3 research outputs found

    Automatic Extrinsic Self-Calibration of Mobile Mapping Systems Based on Geometric 3D Features

    Get PDF
    Mobile Mapping is an efficient technology to acquire spatial data of the environment. The spatial data is fundamental for applications in crisis management, civil engineering or autonomous driving. The extrinsic calibration of the Mobile Mapping System is a decisive factor that affects the quality of the spatial data. Many existing extrinsic calibration approaches require the use of artificial targets in a time-consuming calibration procedure. Moreover, they are usually designed for a specific combination of sensors and are, thus, not universally applicable. We introduce a novel extrinsic self-calibration algorithm, which is fully automatic and completely data-driven. The fundamental assumption of the self-calibration is that the calibration parameters are estimated the best when the derived point cloud represents the real physical circumstances the best. The cost function we use to evaluate this is based on geometric features which rely on the 3D structure tensor derived from the local neighborhood of each point. We compare different cost functions based on geometric features and a cost function based on the RĂ©nyi quadratic entropy to evaluate the suitability for the self-calibration. Furthermore, we perform tests of the self-calibration on synthetic and two different real datasets. The real datasets differ in terms of the environment, the scale and the utilized sensors. We show that the self-calibration is able to extrinsically calibrate Mobile Mapping Systems with different combinations of mapping and pose estimation sensors such as a 2D laser scanner to a Motion Capture System and a 3D laser scanner to a stereo camera and ORB-SLAM2. For the first dataset, the parameters estimated by our self-calibration lead to a more accurate point cloud than two comparative approaches. For the second dataset, which has been acquired via a vehicle-based mobile mapping, our self-calibration achieves comparable results to a manually refined reference calibration, while it is universally applicable and fully automated

    Selbstkalibrierung mobiler Multisensorsysteme mittels geometrischer 3D-Merkmale

    Get PDF
    Ein mobiles Multisensorsystem ermöglicht die effiziente, räumliche Erfassung von Objekten und der Umgebung. Die Kalibrierung des mobilen Multisensorsystems ist ein notwendiger Vorverarbeitungsschritt für die Sensordatenfusion und für genaue räumliche Erfassungen. Bei herkömmlichen Verfahren kalibrieren Experten das mobile Multisensorsystem in aufwändigen Prozeduren vor Verwendung durch Aufnahmen eines Kalibrierobjektes mit bekannter Form. Im Gegensatz zu solchen objektbasierten Kalibrierungen ist eine Selbstkalibrierung praktikabler, zeitsparender und bestimmt die gesuchten Parameter mit höherer Aktualität. Diese Arbeit stellt eine neue Methode zur Selbstkalibrierung mobiler Multisensorsysteme vor, die als Merkmalsbasierte Selbstkalibrierung bezeichnet wird. Die Merkmalsbasierte Selbstkalibrierung ist ein datenbasiertes, universelles Verfahren, das für eine beliebige Kombination aus einem Posenbestimmungssensor und einem Tiefensensor geeignet ist. Die fundamentale Annahme der Merkmalsbasierten Selbstkalibrierung ist, dass die gesuchten Parameter am besten bestimmt sind, wenn die erfasste Punktwolke die höchstmögliche Qualität hat. Die Kostenfunktion, die zur Bewertung der Qualität verwendet wird, basiert auf Geometrischen 3D-Merkmalen, die wiederum auf den lokalen Nachbarschaften jedes Punktes basieren. Neben der detaillierten Analyse unterschiedlicher Aspekte der Selbstkalibrierung, wie dem Einfluss der Systemposen auf das Ergebnis, der Eignung verschiedener Geometrischer 3D-Merkmale für die Selbstkalibrierung und dem Konvergenzradius des Verfahrens, wird die Merkmalsbasierte Selbstkalibrierung anhand eines synthethischen und dreier realer Datensätze evaluiert. Diese Datensätze wurden dabei mit unterschiedlichen Sensoren und in unterschiedlichen Umgebungen aufgezeichnet. Die Experimente zeigen die vielseitige Einsetzbarkeit der Merkmalsbasierten Selbstkalibrierung hinsichtlich der Sensoren und der Umgebungen. Die Ergebnisse werden stets mit einer geeigneten objektbasierten Kalibrierung aus der Literatur und einer weiteren, nachimplementierten Selbstkalibrierung verglichen. Verglichen mit diesen Verfahren erzielt die Merkmalsbasierte Selbstkalibrierung bessere oder zumindest vergleichbare Genauigkeiten für alle Datensätze. Die Genauigkeit und Präzision der Merkmalsbasierten Selbstkalibrierung entspricht dem aktuellen Stand der Forschung. Für den Datensatz, der die höchsten Sensorgenauigkeiten aufweist, werden beispielsweise die Parameter der relativen Translation zwischen dem Rigid Body eines Motion Capture Systems und einem Laserscanner mit einer Genauigkeit von ca. 1 cm1\,\mathrm{cm} bestimmt, obwohl die Distanzmessgenauigkeit dieses Laserscanners nur 3 cm3\,\mathrm{cm} beträgt
    corecore