152 research outputs found

    PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with Pattern-based Weight Pruning

    Full text link
    With the emergence of a spectrum of high-end mobile devices, many applications that formerly required desktop-level computation capability are being transferred to these devices. However, executing the inference of Deep Neural Networks (DNNs) is still challenging considering high computation and storage demands, specifically, if real-time performance with high accuracy is needed. Weight pruning of DNNs is proposed, but existing schemes represent two extremes in the design space: non-structured pruning is fine-grained, accurate, but not hardware friendly; structured pruning is coarse-grained, hardware-efficient, but with higher accuracy loss. In this paper, we introduce a new dimension, fine-grained pruning patterns inside the coarse-grained structures, revealing a previously unknown point in design space. With the higher accuracy enabled by fine-grained pruning patterns, the unique insight is to use the compiler to re-gain and guarantee high hardware efficiency. In other words, our method achieves the best of both worlds, and is desirable across theory/algorithm, compiler, and hardware levels. The proposed PatDNN is an end-to-end framework to efficiently execute DNN on mobile devices with the help of a novel model compression technique (pattern-based pruning based on extended ADMM solution framework) and a set of thorough architecture-aware compiler- and code generation-based optimizations (filter kernel reordering, compressed weight storage, register load redundancy elimination, and parameter auto-tuning). Evaluation results demonstrate that PatDNN outperforms three state-of-the-art end-to-end DNN frameworks, TensorFlow Lite, TVM, and Alibaba Mobile Neural Network with speedup up to 44.5x, 11.4x, and 7.1x, respectively, with no accuracy compromise. Real-time inference of representative large-scale DNNs (e.g., VGG-16, ResNet-50) can be achieved using mobile devices.Comment: To be published in the Proceedings of Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 20

    FedDIP: Federated Learning with Extreme Dynamic Pruning and Incremental Regularization

    Full text link
    Federated Learning (FL) has been successfully adopted for distributed training and inference of large-scale Deep Neural Networks (DNNs). However, DNNs are characterized by an extremely large number of parameters, thus, yielding significant challenges in exchanging these parameters among distributed nodes and managing the memory. Although recent DNN compression methods (e.g., sparsification, pruning) tackle such challenges, they do not holistically consider an adaptively controlled reduction of parameter exchange while maintaining high accuracy levels. We, therefore, contribute with a novel FL framework (coined FedDIP), which combines (i) dynamic model pruning with error feedback to eliminate redundant information exchange, which contributes to significant performance improvement, with (ii) incremental regularization that can achieve \textit{extreme} sparsity of models. We provide convergence analysis of FedDIP and report on a comprehensive performance and comparative assessment against state-of-the-art methods using benchmark data sets and DNN models. Our results showcase that FedDIP not only controls the model sparsity but efficiently achieves similar or better performance compared to other model pruning methods adopting incremental regularization during distributed model training. The code is available at: https://github.com/EricLoong/feddip.Comment: Accepted for publication at ICDM 2023 (Full version in arxiv). The associated code is available at https://github.com/EricLoong/feddi

    Learning to Quantize Deep Networks by Optimizing Quantization Intervals with Task Loss

    Full text link
    Reducing bit-widths of activations and weights of deep networks makes it efficient to compute and store them in memory, which is crucial in their deployments to resource-limited devices, such as mobile phones. However, decreasing bit-widths with quantization generally yields drastically degraded accuracy. To tackle this problem, we propose to learn to quantize activations and weights via a trainable quantizer that transforms and discretizes them. Specifically, we parameterize the quantization intervals and obtain their optimal values by directly minimizing the task loss of the network. This quantization-interval-learning (QIL) allows the quantized networks to maintain the accuracy of the full-precision (32-bit) networks with bit-width as low as 4-bit and minimize the accuracy degeneration with further bit-width reduction (i.e., 3 and 2-bit). Moreover, our quantizer can be trained on a heterogeneous dataset, and thus can be used to quantize pretrained networks without access to their training data. We demonstrate the effectiveness of our trainable quantizer on ImageNet dataset with various network architectures such as ResNet-18, -34 and AlexNet, on which it outperforms existing methods to achieve the state-of-the-art accuracy
    • …
    corecore