cases by date of onset in Wuhan and China (left plot in the second row

of the figures) ỹ(3,4)
t for t = 1, . . . ,T:

ẑt ∼Bin
(
n, p̃(3,4)

t|T
)

and ỹ(3,4)
t ∼Bin

(
ẑt, q(W)

)
.

3. The new confirmed cases by date of onset internationally (right plot in the second row of

the figures) ỹ(7,8)
t for t = 1, . . . ,T:

ẑt ∼Bin
(
n, p̃(7,8)

t|T
)

and ỹ(7,8)
t ∼Bin

(
ẑt, q(T)

)
.
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Algorithm 11 Particle filter and backward sampler for COVID-19 application

1: initialize π(i)
0|0 ←π0, β(i)

0 =β0, for i = 1, . . . ,npart
2: for s = 1 to t do
3: for i = 1 to npart do
4: β(i)

s ←β(i)
s−1 exp(V (i)), V (i) ∼N(0,σ2

V )
5: P(i)

s|s−1 ← (π(i)
s−1|s−1 ⊗1m)◦Kt,π(i)

s−1|s−1,β(i)
t

6: P(i)
s|s ←

Ys

n
+

(
1− 1T

mYs1m

n

)
P(i)

s|s−1 ◦ (1m ⊗1m −Qs)

1−1T
m(P(i)

s|s−1 ◦Qs)1m

7: logw(i)
s ← log(n!)+1T

m(Ys ◦ logP(i)
s|s−1)1m +1T

m(Ys ◦ logQs)1m −1T
m log(Ys!)1m

8: +(n−1T
mYs1m) log(1−1T

m(P(i)
s|s−1 ◦Qs)1m)− log((n−1T

mYs1m)!)

9: π
(p)
s|s ← (1T

mP(i)
s|s)

T

10: w̄(i)
s ← w(s)

i /
∑

j w( j)
s , i = i, . . . ,npart

11: resample {β(i)
s ,π(i)

s|s}
npart

i=1 according to {w̄(i)
s }npart

i=1 and keep track of ancestors in as =
[a(1)

s · · · a(nparts)
s ]T

12:

13: sample ζ according to {w̄(i)
t }npart

i=1
14: π̃t|t ←π

(ζ)
t|t , P̃t|t ←P(ζ)

t|t , β̃t ←β
(ζ)
t

15: sample Z̃t from Mult(n,P̃t|t)
16: for s = t−1, . . . ,1 do
17: π̃s|t ← P̃s+1|t1m

18: ζ← a(ζ)
s , π̃s|s ←π

(ζ)
s|s, P̃s|s ←P(ζ)

s|s, β̃s ←β
(ζ)
s

19: Let Ls be the matrix with elements l
(i, j)
s ← p̃( j,i)

s|s /π̃(i)
s|s

20: for i = 1, . . . ,m do
21: sample Z̃(·,i)

s from Mult((Z̃s+11m)(i),L
(i,·)
s )

22: P̃s|t ← (1m ⊗ π̃s|t)◦L
T
s

return {β̃s,P̃s|t, Z̃s}t
s=1

4. The new confirmed cases by date in Wuhan (left plot in the third row of the figures) ∆�Conf
(W)
t

for t = 1, . . . ,T:

F̃ (W)
0 = 0,

∆F̃ (W)
t ∼Bin

(
z̃(3,4)

t ,1− e−e−γκ
)
, ∆�Conf

(W)
t ∼Bin

(
F̃ (W)

t ,1− e−κ
)
,

F̃ (W)
t+1 = F̃ (W)

t +∆F̃ (W)
t −∆�Conf

(W)
t .

5. The new confirmed cases by date internationally (right plot in the third row of the figures)
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∆�Conf
(T)
t for t = 1, . . . ,T:

F̃ (T)
0 = 0,

∆F̃ (T)
t ∼Bin

(
z̃(7,8)

t ,1− e−e−γκ
)
, ∆�Conf

(T)
t ∼Bin

(
F̃ (T)

s ,1− e−κ
)
,

F̃ (T)
t+1 = F̃ (T)

t +∆F̃ (T)
t −∆�Conf

(T)
t .

Given figures 6.7 and 6.8, it can be noticed that the estimates obtained from algorithm 11 of

Rt are generally lower, and closer to 1 than the ones from Kucharski et al. [2020] for the period

after travel restrictions are introduced; and the credible intervals for the in-sample plots are

generally wider, reflecting the stochastic nature of the proposed compartmental model. In the

bottom two plots, the posterior distributions are mostly concentrated on lower values than those

from the method of [Kucharski et al., 2020].
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Figure 6.7: Results for the COVID-19 model using algorithm 11. The red line shows the date
at which travel restrictions were introduced. Top: estimated reproduction number. Middle row:
estimated daily new confirmed cases in Wuhan (left) and internationally (right), both with in-
sample data by date of symptom onset. Bottom row, left: estimated new symptomatic but possibly
unconfirmed cases (left axis) and out-of-sample new confirmed cases data (right axis); right:
estimated confirmed international cases by date of confirmation and out-of-sample data.
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Figure 6.8: Results for the COVID-19 model using Kucharski et al. [2020] methods without
rescue flights data. The red line shows the date at which travel restrictions were introduced.
Top: estimated reproduction number. Middle row: estimated daily new confirmed cases in Wuhan
(left) and internationally (right), both with in-sample data by date of symptom onset. Bottom row,
left: estimated new symptomatic but possibly unconfirmed cases (left axis) and out-of-sample
new confirmed cases data (right axis); right: estimated confirmed international cases by date of
confirmation and out-of-sample data.
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CONCLUSION

This thesis extensively treated hidden Markov models by presenting the main background

and issues (chapter 2) arising when scaling-up the state-space. Novel methods to perform

inference over high-dimensional HMMs are developed (chapters 3, 5, 6), with experiments

touching several strands of applications: traffic modelling, image classification, next-frame

prediction, epidemiology.

