2,007 research outputs found

    Managing Communication Latency-Hiding at Runtime for Parallel Programming Languages and Libraries

    Full text link
    This work introduces a runtime model for managing communication with support for latency-hiding. The model enables non-computer science researchers to exploit communication latency-hiding techniques seamlessly. For compiled languages, it is often possible to create efficient schedules for communication, but this is not the case for interpreted languages. By maintaining data dependencies between scheduled operations, it is possible to aggressively initiate communication and lazily evaluate tasks to allow maximal time for the communication to finish before entering a wait state. We implement a heuristic of this model in DistNumPy, an auto-parallelizing version of numerical Python that allows sequential NumPy programs to run on distributed memory architectures. Furthermore, we present performance comparisons for eight benchmarks with and without automatic latency-hiding. The results shows that our model reduces the time spent on waiting for communication as much as 27 times, from a maximum of 54% to only 2% of the total execution time, in a stencil application.Comment: PREPRIN

    On the construction of decentralised service-oriented orchestration systems

    Get PDF
    Modern science relies on workflow technology to capture, process, and analyse data obtained from scientific instruments. Scientific workflows are precise descriptions of experiments in which multiple computational tasks are coordinated based on the dataflows between them. Orchestrating scientific workflows presents a significant research challenge: they are typically executed in a manner such that all data pass through a centralised computer server known as the engine, which causes unnecessary network traffic that leads to a performance bottleneck. These workflows are commonly composed of services that perform computation over geographically distributed resources, and involve the management of dataflows between them. Centralised orchestration is clearly not a scalable approach for coordinating services dispersed across distant geographical locations. This thesis presents a scalable decentralised service-oriented orchestration system that relies on a high-level data coordination language for the specification and execution of workflows. This system’s architecture consists of distributed engines, each of which is responsible for executing part of the overall workflow. It exploits parallelism in the workflow by decomposing it into smaller sub-workflows, and determines the most appropriate engines to execute them using computation placement analysis. This permits the workflow logic to be distributed closer to the services providing the data for execution, which reduces the overall data transfer in the workflow and improves its execution time. This thesis provides an evaluation of the presented system which concludes that decentralised orchestration provides scalability benefits over centralised orchestration, and improves the overall performance of executing a service-oriented workflow

    Distributed, parallel web service orchestration using XSLT

    Get PDF
    ©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.GridXSLT is an implementation of the XSLT programming language designed for distributed web service orchestration. Based on the functional semantics of the language, it compiles programs into dataflow graphs which can be efficiently executed across a collection of machines in a cluster or grid environment. Calls to web services can be made using the standard function call semantics provided by the language, and occur in parallel using the dataflow model of computation. The programmer is not required to explicitly specify the parallelism, as the details of how programs are scheduled and executed in a distributed environment are abstracted away by the run-time engine. XSLT provides a higher level programming model than many other approaches to web services composition; we explore its use here as a means of easing the task of orchestrating the interactions between services. In addition to the normal XSLT syntax, our system also supports programs written in XSLiTe, an alternative syntax we have developed which uses more concise representations of language constructs, increasing the ease of development, and bringing code readability closer to that of traditional programming languages. Our goal is to ease the construction of applications based on web services composition, such as those used in eScience and other fields in which service oriented architectures are prominent.Peter M. Kelly, Paul D. Coddington, Andrew L. Wendelbor

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201
    corecore