10 research outputs found

    An Efficient Data Analytics and Optimized Algorithm for Enhancing the Performance of Image Segmentation Using Deep Learning Model

    Get PDF
    Image segmentation is the key topic in computer vision and image processing with applications like robotic perception, scene understanding, video surveillance, image compression, medical image analysis, and augmented reality among many others. There are numerous algorithms are developed in the literature for image segmentation. This paper provides a broad spectrum of pioneering works for instance and semantic level segmentation with mask Region based Convolution Neural Network with Monarch butterfly Optimization (RCNN-MBO) architecture. The system is initially constructed in a Python environment with images of people and animals being input. Remove the unnecessary data from the gathered datasets during the pre-processing stage. Next, use a stochastic threshold function to segment the image. Then update the segmented images into a designed model for detecting and classifying a group of images. The main goal of the designed approach is to attain accurate prediction results also improve the performance of the designed model by attaining better results. To enhance the performance, two activation functions were used and MBO fitness is updated in the classification layer. It improves the prediction results and takes less time to detect and classify images. Finally, the experimental outcomes show the reliability of the designed approach by other conventional techniques in terms of accuracy, precision, sensitivity, specificity, F-measure, error rate, and computation time

    New Thresholding Methods for Unimodal Images of Food and Agricultural Products

    Get PDF
    Global thresholding methods fail to segment poor contrast unimodal food and agricultural images. Many local adaptive thresholding and multi-level thresholding methods are reported in image processing journals, but there are limited studies extending them to food and agricultural images. This article presents development of Reverse Water Flow, a new local adaptive thresholding method, and Twice Otsu, a new multi-level thresholding method, to segment food and agricultural images. Reverse Water Flow method was well suited for identification of smaller objects such as 2 mm diameter holes. It reduced computational time by 61.1% compared to the previous best method. Twice Otsu method was well suited to identify larger objects. Both thresholding methods successfully segmented food and agricultural images from different imaging sources and should be extendable to other unimodal and poor contrast images. The developed methods may also facilitate further development of segmentation methods for food and agricultural applications

    Multithreshold Segmentation by Using an Algorithm Based on the Behavior of Locust Swarms

    Get PDF
    As an alternative to classical techniques, the problem of image segmentation has also been handled through evolutionary methods. Recently, several algorithms based on evolutionary principles have been successfully applied to image segmentation with interesting performances. However, most of them maintain two important limitations: (1) they frequently obtain suboptimal results (misclassifications) as a consequence of an inappropriate balance between exploration and exploitation in their search strategies; (2) the number of classes is fixed and known in advance. This paper presents an algorithm for the automatic selection of pixel classes for image segmentation. The proposed method combines a novel evolutionary method with the definition of a new objective function that appropriately evaluates the segmentation quality with respect to the number of classes. The new evolutionary algorithm, called Locust Search (LS), is based on the behavior of swarms of locusts. Different to the most of existent evolutionary algorithms, it explicitly avoids the concentration of individuals in the best positions, avoiding critical flaws such as the premature convergence to suboptimal solutions and the limited exploration-exploitation balance. Experimental tests over several benchmark functions and images validate the efficiency of the proposed technique with regard to accuracy and robustness

    Development of a New Local Adaptive Thresholding Method and Classification Algorithms for X-ray Machine Vision Inspection of Pecans

    Get PDF
    This study evaluated selected local adaptive thresholding methods for pecan defect segmentation and proposed a new method: Reverse Water Flow. Good pecan nuts and fabricated defective pecan nuts were used for comparison, in addition to images from published research articles. For detailed comparison, defective and good pecans, 100 each, were collect from a mechanical sorter operating at Pecan Research Farm, Oklahoma State University. To improve classification accuracy and reduce the decision time AdaBoost and support vector machine classifiers were applied and compared with Bayesian classifier. The data set was randomly divided into training and validation sets and 300 such runs were made. A new local adaptive thresholding method with a new hypothesis: reversing the water flow and a simpler thresholding criterion is proposed. The new hypothesis, reversing the simulated water flow, reduced the computational time by 40-60% as compared to the existing fastest Oh method. The proposed method could segment both larBiosystems and Agricultural Engineerin