In chapter 3, an approximate procedure for filtering and smoothing distributions in high-

dimensional FHMM is proposed. The procedure avoids the exponential-in-dimension compu-

tational cost of the forward-backward algorithm for FHMMs [Ghahramani and Jordan, 1997]

and guarantees the local total variation distance between the approximations and the filtering-

smoothing distributions to have dimension-free upper bounds.

There are number of ways in which this work could be extended or generalized. From an al-

gorithmic point of view, it seems natural to explore hybrids between variational methods of

the sort proposed by Ghahramani and Jordan [1997] and the Graph Filter-Smoother. In the

spirit of variational methods, could a layer of optimization in Kullback-Leibler divergence be

somehow combined with the approximations in Graph Filter-Smoother, with the aim of yielding

even more accurate approximations? From a theoretical point of view, it would be interesting to

investigate whether the kind of mathematical tools used to study the Graph Filter and Smoother

could also help rigorously quantify the approximation error in variational methods for FHMMs,

which appears to be an unsolved problem. Another interesting question beyond the scope of

the present work is whether the generalized Dobrushin Comparison Theorems developed by

Rebeschini and van Handel [2014] might help loosen some of the technical assumptions on which

the results rely. From a modelling point of view, there are many directions in which the London

Underground example could be further investigated. The model considered is a simple prototype,
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with straightforward spacial interactions among lanes and stations. It would be interesting to

see how it performs with spacial interactions over time, i.e. lanes do not evolve independently

from each other, and with a richer state space. Even the emission distribution could be chosen

more carefully, a zero-inflated Poisson could be used to model more precisely the quiet periods.

Chapter 5 introduces a novel hybrid model between Bayesian neural networks and FHMMs

called Hidden Markov neural network (HMNN), where the posterior over the weights is estimated

sequentially through variational Bayes with an evolving prior, that is obtained by propagating

forward through a stochastic transition kernel the approximation of the posterior at the previous

time step. Moreover, the considered variational approximation induces a regularization technique

called variational DropConnect, which resembles DropConnect Wan et al. [2013] and variational

DropOut [Kingma et al., 2015].

The idea behind HMNNs is simple and it opens multiple research questions that can be answered

in future works. The quality of the approximation is not treated and the rate of accumulation

of the error over time is unknown. Theoretical studies on variational approximations could be

used to answer this matter [Yang et al., 2017, Chérief-Abdellatif, 2019]. A smoothing algorithm

is not considered, this could improve the performance of HMNN and open the avenue for an

approximate EM algorithm, which would avoid the heavy initial tuning of the parameters.

The neural networks architecture deployed in HMNNs are simple and they could be extended

to recurrent neural network and convolutional neural network, to tackle more complicated

applications. The variational DropConnect idea suggests that using mixtures of Gaussians as

variational approximations can improve the performance, it would be interesting to see if that is

the case in other variational Bayes scenarios.

Chapter 6 proposes an approximation for filtering and smoothing distribution in compartmen-

tal models with fixed population. The general argument is to modify the prediction and correction

step in the forward-backward algorithm in such a way that they preserve the form of the chosen

approximation, i.e. after applying prediction /correction to a Multinomial distribution the results

is still a Multinomial distribution. The algorithm is then used in an epidemiological framework.

Several paths can be undertaken to extend this work. Little is known about the approximation,

surely a detailed mathematical study on both the quality of the approximation and the behaviour

of the approximate marginal likelihood is needed. This can be done, for example, for an increasing

population size given what is suggested by figure 6.6 in the experimental session. As showed

during the experiments, the method can be nested in MCMC and SMC algorithm to infer the

parameters of the epidemics, but how far can someone go in creating hybrids algorithms? Inter-

estingly, one option could be to use the multinomial approximation to inform the proposal in an

SMC. The Multinomial choice seems a bit restrictive, it is likely that other distributions could be

used to improve dispersion or relax the fixed population size assumption. Finally, applications in

epidemiology are presented, however compartmental models have a wide range of applications

that can be explored, e.g. pharmacokinetics, biomedicine, engineering.
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EXPLOITING LOCALITY IN HIGH-DIMENSIONAL FACTORIAL HIDDEN

MARKOV MODELS

This appendix provides some extra details on chapter 3. In particular, section A.1 shows

the formulation of the EM algorithm for Graph Filter-Smoother under Gaussian and

Poisson emission. Section A.2 gives some additional details on the traffic flow experiment.

Section A.3 formulates a particle filter algorithm derived from the Graph Filter-Smoother.

A.1 EM algorithm for Graph Filter-Smoother

The parameters of the FHMMs considered in section 3.4 can be estimated with an EM algorithm

where the exact smoothing distribution is substituted with the Graph Filter-Smoother approxima-

tion. This appendix contains details of the considered maximization step for both the Gaussian

and the Poisson model.

A.1.1 Gaussian emission

From the Gaussian emission model as in subsection 3.4.1 it can be seen that the parameters are

θ = (µ̂0, p̂, c,σ2). The log-likelihood is then:

logL(θ; X0:T , y0:T )= const.+
M∑

v=1
log[µ̂0(X v

0)]

+
T∑

t=1

M∑
v=1

log[ p̂(X v
t−1, X v

t )]

+
T∑

t=1

M−1∑
f=1

{
−1

2
log(σ2)− 1

2σ2

[
y f

t − c
(
X f

t − X f+1
t

)]2
}

.
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Consider the EM scenario as explained in subsection 2.1.3, the aim is to maximize the expected

log-likelihood, however this expectation is taken under the approximated smoothing distribution

π̃t|T given the parameters θ′. To make the notation lighter the dependence of π̃t|T on θ′ is dropped.

