1,100 research outputs found

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    A clustering approach in sensor network time synchronization

    Get PDF
    In recent years tremendous technological advances have led to the development of low-cost sensors capable of data processing activities. These sensor nodes are organized in to a network typically called wireless Sensor Network. WSN\u27s are based on the principle of Data Fusion where the data collected from each sensor node is condensed into one meaningful result: Data Fusion is achieved by exchanging messages between the sensors. These messages are time stamped by each sensor node\u27s local clock fuse reading. As noted in various references, Time Synchronization is a common feature used in networking in order to give the nodes a common time reference. Time Synchronization is an important middleware service in Wireless Sensor Networks, as physical time is needed to relate events to the physical world. WSN\u27s require a great deal of synchronization accuracy so that information from many nodes can be cohesively integrated without creating time skews in the data. State-of-the-art research has been investigating the sources of error in attempting to synchronize the nodes in a network. The objective of this thesis is to define a Time Synchronization protocol for a Hierarchical Cluster Head based Wireless Sensor Network. Thus, the goals of this thesis are three fold: We first analyze the shortcomings of existing time synchronization protocols and propose a novel time synchronization protocol based on cluster tree based routing. We perform hardware-based simulation using Mica motes, TinyOS operating system and NesC programming language. Finally, we estimate the various sources of time error in package transmission in a WSN through basic simulation using OMNET++

    EMMON - EMbedded MONitoring

    Get PDF
    Despite the steady increase in experimental deployments, most of research work on WSNs has focused only on communication protocols and algorithms, with a clear lack of effective, feasible and usable system architectures, integrated in a modular platform able to address both functional and non–functional requirements. In this paper, we outline EMMON [1], a full WSN-based system architecture for large–scale, dense and real–time embedded monitoring [3] applications. EMMON provides a hierarchical communication architecture together with integrated middleware and command and control software. Then, EM-Set, the EMMON engineering toolset will be presented. EM-Set includes a network deployment planning, worst–case analysis and dimensioning, protocol simulation and automatic remote programming and hardware testing tools. This toolset was crucial for the development of EMMON which was designed to use standard commercially available technologies, while maintaining as much flexibility as possible to meet specific applications requirements. Finally, the EMMON architecture has been validated through extensive simulation and experimental evaluation, including a 300+ nodes testbed

    Many-to-many data aggregation scheduling in wireless sensor networks with two sinks

    Get PDF
    Traditionally, wireless sensor networks (WSNs) have been deployed with a single sink. Due to the emergence of sophisticated applications, WSNs may require more than one sink. Moreover, deploying more than one sink may prolong the network lifetime and address fault tolerance issues. Several protocols have been proposed for WSNs with multiple sinks. However, most of them are routing protocols. Differently, our main contribution, in this paper, is the development of a distributed data aggregation scheduling (DAS) algorithm for WSNs with two sinks. We also propose a distributed energy-balancing algorithm to balance the energy consumption for the aggregators. The energy-balancing algorithm first forms trees rooted at nodes which are termed virtual sinks and then balances the number of children at a given level to level the energy consumption. Subsequently, the DAS algorithm takes the resulting balanced tree and assigns contiguous slots to sibling nodes, to avoid unnecessary energy waste due to frequent active-sleep transitions. We prove a number of theoretical results and the correctness of the algorithms. Through simulation and testbed experiments, we show the correctness and performance of our algorithms

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Utilization Of A Large-Scale Wireless Sensor Network For Intrusion Detection And Border Surveillance

    Get PDF
    To control the border more effectively, countries may deploy a detection system that enables real-time surveillance of border integrity. Events such as border crossings need to be monitored in real time so that any border entries can be noted by border security forces and destinations marked for apprehension. Wireless Sensor Networks (WSNs) are promising for border security surveillance because they enable enforcement teams to monitor events in the physical environment. In this work, probabilistic models have been presented to investigate senor development schemes while considering the environmental factors that affect the sensor performance. Simulation studies have been carried out using the OPNET to verify the theoretical analysis and to find an optimal node deployment scheme that is robust and efficient by incorporating geographical coordination in the design. Measures such as adding camera and range-extended antenna to each node have been investigated to improve the system performance. A prototype WSN based surveillance system has been developed to verify the proposed approach

    Millimeter-wave Evolution for 5G Cellular Networks

    Full text link
    Triggered by the explosion of mobile traffic, 5G (5th Generation) cellular network requires evolution to increase the system rate 1000 times higher than the current systems in 10 years. Motivated by this common problem, there are several studies to integrate mm-wave access into current cellular networks as multi-band heterogeneous networks to exploit the ultra-wideband aspect of the mm-wave band. The authors of this paper have proposed comprehensive architecture of cellular networks with mm-wave access, where mm-wave small cell basestations and a conventional macro basestation are connected to Centralized-RAN (C-RAN) to effectively operate the system by enabling power efficient seamless handover as well as centralized resource control including dynamic cell structuring to match the limited coverage of mm-wave access with high traffic user locations via user-plane/control-plane splitting. In this paper, to prove the effectiveness of the proposed 5G cellular networks with mm-wave access, system level simulation is conducted by introducing an expected future traffic model, a measurement based mm-wave propagation model, and a centralized cell association algorithm by exploiting the C-RAN architecture. The numerical results show the effectiveness of the proposed network to realize 1000 times higher system rate than the current network in 10 years which is not achieved by the small cells using commonly considered 3.5 GHz band. Furthermore, the paper also gives latest status of mm-wave devices and regulations to show the feasibility of using mm-wave in the 5G systems.Comment: 17 pages, 12 figures, accepted to be published in IEICE Transactions on Communications. (Mar. 2015

    Security in IoT systems - Issues and Solutions

    Get PDF

    Zigbee based Wireless Sensor Network for Smart Energy Meter

    Get PDF
    Wireless sensor networks are expanding across a wide range of application scenarios. The most widely used transmitter is "ZigBee," which is used in wireless sensor networks. Based on the IEEE standard known as IEEE 802.15.4, ZigBee is an enabling low-cost technology that offers minimal energy consumption and a low data rate. It is used for remote control, medical aid, home automation, industry control, and other wireless sensor applications, in addition to wireless sensor networks and personal area network applications. This paper aims to develop a wireless sensor network and a protocol for smart energy meter applications. Our proposed system comprises a digital energy meter, a ZigBee coordinator, and a management application. A terminal alert and a cover alarm can be automatically sent to the management software by the wireless meter reading system once it has read the unit. Mistakes from Errors in leakage metering reading to manual meter reading can be avoided. This proposed system will improve efficiency by reducing labor intensity to liberate labor and force. The system setup can accommodate a large number of energy meters with sufficient hop network depth to detect a new energy meter automatically. The technology can be widely used in wireless monitoring and control applications because of its low cost, low power consumption, extended battery life, and mesh networking's ability to extend high reliability to a broader range. To connect a variety of low-power devices wirelessly, ZigBee will satisfy the rising demand. For the future generation of industrial technologies, ZigBee will be deployed.Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved
    • …
    corecore