345 research outputs found

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    HMM word graph based keyword spotting in handwritten document images

    Full text link
    [EN] Line-level keyword spotting (KWS) is presented on the basis of frame-level word posterior probabilities. These posteriors are obtained using word graphs derived from the recogni- tion process of a full-fledged handwritten text recognizer based on hidden Markov models and N-gram language models. This approach has several advantages. First, since it uses a holistic, segmentation-free technology, it does not require any kind of word or charac- ter segmentation. Second, the use of language models allows the context of each spotted word to be taken into account, thereby considerably increasing KWS accuracy. And third, the proposed KWS scores are based on true posterior probabilities, taking into account all (or most) possible word segmentations of the input image. These scores are properly bounded and normalized. This mathematically clean formulation lends itself to smooth, threshold-based keyword queries which, in turn, permit comfortable trade-offs between search precision and recall. Experiments are carried out on several historic collections of handwritten text images, as well as a well-known data set of modern English handwrit- ten text. According to the empirical results, the proposed approach achieves KWS results comparable to those obtained with the recently-introduced "BLSTM neural networks KWS" approach and clearly outperform the popular, state-of-the-art "Filler HMM" KWS method. Overall, the results clearly support all the above-claimed advantages of the proposed ap- proach.This work has been partially supported by the Generalitat Valenciana under the Prometeo/2009/014 project grant ALMA-MATER, and through the EU projects: HIMANIS (JPICH programme, Spanish grant Ref. PCIN-2015-068) and READ (Horizon 2020 programme, grant Ref. 674943).Toselli, AH.; Vidal, E.; Romero, V.; Frinken, V. (2016). HMM word graph based keyword spotting in handwritten document images. Information Sciences. 370:497-518. https://doi.org/10.1016/j.ins.2016.07.063S49751837

    Long short-term memory networks for noise robust speech recognition

    Get PDF

    HEiMDaL: Highly Efficient Method for Detection and Localization of wake-words

    Full text link
    Streaming keyword spotting is a widely used solution for activating voice assistants. Deep Neural Networks with Hidden Markov Model (DNN-HMM) based methods have proven to be efficient and widely adopted in this space, primarily because of the ability to detect and identify the start and end of the wake-up word at low compute cost. However, such hybrid systems suffer from loss metric mismatch when the DNN and HMM are trained independently. Sequence discriminative training cannot fully mitigate the loss-metric mismatch due to the inherent Markovian style of the operation. We propose an low footprint CNN model, called HEiMDaL, to detect and localize keywords in streaming conditions. We introduce an alignment-based classification loss to detect the occurrence of the keyword along with an offset loss to predict the start of the keyword. HEiMDaL shows 73% reduction in detection metrics along with equivalent localization accuracy and with the same memory footprint as existing DNN-HMM style models for a given wake-word
    corecore