The expected log-likelihood is:

QT (θ,θ′)=
M∑

v=1

∑
x∈X

log[µ̂0(x)]π̃v
0|T (x)+

T∑
t=1

M∑
v=1

∑
x∈X

∑
z∈X

log[ p̂(x, z)]π̃v
t−1,t|T (x, z)

+
T∑

t=1

M−1∑
v=1

∑
x∈X

∑
z∈X

{
−1

2
log(σ2)− 1

2σ2

[
y f

t − c · x− c · z
]2

}
π̃

v,v+1
t|T (x, z),

where π̃
v,v+1
t|T is the joint smoothing distribution of X v

t , X v+1
t given θ′ and π̃v

t−1,t|T is the joint

smoothing distribution of X v
t−1, X v

t given θ′:

π̃v
t−1,t|T (x, z)=

p′(x, z)π̃v
t−1(x)π̃v

t|T (z)∑
x̃∈X p′(x̃, z)π̃v

t−1(x̃)
,

where p′ is the current estimate of p̂. Given the target function the next step is to compute the

gradient of QT :

∂QT

∂µ̂0(x)
= 1
µ̂0(x)

M∑
v=1

π̃v
0|T (x)− 1

µ̂0(x̃)

M∑
v=1

π̃v
0|T (x̃);

∂QT

∂p̂(x, z)
= 1

p̂(x, z)

T∑
t=1

M∑
v=1

π̃v
t−1,t|T (x, z)− 1

p̂(x, x̃)

T∑
t=1

M∑
v=1

π̃v
t−1,t|T (x, x̃);

∂QT

∂c
=

T∑
t=1

M−1∑
f=1

∑
x∈X

∑
z∈X

{
(x+ z)
σ2

[
y f

t − c · x− c · z
]}
π̃

f , f+1
t|T (x, z);

∂QT

∂σ2 =
T∑

t=1

M−1∑
f=1

∑
x∈X

∑
z∈X

[
− 1

2σ2 + 1
2(σ2)2

(
y f

t − c · x− c · z
)2

]
π̃

f , f+1
t|T (x, z);

remark that deriving QT is not enough, all the constraint on the probability masses must be

satisfied, i.e.:

µ̂0(x̃)= 1− ∑
z̃∈X

µ̂0(z̃) and p̂(x, x̃)= 1− ∑
z̃∈X

p̂(x, z̃).

The M-step is then obtained with ∇QT (µ̂0, p̂, c,σ2)= 0, precisely:

µ̂0(x)= 1
M

M∑
v=1

π̃v
0|T (x);

p̂(x, z)=

T∑
t=1

M∑
v=1

π̃v
t−1,t|T (x, z)

T∑
t=1

M∑
v=1

π̃v
t−1|T (x)

;

c =

T∑
t=1

M−1∑
f=1

∑
x∈X

∑
z∈X

y f
t (x+ z)π̃ f , f+1

t|T (x, z)

T∑
t=1

M−1∑
f=1

∑
x∈X

∑
z∈X

(x+ z)2π̃
f , f+1
t|T (x, z)

;

σ2 = 1
T(M−1)

T∑
t=1

M−1∑
f=1

∑
x∈X

∑
z∈X

[yt − c(x+ z)]2π̃
f , f+1
t|T (x, z).
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A.1.2 Poisson emission

Consider the model described in subsection 3.4.2. A graphical representation is available in figure

A.1.

Station k Station j Station i

xy

f i,in
t f i,out

tf j,in
t f j,out

tf k,in
t f k,out

t

xi, j
tx j,i

tx j,k
txk, j

t

Figure A.1: Top: a simple tube’s network with three stations. Bottom: the corresponding factor
graph build as explained in section 3.4.2.

The parameters of the model are θ = (µ0, p,λ). The log-likelihood of the model is:

logL(θ; X0:T , y0:T )=
F∑

i, j=1
log[µi, j

0 (X i, j
0 )]

+
T∑

t=1

F∑
i, j=1

log[pi, j(X i, j
t−1, X i, j

t )]

+
T∑

t=1

F∑
i=1

{
yi,in

t log(λi,in)−λi,in

( ∑
j∈N(i)

X i, j
t

)}

+
T∑

t=1

F∑
i=1

{
yi,out

t log(λi,out)−λi,out

( ∑
j∈N(i)

X j,i
t

)}
+ const.

As for the previous section, in EM the expected log-likelihood must be maximise, where the

expectation is taken under the approximated smoothing distribution π̃t|T given the current

estimates of the parameters θ′ (as for the previous subsection the dependence of the approximate
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smoothing on θ′ is dropped). Precisely, the expected log-likelihood is:

QT (θ,θ′)=
F∑

i, j=1

∑
x∈X

log[µi, j
0 (x)]π̃i, j

0|T (x)+
T∑

t=1

M∑
v=1

∑
x∈X

∑
z∈X

log[pi, j(x, z)]π̃i, j
t−1,t|T (x, z)

+
T∑

t=1

F∑
i=1

{
yi,in

t log(λi,in)− ∑
x∈Xi,N(i)

λi,in

( ∑
j∈N(i)

xi, j
t

)
π̃

i,N(i)
t|T (xi,N(i))

}

+
T∑

t=1

F∑
i=1

{
yi,out

t log(λi,out)− ∑
x∈Xi,N(i)

λi,out

( ∑
j∈N(i)

x j,i
t

)
π̃

N(i),i
t|T (xN(i),i)

