20 research outputs found

    A Review on Human-Computer Interaction and Intelligent Robots

    Get PDF
    In the field of artificial intelligence, human–computer interaction (HCI) technology and its related intelligent robot technologies are essential and interesting contents of research. From the perspective of software algorithm and hardware system, these above-mentioned technologies study and try to build a natural HCI environment. The purpose of this research is to provide an overview of HCI and intelligent robots. This research highlights the existing technologies of listening, speaking, reading, writing, and other senses, which are widely used in human interaction. Based on these same technologies, this research introduces some intelligent robot systems and platforms. This paper also forecasts some vital challenges of researching HCI and intelligent robots. The authors hope that this work will help researchers in the field to acquire the necessary information and technologies to further conduct more advanced research

    A review of natural language processing in contact centre automation

    Get PDF
    Contact centres have been highly valued by organizations for a long time. However, the COVID-19 pandemic has highlighted their critical importance in ensuring business continuity, economic activity, and quality customer support. The pandemic has led to an increase in customer inquiries related to payment extensions, cancellations, and stock inquiries, each with varying degrees of urgency. To address this challenge, organizations have taken the opportunity to re-evaluate the function of contact centres and explore innovative solutions. Next-generation platforms that incorporate machine learning techniques and natural language processing, such as self-service voice portals and chatbots, are being implemented to enhance customer service. These platforms offer robust features that equip customer agents with the necessary tools to provide exceptional customer support. Through an extensive review of existing literature, this paper aims to uncover research gaps and explore the advantages of transitioning to a contact centre that utilizes natural language solutions as the norm. Additionally, we will examine the major challenges faced by contact centre organizations and offer reco

    Modeling of Polish Intonation for Statistical-Parametric Speech Synthesis

    Get PDF
    Wydział NeofilologiiBieżąca praca prezentuje próbę budowy neurobiologicznie umotywowanego modelu mapowań pomiędzy wysokopoziomowymi dyskretnymi kategoriami lingwistycznymi a ciągłym sygnałem częstotliwości podstawowej w polskiej neutralnej mowie czytanej, w oparciu o konwolucyjne sieci neuronowe. Po krótkim wprowadzeniu w problem badawczy w kontekście intonacji, syntezy mowy oraz luki pomiędzy fonetyką a fonologią, praca przedstawia opis uczenia modelu na podstawie specjalnego korpusu mowy oraz ewaluację naturalności konturu F0 generowanego przez wyuczony model za pomocą eksperymentów percepcyjnych typu ABX oraz MOS przy użyciu specjalnie w tym celu zbudowanego resyntezatora Neural Source Filter. Następnie, prezentowane są wyniki eksploracji fonologiczno-fonetycznych mapowań wyuczonych przez model. W tym celu wykorzystana została jedna z tzw. metod wyjaśniających dla sztucznej inteligencji – Layer-wise Relevance Propagation. W pracy przedstawione zostały wyniki powstałej na tej podstawie obszernej analizy ilościowej istotności dla konturu częstotliwości podstawowej każdej z 1297 specjalnie wygenerowanych lingwistycznych kategorii wejściowych modelu oraz ich wielorakich grupowań na różnorodnych poziomach abstrakcji. Pracę kończy dogłębna analiza oraz interpretacja uzyskanych wyników oraz rozważania na temat mocnych oraz słabych stron zastosowanych metod, a także lista proponowanych usprawnień.This work presents an attempt to build a neurobiologically inspired Convolutional Neural Network-based model of the mappings between discrete high-level linguistic categories into a continuous signal of fundamental frequency in Polish neutral read speech. After a brief introduction of the current research problem in the context of intonation, speech synthesis and the phonetic-phonology gap, the work goes on to describe the training of the model on a special speech corpus, and an evaluation of the naturalness of the F0 contour produced by the trained model through ABX and MOS perception experiments conducted with help of a specially built Neural Source Filter resynthesizer. Finally, an in-depth exploration of the phonology-to-phonetics mappings learned by the model is presented; the Layer-wise Relevance Propagation explainability method was used to perform an extensive quantitative analysis of the relevance of 1297 specially engineered linguistic input features and their groupings at various levels of abstraction for the specific contours of the fundamental frequency. The work ends with an in-depth interpretation of these results and a discussion of the advantages and disadvantages of the current method, and lists a number of potential future improvements.Badania przedstawione w pracy zostały cz˛e´sciowo zrealizowane w ramach grantu badawczego Harmonia nr UMO-2014/14/M/HS2/00631 przyznanego przez Narodowe Centrum Nauki

