2,991 research outputs found

    Adaptive minimum symbol error rate beamforming assisted receiver for quadrature amplitude modulation systems

    No full text
    An adaptive beamforming assisted receiver is proposed for multiple antenna aided multiuser systems that employ bandwidth efficient quadrature amplitude modulation (QAM). A novel minimum symbol error rate (MSER) design is proposed for the beamforming assisted receiver, where the system’s symbol error rate is directly optimized. Hence the MSER approach provides a significant symbol error ratio performance enhancement over the classic minimum mean square error design. A sample-by-sample adaptive algorithm, referred to as the least symbol error rate (LBER) technique, is derived for allowing the adaptive implementation of the system to arrive from its initial beamforming weight solution to MSER beamforming solution

    Minimum Symbol Error Rate Turbo Multiuser Beamforming Aided QAM Receiver

    No full text
    This paper studies a novel iterative soft interference cancellation (SIC) aided beamforming receiver designed for highthroughput quadrature amplitude modulation systems communicating over additive white Gaussian noise channels. The proposed linear SIC aided minimum symbol error rate (MSER) multiuser detection scheme guarantees the direct and explicit minimisation of the symbol error rate at the output of the detector. Based on the extrinsic information transfer (EXIT) chart technique, we compare the EXIT characteristics of an iterative MSER multiuser detector (MUD) with those of the conventional minimum mean squared error (MMSE) detector. As expected, the proposed SICMSER MUD outperforms the SIC aided MMSE MUD

    Iterative Multiuser Minimum Symbol Error Rate Beamforming Aided QAM Receiver

    No full text
    A novel iterative soft interference cancellation (SIC) aided beamforming receiver is developed for high-throughput quadrature amplitude modulation systems. The proposed SIC based minimum symbol error rate (MSER) multiuser detection scheme guarantees the direct and explicit minimization of the symbol error rate at the output of the detector. Adopting the extrinsic information transfer (EXIT) chart technique, we compare the EXIT characteristics of an iterative MSER multiuser detector (MUD) with those of the conventional minimum mean-squared error (MMSE) detector. As expected, the proposed SIC-MSER MUD outperforms the SIC-MMSE MUD. Index Terms—Beamforming, iterative multiuser detection, minimum symbol error rate, quadrature amplitude modulation

    On multi-user EXIT chart analysis aided turbo-detected MBER beamforming designs

    No full text
    Abstract—This paper studies the mutual information transfer characteristics of a novel iterative soft interference cancellation (SIC) aided beamforming receiver communicating over both additive white Gaussian noise (AWGN) and multipath slow fading channels. Based on the extrinsic information transfer (EXIT) chart technique, we investigate the convergence behavior of an iterative minimum bit error rate (MBER) multiuser detection (MUD) scheme as a function of both the system parameters and channel conditions in comparison to the SIC aided minimum mean square error (SIC-MMSE) MUD. Our simulation results show that the EXIT chart analysis is sufficiently accurate for the MBER MUD. Quantitatively, a two-antenna system was capable of supporting up to K=6 users at Eb/N0=3dB, even when their angular separation was relatively low, potentially below 20?. Index Terms—Minimum bit error rate, beamforming, multiuser detection, soft interference cancellation, iterative processing, EXIT chart

    Layered Steered Space–Time-Spreading-Aided Generalized MC DS-CDMA

    No full text
    Abstract—We present a novel trifunctional multiple-input– multiple-output (MIMO) scheme that intrinsically amalgamates space–time spreading (STS) to achieve a diversity gain and a Vertical Bell Labs layered space–time (V-BLAST) scheme to attain a multiplexing gain in the context of generalized multicarrier direct-sequence code-division multiple access (MC DS-CDMA), as well as beamforming. Furthermore, the proposed system employs both time- and frequency-domain spreading to increase the number of users, which is also combined with a user-grouping technique to reduce the effects of multiuser interference

