8,215 research outputs found

    State of the art: iterative CT reconstruction techniques

    Get PDF
    Owing to recent advances in computing power, iterative reconstruction (IR) algorithms have become a clinically viable option in computed tomographic (CT) imaging. Substantial evidence is accumulating about the advantages of IR algorithms over established analytical methods, such as filtered back projection. IR improves image quality through cyclic image processing. Although all available solutions share the common mechanism of artifact reduction and/or potential for radiation dose savings, chiefly due to image noise suppression, the magnitude of these effects depends on the specific IR algorithm. In the first section of this contribution, the technical bases of IR are briefly reviewed and the currently available algorithms released by the major CT manufacturers are described. In the second part, the current status of their clinical implementation is surveyed. Regardless of the applied IR algorithm, the available evidence attests to the substantial potential of IR algorithms for overcoming traditional limitations in CT imaging

    A Compressed Sensing Algorithm for Sparse-View Pinhole Single Photon Emission Computed Tomography

    Get PDF
    Single Photon Emission Computed Tomography (SPECT) systems are being developed with multiple cameras and without gantry rotation to provide rapid dynamic acquisitions. However, the resulting data is angularly undersampled, due to the limited number of views. We propose a novel reconstruction algorithm for sparse-view SPECT based on Compressed Sensing (CS) theory. The algorithm models Poisson noise by modifying the Iterative Hard Thresholding algorithm to minimize the Kullback-Leibler (KL) distance by gradient descent. Because the underlying objects of SPECT images are expected to be smooth, a discrete wavelet transform (DWT) using an orthogonal spline wavelet kernel is used as the sparsifying transform. Preliminary feasibility of the algorithm was tested on simulated data of a phantom consisting of two Gaussian distributions. Single-pinhole projection data with Poisson noise were simulated at 128, 60, 15, 10, and 5 views over 360 degrees. Image quality was assessed using the coefficient of variation and the relative contrast between the two objects in the phantom. Overall, the results demonstrate preliminary feasibility of the proposed CS algorithm for sparse-view SPECT imaging

    Refraction-corrected ray-based inversion for three-dimensional ultrasound tomography of the breast

    Get PDF
    Ultrasound Tomography has seen a revival of interest in the past decade, especially for breast imaging, due to improvements in both ultrasound and computing hardware. In particular, three-dimensional ultrasound tomography, a fully tomographic method in which the medium to be imaged is surrounded by ultrasound transducers, has become feasible. In this paper, a comprehensive derivation and study of a robust framework for large-scale bent-ray ultrasound tomography in 3D for a hemispherical detector array is presented. Two ray-tracing approaches are derived and compared. More significantly, the problem of linking the rays between emitters and receivers, which is challenging in 3D due to the high number of degrees of freedom for the trajectory of rays, is analysed both as a minimisation and as a root-finding problem. The ray-linking problem is parameterised for a convex detection surface and three robust, accurate, and efficient ray-linking algorithms are formulated and demonstrated. To stabilise these methods, novel adaptive-smoothing approaches are proposed that control the conditioning of the update matrices to ensure accurate linking. The nonlinear UST problem of estimating the sound speed was recast as a series of linearised subproblems, each solved using the above algorithms and within a steepest descent scheme. The whole imaging algorithm was demonstrated to be robust and accurate on realistic data simulated using a full-wave acoustic model and an anatomical breast phantom, and incorporating the errors due to time-of-flight picking that would be present with measured data. This method can used to provide a low-artefact, quantitatively accurate, 3D sound speed maps. In addition to being useful in their own right, such 3D sound speed maps can be used to initialise full-wave inversion methods, or as an input to photoacoustic tomography reconstructions

    Direct estimation of kinetic parametric images for dynamic PET.

    Get PDF
    Dynamic positron emission tomography (PET) can monitor spatiotemporal distribution of radiotracer in vivo. The spatiotemporal information can be used to estimate parametric images of radiotracer kinetics that are of physiological and biochemical interests. Direct estimation of parametric images from raw projection data allows accurate noise modeling and has been shown to offer better image quality than conventional indirect methods, which reconstruct a sequence of PET images first and then perform tracer kinetic modeling pixel-by-pixel. Direct reconstruction of parametric images has gained increasing interests with the advances in computing hardware. Many direct reconstruction algorithms have been developed for different kinetic models. In this paper we review the recent progress in the development of direct reconstruction algorithms for parametric image estimation. Algorithms for linear and nonlinear kinetic models are described and their properties are discussed

    Practical aspects of a data-driven motion correction approach for brain SPECT

    Get PDF
    Patient motion can cause image artifacts in single photon emission computed tomography despite restraining measures. Data-driven detection and correction of motion can be achieved by comparison of acquired data with the forward projections. This enables the brain locations to be estimated and data to be correctly incorporated in a three-dimensional (3-D) reconstruction algorithm. Digital and physical phantom experiments were performed to explore practical aspects of this approach. Noisy simulation data modeling multiple 3-D patient head movements were constructed by projecting the digital Hoffman brain phantom at various orientations. Hoffman physical phantom data incorporating deliberate movements were also gathered. Motion correction was applied to these data using various regimes to determine the importance of attenuation and successive iterations. Studies were assessed visually for artifact reduction, and analyzed quantitatively via a mean registration error (MRE) and mean square difference measure (MSD). Artifacts and distortion in the motion corrupted data were reduced to a large extent by application of this algorithm. MRE values were mostly well within 1 pixel (4.4 mm) for the simulated data. Significant MSD improvements (>2) were common. Inclusion of attenuation was unnecessary to accurately estimate motion, doubling the efficiency and simplifying implementation. Moreover, most motion-related errors were removed using a single iteration. The improvement for the physical phantom data was smaller, though this may be due to object symmetry. In conclusion, these results provide the basis of an implementation protocol for clinical validation of the technique
    • …
    corecore