}
.

where π̃i,N(i)
t|T is the joint smoothing distribution of (X i, j

t ) j∈N(i) and π̃
i, j
t−1,t|T is the joint smoothing

distribution of X i, j
t−1, X i, j

t . Given the target function the gradient of QT can be computed:

∂QT

∂µ
i, j
0 (x)

= 1

µ
i, j
0 (x)

π̃
i, j
0|T (x)− 1

µ
i, j
0 (x̃)

π̃
i, j
0|T (x̃);

∂QT

∂Q(µ0, p,λ)∂pi, j(x, z)
= 1

pi, j(x, z)

T∑
t=1

π̃
i, j
t−1,t|T (x, z)− 1

pi, j(x, x̃)

T∑
t=1

π̃
i, j
t−1,t|T (x, x̃);

∂QT

∂λi,in =
T∑

t=1

{
yi,in

t

λi,in − ∑
x∈Xi,N(i)

( ∑
j∈N(i)

xi, j
t

)
π̃

i,N(i)
t|T (x)

}
;

∂QT

∂λi,out =
T∑

t=1

{
yi,out

t

λi,out −
∑

x∈Xi,N(i)

( ∑
j∈N(i)

x j,i
t

)
π̃

N(i),i
t|T (x)

}
.

remark that deriving QT is not enough, all the constraint on the probability masses must be

satisfied, i.e.:

µ
i, j
0 (x̃)= 1− ∑

z̃∈X
µi, j

0(z̃) and pi, j(x, x̃)= 1− ∑
z̃∈X

pi, j(x, z̃).

The M-step is then obtained by setting ∇QT (θ)= 0, precisely:

µ
i, j
0 (x)= π̃i, j

0|T (x);

pi, j(x, z)=

T∑
t=1

π̃
i, j
t−1,t|T (x, z)

T∑
t=1

π̃
i, j
t−1|T (x)

;

λi,in =

T∑
t=1

yi,in
t∑

x∈Xi,N(i)

(∑
j∈N(i) xi, j

t

)
π̃

i,N(i)
t|T (x)

;

λi,out =

T∑
t=1

yi,out
t∑

x∈Xi,N(i)

(∑
j∈N(i) x j,i

t

)
π̃

N(i),i
t|T (x)

.

150



A.2. ANALYZING TRAFFIC FLOWS ON THE LONDON UNDERGROUND: SUPPLEMENTARY

A.2 Analyzing traffic flows on the London Underground:
supplementary

This section provides some additional details about the experiments in section 3.4.2. Section

A.2.1 describes the training procedure of the LSTM. Section A.2.2 provides complete plots about

the experiments.

A.2.1 LSTM details

The training set is normalized between 0 and 1. The LSTM is trained on Keras with architecture

given by an LSTM cell with 10 hidden units and input the inflow-outflow for all the twenty

stations, i.e. a 40-dimensional input, and an additional dense layer with output dimension 40

(the inflow-outflow for all the twenty stations). The total number of parameters is then 850. More

complicated (and simpler) architecture have been tested, but the chosen one was performing the

best. The weights of the neural network are trained over 100 epochs and ADAM optimizer is

used. The experiment is repeated 100 times with different seeds.

A.2.2 Plots on all the stations
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Figure A.2: Posterior predictive performance with Graph Filter on all the considered stations.
The first five rows show the inflow, the remaining five rows show the outflow. In blue: the inflow
and outflow per station. In red: one step-ahead posterior predictive mean (solid red line) and 0.95
credible intervals (red bands) using the Graph Filter-Smoother.
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Figure A.3: Posterior predictive performance with Graph Filter on all the considered stations with
missing data in a quiet period. The first five rows show the inflow, the remaining five rows show
the outflow. In blue: the inflow and outflow per station. In red: one step-ahead posterior predictive
mean (solid red line) and 0.95 credible intervals (red bands) using the Graph Filter-Smoother.
Grey vertical dashed lines show the start and the end of the missing data window.
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Figure A.4: Posterior predictive performance with Graph Filter on all the considered stations with
missing data in a quiet period. The first five rows show the inflow, the remaining five rows show
the outflow. In blue: the inflow and outflow per station. In red: one step-ahead posterior predictive
mean (solid red line) and 0.95 credible intervals (red bands) using the Graph Filter-Smoother.
Grey vertical dashed lines show the start and the end of the missing data window.
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Figure A.5: LSTM performance on all the considered stations with missing data in a quiet period.
The first five rows show the inflow, the remaining five rows show the outflow. In blue: the inflow
and outflow per station. In red: one-step-ahead prediction with the LSTM, per time step, a sample
of size 100 is built over different training of the LSTM with solid red lines showing the mean and
red bands showing the region between the 0.025 and the 0.975 quantile.
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Figure A.6: LSTM performance on all the considered stations with missing data in a quiet period.
The first five rows show the inflow, the remaining five rows show the outflow. In blue: the inflow
and outflow per station. In red: multi-step-ahead prediction with the LSTM, per time step, a
sample of size 100 is built over different training of the LSTM with solid red lines showing the
mean and red bands showing the region between the 0.025 and the 0.975 quantile.
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Figure A.7: LSTM performance on all the considered stations with missing data in a quiet period.
The first five rows show the inflow, the remaining five rows show the outflow. In blue: the inflow
and outflow per station. In red: multi-step-ahead prediction with the LSTM, per time step, a
sample of size 100 is built over different training of the LSTM with solid red lines showing the
mean and red bands showing the region between the 0.025 and the 0.975 quantile.

