59,973 research outputs found

    Cellular Probabilistic Automata - A Novel Method for Uncertainty Propagation

    Full text link
    We propose a novel density based numerical method for uncertainty propagation under certain partial differential equation dynamics. The main idea is to translate them into objects that we call cellular probabilistic automata and to evolve the latter. The translation is achieved by state discretization as in set oriented numerics and the use of the locality concept from cellular automata theory. We develop the method at the example of initial value uncertainties under deterministic dynamics and prove a consistency result. As an application we discuss arsenate transportation and adsorption in drinking water pipes and compare our results to Monte Carlo computations

    Probabilistic segmentation propagation from uncertainty in registration

    Get PDF
    In this paper we propose a novel approach for incorporating measures of spatial uncertainty which are derived from non-rigid registration, into propagated segmentation labels. In current approaches to segmentation via label propagation, a point-estimate of the registration parameters is used. However, this is limited by the registration accuracy achieved. In this work, we derive local measurements of the uncertainty of a non-rigid mapping from a probabilistic registration framework. This allows us to consider the set of probable locations for a segmentation label to hold. We demonstrate the use of this method on the propagation of accurately delineated cortical labels in inter-subject brain MRI using the NIREP dataset. We find that accounting for the spatial uncertainty of the mapping increases the sensitivity of correctly classifying anatomical labels

    Large scale probabilistic available bandwidth estimation

    Full text link
    The common utilization-based definition of available bandwidth and many of the existing tools to estimate it suffer from several important weaknesses: i) most tools report a point estimate of average available bandwidth over a measurement interval and do not provide a confidence interval; ii) the commonly adopted models used to relate the available bandwidth metric to the measured data are invalid in almost all practical scenarios; iii) existing tools do not scale well and are not suited to the task of multi-path estimation in large-scale networks; iv) almost all tools use ad-hoc techniques to address measurement noise; and v) tools do not provide enough flexibility in terms of accuracy, overhead, latency and reliability to adapt to the requirements of various applications. In this paper we propose a new definition for available bandwidth and a novel framework that addresses these issues. We define probabilistic available bandwidth (PAB) as the largest input rate at which we can send a traffic flow along a path while achieving, with specified probability, an output rate that is almost as large as the input rate. PAB is expressed directly in terms of the measurable output rate and includes adjustable parameters that allow the user to adapt to different application requirements. Our probabilistic framework to estimate network-wide probabilistic available bandwidth is based on packet trains, Bayesian inference, factor graphs and active sampling. We deploy our tool on the PlanetLab network and our results show that we can obtain accurate estimates with a much smaller measurement overhead compared to existing approaches.Comment: Submitted to Computer Network

    Gaussian Belief Propagation Based Multiuser Detection

    Full text link
    In this work, we present a novel construction for solving the linear multiuser detection problem using the Gaussian Belief Propagation algorithm. Our algorithm yields an efficient, iterative and distributed implementation of the MMSE detector. We compare our algorithm's performance to a recent result and show an improved memory consumption, reduced computation steps and a reduction in the number of sent messages. We prove that recent work by Montanari et al. is an instance of our general algorithm, providing new convergence results for both algorithms.Comment: 6 pages, 1 figures, appeared in the 2008 IEEE International Symposium on Information Theory, Toronto, July 200

    Non Parametric Distributed Inference in Sensor Networks Using Box Particles Messages

    Get PDF
    This paper deals with the problem of inference in distributed systems where the probability model is stored in a distributed fashion. Graphical models provide powerful tools for modeling this kind of problems. Inspired by the box particle filter which combines interval analysis with particle filtering to solve temporal inference problems, this paper introduces a belief propagation-like message-passing algorithm that uses bounded error methods to solve the inference problem defined on an arbitrary graphical model. We show the theoretic derivation of the novel algorithm and we test its performance on the problem of calibration in wireless sensor networks. That is the positioning of a number of randomly deployed sensors, according to some reference defined by a set of anchor nodes for which the positions are known a priori. The new algorithm, while achieving a better or similar performance, offers impressive reduction of the information circulating in the network and the needed computation times

    Loopy belief propagation and probabilistic image processing

    Get PDF
    Estimation of hyperparameters by maximization of the marginal likelihood in probabilistic image processing is investigated by using the cluster variation method. The algorithms are substantially equivalent to generalized loopy belief propagation
    corecore