20,216 research outputs found

    Using the fractional interaction law to model the impact dynamics in arbitrary form of multiparticle collisions

    Full text link
    Using the molecular dynamics method, we examine a discrete deterministic model for the motion of spherical particles in three-dimensional space. The model takes into account multiparticle collisions in arbitrary forms. Using fractional calculus we proposed an expression for the repulsive force, which is the so called fractional interaction law. We then illustrate and discuss how to control (correlate) the energy dissipation and the collisional time for an individual article within multiparticle collisions. In the multiparticle collisions we included the friction mechanism needed for the transition from coupled torsion-sliding friction through rolling friction to static friction. Analysing simple simulations we found that in the strong repulsive state binary collisions dominate. However, within multiparticle collisions weak repulsion is observed to be much stronger. The presented numerical results can be used to realistically model the impact dynamics of an individual particle in a group of colliding particles.Comment: 17 pages, 8 figures, 1 table; In review process of Physical Review

    Mesoscopic simulation of diffusive contaminant spreading in gas flows at low pressure

    Get PDF
    Many modern production and measurement facilities incorporate multiphase systems at low pressures. In this region of flows at small, non-zero Knudsen- and low Mach numbers the classical mesoscopic Monte Carlo methods become increasingly numerically costly. To increase the numerical efficiency of simulations hybrid models are promising. In this contribution, we propose a novel efficient simulation approach for the simulation of two phase flows with a large concentration imbalance in a low pressure environment in the low intermediate Knudsen regime. Our hybrid model comprises a lattice-Boltzmann method corrected for the lower intermediate Kn regime proposed by Zhang et al. for the simulation of an ambient flow field. A coupled event-driven Monte-Carlo-style Boltzmann solver is employed to describe particles of a second species of low concentration. In order to evaluate the model, standard diffusivity and diffusion advection systems are considered.Comment: 9 pages, 8 figure

    Mechanistic Insight into the Enzymatic Reduction of Truncated Hemoglobin N of Mycobacterium tuberculosis: role of the CD loop and pre-A Motif in electron cycling

    Get PDF
    Background: The HbN of Mycobacterium tuberculosis carries a potent nitric-oxide dioxygenase activity despite lacking a reductase domain. Results: The NADH-ferredoxin reductase system acts as an efficient partner for the reduction of HbN. Conclusion: The interactions of HbN with the reductase are modulated by its CD loop and the Pre-A region. Significance: The present study provides new insights into the mechanism of electron transfer during nitric oxide detoxification by HbN.Fil: Singh, Sandeep. Institute of Microbial Technology; IndiaFil: Thakur, Naveen. Institute of Microbial Technology; IndiaFil: Oliveira, Ana. Universidad de Barcelona; EspañaFil: Petruk, Ariel Alcides. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Hade, Mangesh Dattu. Institute of Microbial Technology; IndiaFil: Sethi, Deepti. Institute of Microbial Technology; IndiaFil: Bidon Chanal, Axel. Universidad de Barcelona; EspañaFil: Marti, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Datta, H.. Institute of Microbial Technology; IndiaFil: Parkesh, R.. Institute of Microbial Technology; IndiaFil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Luque, F. Javier. Universidad de Barcelona; EspañaFil: Dikshit, Kanak L.. Institute of Microbial Technology; Indi

    Patterns and Collective Behavior in Granular Media: Theoretical Concepts

    Full text link
    Granular materials are ubiquitous in our daily lives. While they have been a subject of intensive engineering research for centuries, in the last decade granular matter attracted significant attention of physicists. Yet despite a major efforts by many groups, the theoretical description of granular systems remains largely a plethora of different, often contradicting concepts and approaches. Authors give an overview of various theoretical models emerged in the physics of granular matter, with the focus on the onset of collective behavior and pattern formation. Their aim is two-fold: to identify general principles common for granular systems and other complex non-equilibrium systems, and to elucidate important distinctions between collective behavior in granular and continuum pattern-forming systems.Comment: Submitted to Reviews of Modern Physics. Full text with figures (2Mb pdf) avaliable at http://mti.msd.anl.gov/AransonTsimringReview/aranson_tsimring.pdf Community responce is appreciated. Comments/suggestions send to [email protected]
    corecore