A.3 Graph Particle Filter

Chapter 3 is focused on a finite state-space scenario, however algorithm 4 can be reformulated

as a particle filter as for Block Particle Filter in Rebeschini and Van Handel [2015]. The key

point is to compute locally the weights associated with the elements of the partition. In such

a way, per each element of the partition only a subset of factors is considered according to the

chosen parameter m. As for Rebeschini and Van Handel [2015] algorithm 12 can be proved to be

accurate, but this is left to future works.

Algorithm 12 Graph Particle Filter

Require: K , (Nm
f (K))K∈K , (Nm

v (K))K∈K , (µK
0 )K∈K , (pv(·, ·))v∈V , (g f (·, ·)) f ∈F , (yt)t={1,...,T}

1: for K ∈K do
2: π̃K

0 ←µK
0

3: for t ∈ {1, . . . ,T} do
4: for i ∈ {1, . . . , N} do
5: Sample i.i.d. x̃t−1(i) from the distribution π̃t−1
6: Sample x̃v

t (i)∼ pv(x̃v
t−1(i), ·),v ∈V

7: Compute wK
t (i)=∏

f ∈Nm
f (K) g f (x̃N( f )

t (i), yt), K ∈K

8: Normalize the weights wK
t (i)= wK

t (i)∑N
j=1 wK

t ( j)
, K ∈K

9: Let π̃t ←⊗
K∈K

∑N
i=1 wK

t (i)δx̃K
t (i)

10: return ((x̃t(i))i=1,...,N )t=0,...,T
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INFERENCE IN STOCHASTIC EPIDEMIC MODELS VIA MULTINOMIAL

APPROXIMATIONS

Section B.1 discusses some of the shortcomings of deterministic compartmental models,

expanding on the discussion in chapter 6. Section B.2 contains proofs of lemmas 6.1 and

6.2, plus corresponding results and proofs for the observation model from subsection 6.2.3.

Section B.3 provides additional details and numerical results for the Ebola example in subsection

6.4.1. Additional details and numerical results for the COVID-19 example in subsection 6.4.3 are

given in section B.4.

B.1 Stochastic vs. deterministic SEIR models

Perhaps the most widely applied formulation of a compartmental model is as a system of ordinary

differential equations.

SEIR example. For a population of size n, the SEIR ODE model is:

dS
dt

=−βSI
n

,
dE
dt

= βSI
n

−ρE,
dI
dt

= ρE−γI,
dR
dt

= γI,

initialized with nonnegative integers in each of the compartments (S0,E0, I0,R0) such that

S0 +E0 + I0 +R0 = n.

The most obvious drawback of ODE models is that, once model parameters and the initial

population are fixed, any discrepancy between observed data and the solution of the ODE has

to be explained as observation error, which is a serious restriction from a modelling point of

view. In practice one can try to estimate unknown parameters and/or the initial condition by

numerically minimizing this discrepancy, e.g. under squared error loss. Standard errors for
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parameter estimates can be derived using asymptotic theory for nonlinear least squares, but

calculation of them in practice involves numerical differentiation of the ODE solution flow w.r.t.

parameters [Chowell et al., 2004]. When a probabilistic observation model is specified, Bayesian

approaches allow for uncertainty quantification over parameters via posterior distributions, but

evaluating the likelihood function for model parameters still involves numerical solution of the

ODE.
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Figure B.1: Proportion of infective individuals against time in simulations from the discrete-time
stochastic SEIR model with β= 0.8, ρ = 1/5, γ= 1/9 and h = 1 over 200 time steps. Columns left
to right: n = 102,103,105,107 and initial conditions (S0,E0, I0,R0) = (n−1,1,0,0). Top row: 10
realizations from the model. Bottom row: at each time step shaded regions indicate percentile
intervals of the form [α,1−α]×100%, for α= 0.05,0.1,0.2,0.3,0.4 estimated from 104 realizations
from the model.

Figure B.1 shows simulation output for the proportion of infective individuals in the discrete-

time SEIR model with n = 102,103,105,107 and initial conditions (S0,E0, I0,R0)= (n−1,1,0,0),

with β= 0.8, ρ = 1/9 and γ= 0.2. It is evident that the sample paths become smoother as n grows,

but there is still substantial variability across sample paths even with n = 107. This can be

explained by the fact that since (E0, I0)= (1,0) independently of n, the numbers of exposed and

infective individuals in the first few time periods of the epidemic are typically very small, despite

the fact that the overall population size may be large, and the statistical variability associated

with these small numbers has a lasting effect on the overall timing of the outbreak.

To explain how this relates to ODE limits, for n ≥ 1 and initial proportions of the population

(s0, e0, i0, r0), i.e., s0 + e0 + i0 + r0 = 1, let us write Dn(s0, e0, i0, r0) for the collection of ODEs in

(B.1) together with the initial condition (ns0,ne0,ni0,nr0). It can be checked by substitution

that t 7→ (St,E t, I t,Rt) is a solution of D1(s0, e0, i0, r0) if and only if t 7→ (nSt,nE t,nI t,nRt) is a

solution of Dn(s0, e0, i0, r0). Thus n plays a trivial role in the ODE model: it is just a scaling factor

for the solution.
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The limit theorems of Kurtz [1970, 1971] applied in this situation pertain to the probabilistic

convergence on a finite time-window as n →∞ of the path of the continuous-time SEIR Markov

process with initial condition (S0,E0, I0,R0)= (n−1,1,0,0) and compartment counts normalized

by n, to the solution of D1(s0, e0, i0, r0), where (s0, e0, i0, r0)= limn→∞(n−1,1,0,0)/n = (1,0,0,0).

