29,142 research outputs found

    A Detail Based Method for Linear Full Reference Image Quality Prediction

    Full text link
    In this paper, a novel Full Reference method is proposed for image quality assessment, using the combination of two separate metrics to measure the perceptually distinct impact of detail losses and of spurious details. To this purpose, the gradient of the impaired image is locally decomposed as a predicted version of the original gradient, plus a gradient residual. It is assumed that the detail attenuation identifies the detail loss, whereas the gradient residuals describe the spurious details. It turns out that the perceptual impact of detail losses is roughly linear with the loss of the positional Fisher information, while the perceptual impact of the spurious details is roughly proportional to a logarithmic measure of the signal to residual ratio. The affine combination of these two metrics forms a new index strongly correlated with the empirical Differential Mean Opinion Score (DMOS) for a significant class of image impairments, as verified for three independent popular databases. The method allowed alignment and merging of DMOS data coming from these different databases to a common DMOS scale by affine transformations. Unexpectedly, the DMOS scale setting is possible by the analysis of a single image affected by additive noise.Comment: 15 pages, 9 figures. Copyright notice: The paper has been accepted for publication on the IEEE Trans. on Image Processing on 19/09/2017 and the copyright has been transferred to the IEE

    A hybrid algorithm for Bayesian network structure learning with application to multi-label learning

    Get PDF
    We present a novel hybrid algorithm for Bayesian network structure learning, called H2PC. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. The algorithm is based on divide-and-conquer constraint-based subroutines to learn the local structure around a target variable. We conduct two series of experimental comparisons of H2PC against Max-Min Hill-Climbing (MMHC), which is currently the most powerful state-of-the-art algorithm for Bayesian network structure learning. First, we use eight well-known Bayesian network benchmarks with various data sizes to assess the quality of the learned structure returned by the algorithms. Our extensive experiments show that H2PC outperforms MMHC in terms of goodness of fit to new data and quality of the network structure with respect to the true dependence structure of the data. Second, we investigate H2PC's ability to solve the multi-label learning problem. We provide theoretical results to characterize and identify graphically the so-called minimal label powersets that appear as irreducible factors in the joint distribution under the faithfulness condition. The multi-label learning problem is then decomposed into a series of multi-class classification problems, where each multi-class variable encodes a label powerset. H2PC is shown to compare favorably to MMHC in terms of global classification accuracy over ten multi-label data sets covering different application domains. Overall, our experiments support the conclusions that local structural learning with H2PC in the form of local neighborhood induction is a theoretically well-motivated and empirically effective learning framework that is well suited to multi-label learning. The source code (in R) of H2PC as well as all data sets used for the empirical tests are publicly available.Comment: arXiv admin note: text overlap with arXiv:1101.5184 by other author
    • …
    corecore