    Perfectionnement des algorithmes d'optimisation par essaim particulaire (applications en segmentation d'images et en Ă©lectronique)

    Get PDF
    La résolution satisfaisante d'un problème d'optimisation difficile, qui comporte un grand nombre de solutions sous-optimales, justifie souvent le recours à une métaheuristique puissante. La majorité des algorithmes utilisés pour résoudre ces problèmes d'optimisation sont les métaheuristiques à population. Parmi celles-ci, nous intéressons à l'Optimisation par Essaim Particulaire (OEP, ou PSO en anglais) qui est apparue en 1995. PSO s'inspire de la dynamique d'animaux se déplaçant en groupes compacts (essaims d'abeilles, vols groupés d'oiseaux, bancs de poissons). Les particules d'un même essaim communiquent entre elles tout au long de la recherche pour construire une solution au problème posé, et ce en s'appuyant sur leur expérience collective. L'algorithme PSO, qui est simple à comprendre, à programmer et à utiliser, se révèle particulièrement efficace pour les problèmes d'optimisation à variables continues. Cependant, comme toutes les métaheuristiques, PSO possède des inconvénients, qui rebutent encore certains utilisateurs. Le problème de convergence prématurée, qui peut conduire les algorithmes de ce type à stagner dans un optimum local, est un de ces inconvénients. L'objectif de cette thèse est de proposer des mécanismes, incorporables à PSO, qui permettent de remédier à cet inconvénient et d'améliorer les performances et l'efficacité de PSO. Nous proposons dans cette thèse deux algorithmes, nommés PSO-2S et DEPSO-2S, pour remédier au problème de la convergence prématurée. Ces algorithmes utilisent des idées innovantes et se caractérisent par de nouvelles stratégies d'initialisation dans plusieurs zones, afin d'assurer une bonne couverture de l'espace de recherche par les particules. Toujours dans le cadre de l'amélioration de PSO, nous avons élaboré une nouvelle topologie de voisinage, nommée Dcluster, qui organise le réseau de communication entre les particules. Les résultats obtenus sur un jeu de fonctions de test montrent l'efficacité des stratégies mises en oeuvre par les différents algorithmes proposés. Enfin, PSO-2S est appliqué à des problèmes pratiques, en segmentation d'images et en électroniqueThe successful resolution of a difficult optimization problem, comprising a large number of sub optimal solutions, often justifies the use of powerful metaheuristics. A wide range of algorithms used to solve these combinatorial problems belong to the class of population metaheuristics. Among them, Particle Swarm Optimization (PSO), appeared in 1995, is inspired by the movement of individuals in a swarm, like a bee swarm, a bird flock or a fish school. The particles of the same swarm communicate with each other to build a solution to the given problem. This is done by relying on their collective experience. This algorithm, which is easy to understand and implement, is particularly effective for optimization problems with continuous variables. However, like several metaheuristics, PSO shows some drawbacks that make some users avoid it. The premature convergence problem, where the algorithm converges to some local optima and does not progress anymore in order to find better solutions, is one of them. This thesis aims at proposing alternative methods, that can be incorporated in PSO to overcome these problems, and to improve the performance and the efficiency of PSO. We propose two algorithms, called PSO-2S and DEPSO-2S, to cope with the premature convergence problem. Both algorithms use innovative ideas and are characterized by new initialization strategies in several areas to ensure good coverage of the search space by particles. To improve the PSO algorithm, we have also developed a new neighborhood topology, called Dcluster, which can be seen as the communication network between the particles. The obtained experimental results for some benchmark cases show the effectiveness of the strategies implemented in the proposed algorithms. Finally, PSO-2S is applied to real world problems in both image segmentation and electronics fieldsPARIS-EST-Université (770839901) / SudocSudocFranceF

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices
    corecore