However in the solution of D1(1,0,0,0), the exposed and infective compartments are always

empty, i.e. an epidemic never occurs. This can be reconciled with figure B.1 by observing that

there the peak in the number of infectives typically occurs later as n grows: the limiting n →∞
case is that in which a peak never occurs.

This illustrates that sequences of well-behaved stochastic models can have ODE limits which

are unrealistic to the point of being pathological, and therefore these limits are not always a

sensible justification for using ODE models.

B.2 Supplementary information about multinomial filtering
and smoothing

B.2.1 Proofs of lemma 6.1 and lemma 6.2

Proof of Lemma 6.1 Since µ is the probability mass function associated with Mult(n,π), Eµ[η(x)]=
π, so it is needed to be proved that

∑
x∈Sm,n µ(x)Mt(x,π, ·) is the probability mass function as-

sociated with Mult(n,πTKt,π). This can be achieved using the unique characterization of the

probability mass function by its moment generating function.

With x∼µ, let x̃∼ Mt(x,π, ·), so by construction
∑

x∈Sm,n µ(x)Mt(x,π, ·) is the marginal proba-

bility mass function of x̃. Therefore by the definition of Mt in section 6.3.1, x̃ = (1T
mZ)T, where

the rows of Z are conditionally independent given x, and the conditional distribution of the ith

row of Z given x is Mult(x(i),K(i,·)
t,π ). Using these facts, the moment generating function of x̃ can be

written:

E
[
exp(x̃Tb)

]
= E

[
exp(1T

mZb)
]

= E
[

exp

(
m∑

i, j=1
Z(i, j)b( j)

)]

= E
[
E

[
exp

(
m∑

i, j=1
Z(i, j)b( j)

)∣∣∣∣∣x
]]

= E
[

m∏
i=1
E

[
exp

(
m∑

j=1
Z(i, j)b( j)

)∣∣∣∣∣x(i)

]]
.

Now use the fact that, again by definition of Mt, E
[

exp
(∑m

j=1 Z(i, j)b( j)
)∣∣∣x(i)

]
is the m.g.f. of

Mult(x(i),K(i,·)
t,π ), where Kt,π has elements k(i, j)

t,π , i.e. :

E

[
exp

(
m∑

j=1
Z(i, j)b( j)

)∣∣∣∣∣x(i)

]
=

(
m∑

j=1
k(i, j)

t,π eb( j)

)x(i)

.

157



APPENDIX B. INFERENCE IN STOCHASTIC EPIDEMIC MODELS

Substituting this into (1) and then using x∼µ=Mult(n,π),

E
[
exp(x̃Tb)

]
= E

[
m∏

i=1
E

[
exp

(
m∑

j=1
Z(i, j)b( j)

)∣∣∣∣∣x(i)

]]
= E

 m∏
i=1

(
m∑

j=1
k(i, j)

t,π eb( j)

)x(i)
= ∑

(x(1),...,x(m))∈Sm,n

n!
m∏

i=1

(π(i))x(i)

x(i)!

(
m∑

j=1
k(i, j)

t,π eb( j)

)x(i)

= ∑
(x(1),...,x(m))∈Sm,n

n!
m∏

i=1

1
x(i)!

(
m∑

j=1
π(i)k(i, j)

t,π eb( j)

)x(i)

=
(

m∑
i=1

m∑
j=1

π(i)k(i, j)
t,π eb( j)

)n

=
(

m∑
j=1

(πTKt,π)( j)eb( j)

)n

,

where the penultimate equality holds by the multinomial theorem. The proof is completed by

noticing that
(∑m

j=1(πTKt,π)( j)eb( j)
)n

is the moment generating function of Mult(n,πTKt,π). �

Proof of lemma 6.2 Under the distributional assumptions in the statement of the lemma, for

x ∈Sm,n,

p(x)= n!∏m
j=1 x( j)!

m∏
j=1

(π( j))x( j)
,

and for 0≤ y( j) ≤ x( j), j = 1, . . . ,m,

p(y|x)=
m∏

j=1

x( j)!
y( j)!(x( j) − y( j))!

(q( j))y( j)
(1− q( j))x( j)−y( j)

.

Therefore

(B.1) p(x,y)= n!
m∏

j=1

(π( j))x( j)
(q( j))y( j)

(1− q( j))x( j)−y( j)

y( j)!(x( j) − y( j))!
,

and

p(y)= ∑
{x( j):x( j)≥y( j),

∑
j x( j)=n}

n!
m∏

j=1

(π( j))x( j)
(q( j))y( j)

(1− q( j))x( j)−y( j)

y( j)!(x( j) − y( j))!

= n!

(
m∏

j=1

(q( j))y( j)
(π( j))y( j)

y( j)!

)

× ∑
{x( j):x( j)≥y( j),

∑
j x( j)=n}

(
m∏

j=1

(π( j))x( j)−y( j)
(1− q( j))x( j)−y( j)

(x( j) − y( j))!

)

= n!

(
m∏

j=1

(q( j))y( j)
(π( j))y( j)

y( j)!

) (∑m
j=1π

( j)(1− q( j))
)n−∑m

j=1 y( j)

(n−∑m
j=1 y( j))!

,(B.2)

where the final equality holds by the multinomial theorem. Dividing (B.1) by (B.2) gives

p(x|y)=
(
n−

m∑
j=1

y( j)

)
!

m∏
j=1

1
(x( j) − y( j))!

(
π( j)(1− q( j))∑m

i=1π
(i)(1− q(i))

)x( j)−y( j)

,

which is the probability mass function of y+x? given in the statement of the lemma. �
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Remark B.1. The probability mass function in (B.2) has the interpretation of being a multinomial

distribution over n+1 compartments, where the count variable associated with the (m+1)th

compartment is n−∑m
j=1 y( j).