    Replay detection in voice biometrics: an investigation of adaptive and non-adaptive front-ends

    Full text link
    Among various physiological and behavioural traits, speech has gained popularity as an effective mode of biometric authentication. Even though they are gaining popularity, automatic speaker verification systems are vulnerable to malicious attacks, known as spoofing attacks. Among various types of spoofing attacks, replay attack poses the biggest threat due to its simplicity and effectiveness. This thesis investigates the importance of 1) improving front-end feature extraction via novel feature extraction techniques and 2) enhancing spectral components via adaptive front-end frameworks to improve replay attack detection. This thesis initially focuses on AM-FM modelling techniques and their use in replay attack detection. A novel method to extract the sub-band frequency modulation (FM) component using the spectral centroid of a signal is proposed, and its use as a potential acoustic feature is also discussed. Frequency Domain Linear Prediction (FDLP) is explored as a method to obtain the temporal envelope of a speech signal. The temporal envelope carries amplitude modulation (AM) information of speech resonances. Several features are extracted from the temporal envelope and the FDLP residual signal. These features are then evaluated for replay attack detection and shown to have significant capability in discriminating genuine and spoofed signals. Fusion of AM and FM-based features has shown that AM and FM carry complementary information that helps distinguish replayed signals from genuine ones. The importance of frequency band allocation when creating filter banks is studied as well to further advance the understanding of front-ends for replay attack detection. Mechanisms inspired by the human auditory system that makes the human ear an excellent spectrum analyser have been investigated and integrated into front-ends. Spatial differentiation, a mechanism that provides additional sharpening to auditory filters is one of them that is used in this work to improve the selectivity of the sub-band decomposition filters. Two features are extracted using the improved filter bank front-end: spectral envelope centroid magnitude (SECM) and spectral envelope centroid frequency (SECF). These are used to establish the positive effect of spatial differentiation on discriminating spoofed signals. Level-dependent filter tuning, which allows the ear to handle a large dynamic range, is integrated into the filter bank to further improve the front-end. This mechanism converts the filter bank into an adaptive one where the selectivity of the filters is varied based on the input signal energy. Experimental results show that this leads to improved spoofing detection performance. Finally, deep neural network (DNN) mechanisms are integrated into sub-band feature extraction to develop an adaptive front-end that adjusts its characteristics based on the sub-band signals. A DNN-based controller that takes sub-band FM components as input, is developed to adaptively control the selectivity and sensitivity of a parallel filter bank to enhance the artifacts that differentiate a replayed signal from a genuine signal. This work illustrates gradient-based optimization of a DNN-based controller using the feedback from a spoofing detection back-end classifier, thus training it to reduce spoofing detection error. The proposed framework has displayed a superior ability in identifying high-quality replayed signals compared to conventional non-adaptive frameworks. All techniques proposed in this thesis have been evaluated on well-established databases on replay attack detection and compared with state-of-the-art baseline systems

    Multinomial logistic regression probability ratio-based feature vectors for Malay vowel recognition

    Get PDF
    Vowel Recognition is a part of automatic speech recognition (ASR) systems that classifies speech signals into groups of vowels. The performance of Malay vowel recognition (MVR) like any multiclass classification problem depends largely on Feature Vectors (FVs). FVs such as Mel-frequency Cepstral Coefficients (MFCC) have produced high error rates due to poor phoneme information. Classifier transformed probabilistic features have proved a better alternative in conveying phoneme information. However, the high dimensionality of the probabilistic features introduces additional complexity that deteriorates ASR performance. This study aims to improve MVR performance by proposing an algorithm that transforms MFCC FVs into a new set of features using Multinomial Logistic Regression (MLR) to reduce the dimensionality of the probabilistic features. This study was carried out in four phases which are pre-processing and feature extraction, best regression coefficients generation, feature transformation, and performance evaluation. The speech corpus consists of 1953 samples of five Malay vowels of /a/, /e/, /i/, /o/ and /u/ recorded from students of two public universities in Malaysia. Two sets of algorithms were developed which are DBRCs and FELT. DBRCs algorithm determines the best regression coefficients (DBRCs) to obtain the best set of regression coefficients (RCs) from the extracted 39-MFCC FVs through resampling and data swapping approach. FELT algorithm transforms 39-MFCC FVs using logistic transformation method into FELT FVs. Vowel recognition rates of FELT and 39-MFCC FVs were compared using four different classification techniques of Artificial Neural Network, MLR, Linear Discriminant Analysis, and k-Nearest Neighbour. Classification results showed that FELT FVs surpass the performance of 39-MFCC FVs in MVR. Depending on the classifiers used, the improved performance of 1.48% - 11.70% was attained by FELT over MFCC. Furthermore, FELT significantly improved the recognition accuracy of vowels /o/ and /u/ by 5.13% and 8.04% respectively. This study contributes two algorithms for determining the best set of RCs and generating FELT FVs from MFCC. The FELT FVs eliminate the need for dimensionality reduction with comparable performances. Furthermore, FELT FVs improved MVR for all the five vowels especially /o/ and /u/. The improved MVR performance will spur the development of Malay speech-based systems, especially for the Malaysian community

