3,487 research outputs found

    On the Issue of Camera Calibration with Narrow Angular Field of View

    Get PDF
    This paper considers the issue of calibrating a camera with narrow angular field of view using standard, perspective methods in computer vision. In doing so, the significance of perspective distortion both for camera calibration and for pose estimation is revealed. Since narrow angular field of view cameras make it difficult to obtain rich images in terms of perspectivity, the accuracy of the calibration results is expectedly low. From this, we propose an alternative method that compensates for this loss by utilizing the pose readings of a robotic manipulator. It facilitates accurate pose estimation by nonlinear optimization, minimizing reprojection errors and errors in the manipulator transformations at the same time. Accurate pose estimation in turn enables accurate parametrization of a perspective camera

    Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation

    Get PDF
    A generic computer simulation for manipulator systems (ROBSIM) was implemented and the specific technologies necessary to increase the role of automation in various missions were developed. The specific items developed are: (1) capability for definition of a manipulator system consisting of multiple arms, load objects, and an environment; (2) capability for kinematic analysis, requirements analysis, and response simulation of manipulator motion; (3) postprocessing options such as graphic replay of simulated motion and manipulator parameter plotting; (4) investigation and simulation of various control methods including manual force/torque and active compliances control; (5) evaluation and implementation of three obstacle avoidance methods; (6) video simulation and edge detection; and (7) software simulation validation
    corecore