B.2.2 Proofs on lemma 6.3 and lemma 6.4

Proof of lemma 6.3 The proof is similar to the proof of Lemma 1, so some steps and commentary

are omitted. Note Eµ[η((1T
mZ)T)] = (1T

mP)T = π, and let Z̃ ∼ M(Z,π, ·). The moment generating

function of Z̃ is:

E[exp(1T
m(Z̃◦B)1m)]= E

[
m∏

i=1
exp

(
m∑

j=1
z̃(i, j)b(i, j)

)]

= E
[
E

[
m∏

i=1
exp

(
m∑

j=1
z̃(i, j)b(i, j)

)∣∣∣∣∣Z
]]

= E
[

m∏
i=1
E

[
exp

(
m∑

j=1
z̃(i, j)b(i, j)

)∣∣∣∣∣ (1T
mZ)(i)

]]

= E
 m∏

i=1

(
m∑

j=1
k(i, j)

t,π b(i, j)

)(1T
mZ)(i)

= n!
∑

(x(1),...,x(m))∈Sm,n

m∏
i=1

(π(i))x(i)

x(i)!

(
m∑

j=1
k(i, j)

t,π eb(i, j)

)x(i)

=
(

m∑
i=1

m∑
j=1

π(i)k(i, j)
t,π eb(i, j)

)n

.

�

Proof of lemma 6.4 The proof is very similar to the proof of Lemma 2 so is omitted. �

B.2.3 Proofs of lemma 6.5 and lemma 6.6

Proof of lemma 6.5 Recalling the definition of Ms+1 from subsection 6.3.1, the numerator in

(6.17) is:

µs|s(xs)Ms+1(xs,πs|s,xs+1)

=
n!

m∏
i=1

(π(i)
s|s)

x(i)
s

x(i)
s !

 ∑
Z∈Tm,n(xs,xs+1)

m∏
i=1

x(i)
s !

m∏
j=1

(k(i, j)
s+1,πs|s

)z(i, j)

z(i, j)!


= n!

(
m∏

i=1
(π(i)

s|s)
x(i)

s

) ∑
Z∈Tm,n(xs,xs+1)

m∏
i, j=1

(k(i, j)
s+1,πs|s

)z(i, j)

z(i, j)!

= n!
∑

Z∈Tm,n(xs,xs+1)

m∏
i, j=1

(π(i)
s|s)

z(i, j)
(k(i, j)

s+1,πs|s
)z(i, j)

z(i, j)!
,(B.3)
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where Tm,n(xs,xs+1) is the set of m×m matrices, say Z, with nonnegative entries such that

Z1m = xs, (1T
mZ)= xT

s+1, and 1T
mZ1m = n.

Now in order to derive an expression for the the denominator in (6.17), observe that (B.3) can

be disintegrated to give:

n!
m∏

i, j=1

(π(i)
s|s)

z(i, j)
(k(i, j)

s+1,πs|s
)z(i, j)

z(i, j)!
,

which is the probability mass function of Z∼Mult(n, (πs|s⊗1m)◦Ks+1,πs|s ). Therefore using the fact

the marginal of this multinomial distribution over 1T
mZ is Mult(n,πT

s|sKs+1,πs|s ), the denominator

in (6.17) is

(B.4)
∑

xs∈Sm,n

µs|s(xs)Ms+1(xs,πs|s,xs+1)= n!
m∏

j=1

((πT
s|sKs+1,πs|s )

( j))x( j)
s+1

x( j)
s+1!

.

Dividing (B.3) by (B.4) gives:

∑
Z∈Tm,n(xs,xs+1)

m∏
i=1

x( j)
s+1!

m∏
j=1

 π(i)
s|s k(i, j)

s+1,πs|s

(πT
s|sKs+1,πs|s )( j)

z(i, j)

1
z(i, j)!

.

Re-writing this sum with the change of variable Z̃ := ZT and interchanging i and j yields the

result. �

Proof of lemma 6.6 The result can be proved by induction. The induction is initialized using

the fact that µt|t(·) is by definition the probability mass function associated with Mult(n,πt|t), and

then proceeds by combining the result of lemma 6.5 with moment generating function techniques

similar to those used in the proof of lemma 6.1. The details are omitted to avoid repetition. �

B.2.4 Proofs of lemma 6.7 and lemma 6.6

Proof of lemma 6.7 For the numerator in (6.20) is

µs|s(Zs)Ms+1(Zs,πs|s,Zs+1)

=
n!

m∏
i, j=1

(p(i, j)
s|s )z(i, j)

s

z(i, j)
s !

 I[1T
mZs = (Zs+11m)T]

×

 m∏
j=1

(Zs+11m)( j)!
m∏
`=1

(
k( j,`)

s+1,πs|s

)z( j,`)
s+1

z( j,`)
s+1 !

 ,(B.5)

and for the denominator in (6.20),∑
Zs

µs|s(Zs)Ms+1(Zs,πs|s,Zs+1)

=
n!

m∏
j=1

(π( j)
s|s)

(Zs+11m)( j)

(Zs+11m)( j)!


 m∏

j=1
(Zs+11m)( j)!

m∏
`=1

(
k( j,`)

s+1,πs|s

)z( j,`)
s+1

z( j,`)
s+1 !

 ,(B.6)
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where the equality in (B.6) holds by combining (B.5) with the fact that the marginal of µs|s over

1T
mZs is Mult(n,1T

mPs|s)=Mult(n,πs|s).
Dividing (B.5) by (B.6) results in

(B.7) I[1T
mZs = (Zs+11m)T]

m∏
j=1

(Zs+11m)( j)!
m∏

i=1

 p(i, j)
s|s
π

( j)
s|s

z(i, j)
s !