    Downlink Steered Space-Time Spreading Assisted Generalised Multicarrier DS-CDMA Using Sphere-Packing-Aided Multilevel Coding

    No full text
    This paper presents a novel generalised Multi-Carrier Direct Sequence Code Division Multiple Access (MC DS-CDMA) system invoking smart antennas for improving the achievable performance in the downlink, as well as employing multi-dimensional Sphere Packing (SP) modulation for increasing the achievable diversity product. In this contribution, the MC DS-CDMA transmitter considered employs multiple Antenna Arrays (AA) and each of the AAs consists of several antenna elements. Furthermore, the proposed system employs both time- and frequency- (TF) domain spreading for extending the achievable capacity, when combined with a novel user-grouping technique for reducing the effects of Multiuser Interference (MUI). Moreover, in order to further enhance the system’s performance, we invoke a MultiLevel Coding (MLC) scheme, whose component codes are determined using the so-called equivalent capacity based constituent-code rate-calculation procedure invoking a 4-dimensional bit-to-SP-symbol mapping scheme. Our results demonstrate an approximately 3.8 dB Eb/N0 gain over an identical throughput scheme dispensing with SP modulation at a BER of 10?5

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Symmetric complex-valued RBF receiver for multiple-antenna aided wireless systems

    No full text
    A nonlinear beamforming assisted detector is proposed for multiple-antenna-aided wireless systems employing complex-valued quadrature phase shift-keying modulation. By exploiting the inherent symmetry of the optimal Bayesian detection solution, a novel complex-valued symmetric radial basis function (SRBF)-network-based detector is developed, which is capable of approaching the optimal Bayesian performance using channel-impaired training data. In the uplink case, adaptive nonlinear beamforming can be efficiently implemented by estimating the system’s channel matrix based on the least squares channel estimate. Adaptive implementation of nonlinear beamforming in the downlink case by contrast is much more challenging, and we adopt a cluster-variationenhanced clustering algorithm to directly identify the SRBF center vectors required for realizing the optimal Bayesian detector. A simulation example is included to demonstrate the achievable performance improvement by the proposed adaptive nonlinear beamforming solution over the theoretical linear minimum bit error rate beamforming benchmark

    Interference-Mitigating Waveform Design for Next-Generation Wireless Systems

    No full text
    A brief historical perspective of the evolution of waveform designs employed in consecutive generations of wireless communications systems is provided, highlighting the range of often conflicting demands on the various waveform characteristics. As the culmination of recent advances in the field the underlying benefits of various Multiple Input Multiple Output (MIMO) schemes are highlighted and exemplified. As an integral part of the appropriate waveform design, cognizance is given to the particular choice of the duplexing scheme used for supporting full-duplex communications and it is demonstrated that Time Division Duplexing (TDD) is substantially outperformed by Frequency Division Duplexing (FDD), unless the TDD scheme is combined with further sophisticated scheduling, MIMOs and/or adaptive modulation/coding. It is also argued that the specific choice of the Direct-Sequence (DS) spreading codes invoked in DS-CDMA predetermines the properties of the system. It is demonstrated that a specifically designed family of spreading codes exhibits a so-called interference-free window (IFW) and hence the resultant system is capable of outperforming its standardised counterpart employing classic Orthogonal Variable Spreading Factor (OVSF) codes under realistic dispersive channel conditions, provided that the interfering multi-user and multipath components arrive within this IFW. This condition may be ensured with the aid of quasisynchronous adaptive timing advance control. However, a limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles, employing a combination of several spreading sequences in the time-frequency and spatial-domain. The paper is concluded by quantifying the achievable user load of a UTRA-like TDD Code Division Multiple Access (CDMA) system employing Loosely Synchronized (LS) spreading codes exhibiting an IFW in comparison to that of its counterpart using OVSF codes. Both system's performance is enhanced using beamforming MIMOs
    corecore