    Corpus-based unit selection for natural-sounding speech synthesis

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.Includes bibliographical references (p. 179-196).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Speech synthesis is an automatic encoding process carried out by machine through which symbols conveying linguistic information are converted into an acoustic waveform. In the past decade or so, a recent trend toward a non-parametric, corpus-based approach has focused on using real human speech as source material for producing novel natural-sounding speech. This work proposes a communication-theoretic formulation in which unit selection is a noisy channel through which an input sequence of symbols passes and an output sequence, possibly corrupted due to the coverage limits of the corpus, emerges. The penalty of approximation is quantified by substitution and concatenation costs which grade what unit contexts are interchangeable and where concatenations are not perceivable. These costs are semi-automatically derived from data and are found to agree with acoustic-phonetic knowledge. The implementation is based on a finite-state transducer (FST) representation that has been successfully used in speech and language processing applications including speech recognition. A proposed constraint kernel topology connects all units in the corpus with associated substitution and concatenation costs and enables an efficient Viterbi search that operates with low latency and scales to large corpora. An A* search can be applied in a second, rescoring pass to incorporate finer acoustic modelling. Extensions to this FST-based search include hierarchical and paralinguistic modelling. The search can also be used in an iterative feedback loop to record new utterances to enhance corpus coverage. This speech synthesis framework has been deployed across various domains and languages in many voices, a testament to its flexibility and rapid prototyping capability.(cont.) Experimental subjects completing tasks in a given air travel planning scenario by interacting in real time with a spoken dialogue system over the telephone have found the system "easiest to understand" out of eight competing systems. In more detailed listening evaluations, subjective opinions garnered from human participants are found to be correlated with objective measures calculable by machine.by Jon Rong-Wei Yi.Ph.D

    Automatic Speech Recognition (ASR) and NMT for Interlingual and Intralingual Communication: Speech to Text Technology for Live Subtitling and Accessibility.

    Get PDF
    Considered the increasing demand for institutional translation and the multilingualism of international organizations, the application of Artificial Intelligence (AI) technologies in multilingual communications and for the purposes of accessibility has become an important element in the production of translation and interpreting services (Zetzsche, 2019). In particular, the widespread use of Automatic Speech Recognition (ASR) and Neural Machine Translation (NMT) technology represents a recent development in the attempt of satisfying the increasing demand for interinstitutional, multilingual communications at inter-governmental level (Maslias, 2017). Recently, researchers have been calling for a universalistic view of media and conference accessibility (Greco, 2016). The application of ASR, combined with NMT, may allow for the breaking down of communication barriers at European institutional conferences where multilingualism represents a fundamental pillar (Jopek Bosiacka, 2013). In addition to representing a so-called disruptive technology (Accipio Consulting, 2006), ASR technology may facilitate the communication with non-hearing users (Lewis, 2015). Thanks to ASR, it is possible to guarantee content accessibility for non-hearing audience via subtitles at institutionally-held conferences or speeches. Hence the need for analysing and evaluating ASR output: a quantitative approach is adopted to try to make an evaluation of subtitles, with the objective of assessing its accuracy (Romero-Fresco, 2011). A database of F.A.O.’s and other international institutions’ English-language speeches and conferences on climate change is taken into consideration. The statistical approach is based on WER and NER models (Romero-Fresco, 2016) and on an adapted version. The ASR software solution implemented into the study will be VoxSigma by Vocapia Research and Google Speech Recognition engine. After having defined a taxonomic scheme, Native and Non-Native subtitles are compared to gold standard transcriptions. The intralingual and interlingual output generated by NMT is specifically analysed and evaluated via the NTR model to evaluate accuracy and accessibility
    corecore