1

z(i, j)
s !

,

where p(i, j)
s|s are the elements of Ps|s, Ls is the matrix with elements l

(i, j)
s = p( j,i)

s|s /π(i)
s|s. �

Proof of lemma 6.6 The proof is by induction for s = t, t−1, . . ., initialized using the fact that

µt|t(·) is defined to be the probability mass function associated with Mult(n,Pt|t), and for the

induction step plugging (B.7), which is an explicit expression for the right hand side of (6.20),

into (6.21), and using the fact the marginal of µs+1|t(Zs+1) over Zs+11m is Mult(n,Ps+1|t1m). �

B.3 Ebola example: further details and numerical results

This section provides more information about the numerical results from section 6.4.1.

B.3.1 Details of the EM algorithm

In numerical experiments it has been found that a robust approach to approximate maximum

likelihood estimation of Θ was to take a profile-likelihood approach using an EM algorithm: 1)

choose a grid of values for (β,λ); 2) for each point on this grid, say (β̂, λ̂), run an EM algorithm

to approximately maximize p(Y1:t|β̂, λ̂,ρ,γ, q(2,3), q(3,4)) with respect to (ρ,γ, q(2,3), q(3,4)) then

evaluate the marginal likelihood at the resulting parameter values using algorithm 8; 3) maximize

over the grid.

The EM component of this procedure follows the usual steps for a hidden Markov model

[Cappé et al., 2006], so it is just provided an outline. One step of the EM procedure is as

follows: given Θ one performs forward filtering using algorithm 8 then backward smoothing using

algorithm 10 resulting in (Pt|T )t≤T . The expected complete data log-likelihood is then maximized

with respect to the parameters of interest. It turns out that for the Ebola model, the maximization

steps for (ρ,γ, q(2,3), q(3,4)) have closed-form solutions, leading to the update equations:

ρ← log

1+
∑T

t=1 p(2,3)
t|T∑T

t=1 p(2,2)
t|T

 , γ← log

1+
∑T

t=1 p(3,4)
t|T∑T

t=1 p(3,4)
t|T

 ,

q(2,3) ← 1∧
∑T

t=1 y(2,3)
s /n

p(2,3)
t|T

, q(3,4) ← 1∧
∑T

t=1 y(3,4)
s /n

p(3,4)
t|T

,

where p(i, j)
t|T are the elements of Pt|T .
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B.3.2 Details of the MCMC algorithm

A Metropolis-within-Gibbs MCMC is implemented. The algorithm is targeting the approximate

posterior distribution p̂(Θ|Y1:t) ∝ p̂(Y1:t|Θ)p(Θ), where p̂(Y1:t|Θ) is the approximate marginal

likelihood computed using algorithm 8, and

p(Θ)= p(β)p(λ)p(ρ)p(γ)p(q(2,3))p(q(3,4)).

Three sets of Gamma prior distributions over β,λ,ρ,γ are considered, precisely these are the ones

specified in section 3.3 of Lekone and Finkenstädt [2006] and referred to as ‘vague’, ‘informative’

and ‘non-centered’. The priors p(q(2,3)), p(q(3,4))) were taken to be uniform densities on [0,1].

Gaussian random walk proposals were applied to each parameter, with variances manually

tuned to give acceptance rates between 20% and 40% [Roberts et al., 2001].

B.4 COVID-19 example: further details and numerical results

This section provides additional information about the COVID-19 experiment treated in subsec-

tion 6.4.3.

B.4.1 Data and Parameter settings

The series (y(3,4)
t )t≥0 and (y(7,8)

t )t≥0, i.e. the reported numbers of new infectives in Wuhan and

internationally, constitute two of the three data sets considered for inference by Kucharski et al.

[2020]. They additionally considered a third data set consisting of information about prevalence

of infections on evacuation flights. This prevalence data are excluded from the analysis, since the

structure of the observation model required fall outside the class of models considered in this

thesis.

f t,n,ρ,γ are set to the same values used in Kucharski et al. [2020], including the fact that f t

is set to zero after the date when travel restrictions were introduced. q(W) = 0.00175, q(T) = 0.8

are estimated via approximate maximum likelihood over a grid and h = 1.

B.4.2 Implementation

The implementation of this experiment is base on the R code accompanying Kucharski et al.

[2020], which is available at https://github.com/adamkucharski/2020-ncov/. The experi-

ments reported in Kucharski et al. [2020] are re-ran using their method, but excluding the

evacuation flight data mentioned in subsection 6.4.3. This allows for like-for-like comparisons of

the proposed method results with theirs.
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B.4.3 Inference and results

Algorithm 11 is based directly on the Sequential Monte Carlo algorithm of Kucharski et al. [2020],

incorporates the proposed discrete-time stochastic model instead of their ODE model. The first

stage consists of a particle filter where for time step t, the ith of npart particles consists of β(i)
t

and P(i)
t|t, and the unnormalized importance weight w(i)

t is computed similarly to algorithm 8. The

second stage samples from the smoothing distribution of βt by tracing back the ancestors of a

selected particle - see [Andrieu et al., 2010] for details of the role of ancestors in resampling. In

addition backward steps as in algorithm 10 compute the corresponding smoothing distribution

over Zt, for t = T, . . . ,1.

The effective sample size for algorithm 11 and the SMC method of Kucharski et al. [2020]

applied to the same data are reported in figure B.2.
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Figure B.2: Effective sample size for algorithm 11 on the left, and for the particle filter of
Kucharski et al. [2020] on the right. Remark the evacuation flights data from Kucharski et al.
[2020] are excluded from the latter to make a fair comparison with the model proposed in this
thesis.
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