2 research outputs found

    Recommender systems: a novel approach based on singular value decomposition

    Get PDF
    Due to modern information and communication technologies (ICT), it is increasingly easier to exchange data and have new services available through the internet. However, the amount of data and services available increases the difficulty of finding what one needs. In this context, recommender systems represent the most promising solutions to overcome the problem of the so-called information overload, analyzing users' needs and preferences. Recommender systems (RS) are applied in different sectors with the same goal: to help people make choices based on an analysis of their behavior or users' similar characteristics or interests. This work presents a different approach for predicting ratings within the model-based collaborative filtering, which exploits singular value factorization. In particular, rating forecasts were generated through the characteristics related to users and items without the support of available ratings. The proposed method is evaluated through the MovieLens100K dataset performing an accuracy of 0.766 and 0.951 in terms of mean absolute error and root-mean-square error

    CFMT: a collaborative filtering approach based on the nonnegative matrix factorization technique and trust relationships

    Get PDF
    peer reviewedAs a method of information filtering, the Recommender System (RS) has gained considerable popularity because of its efficiency and provision of the most superior numbers of useful items. A recommender system is a proposed solution to the information overload problem in social media and algorithms. Collaborative Filtering (CF) is a practical approach to the recommendation; however, it is characterized by cold start and data sparsity, the most severe barriers against providing accurate recommendations. Rating matrices are finely represented by Nonnegative Matrix Factorization (NMF) models, fundamental models in CF-based RSs. However, most NMF methods do not provide reasonable accuracy due to the dispersion of the rating matrix. As a result of the sparsity of data and problems concerning the cold start, information on the trust network among users is further utilized to elevate RS performance. Therefore, this study suggests a novel trust-based matrix factorization technique referred to as CFMT, which uses the social network data in the recommendation process by modeling user’s roles as trustees and trusters, given the trust network’s structural information. The proposed method seeks to lower the sparsity of the data and the cold start problem by integrating information sources including ratings and trust statements into the recommendation model, an attempt by which significant superiority over state-of-the-art approaches is demonstrated an empirical examination of real-world datasets
    corecore