2,998 research outputs found

    Sequence queries on temporal graphs

    Get PDF
    Graphs that evolve over time are called temporal graphs. They can be used to describe and represent real-world networks, including transportation networks, social networks, and communication networks, with higher fidelity and accuracy. However, research is still limited on how to manage large scale temporal graphs and execute queries over these graphs efficiently and effectively. This thesis investigates the problems of temporal graph data management related to node and edge sequence queries. In temporal graphs, nodes and edges can evolve over time. Therefore, sequence queries on nodes and edges can be key components in managing temporal graphs. In this thesis, the node sequence query decomposes into two parts: graph node similarity and subsequence matching. For node similarity, this thesis proposes a modified tree edit distance that is metric and polynomially computable and has a natural, intuitive interpretation. Note that the proposed node similarity works even for inter-graph nodes and therefore can be used for graph de-anonymization, network transfer learning, and cross-network mining, among other tasks. The subsequence matching query proposed in this thesis is a framework that can be adopted to index generic sequence and time-series data, including trajectory data and even DNA sequences for subsequence retrieval. For edge sequence queries, this thesis proposes an efficient storage and optimized indexing technique that allows for efficient retrieval of temporal subgraphs that satisfy certain temporal predicates. For this problem, this thesis develops a lightweight data management engine prototype that can support time-sensitive temporal graph analytics efficiently even on a single PC

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    More Interpretable Graph Similarity Computation via Maximum Common Subgraph Inference

    Full text link
    Graph similarity measurement, which computes the distance/similarity between two graphs, arises in various graph-related tasks. Recent learning-based methods lack interpretability, as they directly transform interaction information between two graphs into one hidden vector and then map it to similarity. To cope with this problem, this study proposes a more interpretable end-to-end paradigm for graph similarity learning, named Similarity Computation via Maximum Common Subgraph Inference (INFMCS). Our critical insight into INFMCS is the strong correlation between similarity score and Maximum Common Subgraph (MCS). We implicitly infer MCS to obtain the normalized MCS size, with the supervision information being only the similarity score during training. To capture more global information, we also stack some vanilla transformer encoder layers with graph convolution layers and propose a novel permutation-invariant node Positional Encoding. The entire model is quite simple yet effective. Comprehensive experiments demonstrate that INFMCS consistently outperforms state-of-the-art baselines for graph-graph classification and regression tasks. Ablation experiments verify the effectiveness of the proposed computation paradigm and other components. Also, visualization and statistics of results reveal the interpretability of INFMCS

    Scaling Similarity Joins over Tree-Structured Data

    Get PDF
    Given a large collection of tree-structured objects (e.g., XML documents), the similarity join finds the pairs of objects that are similar to each other, based on a similarity threshold and a tree edit distance measure. The state-of-the-art similarity join methods compare simpler approximations of the objects (e.g., strings), in order to prune pairs that cannot be part of the similarity join result based on distance bounds derived by the approximations. In this paper, we propose a novel similarity join approach, which is based on the dynamic decomposition of the tree objects into subgraphs, according to the similarity threshold. Our technique avoids computing the exact distance between two tree objects, if the objects do not share at least one common subgraph. In order to scale up the join, the computed subgraphs are managed in a two-layer index. Our experimental results on real and synthetic data collections show that our approach outperforms the state-of-the-art methods by up to an order of magnitude.published_or_final_versio

    Extracting Social Network from Literary Prose

    Get PDF
    This thesis develops an approach to extract social networks from literary prose, namely, Jane Austen’s published novels from eighteenth- and nineteenth- century. Dialogue interaction plays a key role while we derive the networks, thus our technique relies upon our ability to determine when two characters are in conversation. Our process involves encoding plain literary text into the Text Encoding Initiative’s (TEI) XML format, character name identification, conversation and co-occurrence detection, and social network construction. Previous work in social network construction for literature have focused on drama, specifically manually TEI-encoded Shakespearean plays in which character interactions are much easier to track in due to their dialogue-driven narrative structure. In contrast, prose is structured quite differently; character speeches are not very clearly formatted, making it more difficult to assign specific dialogue to each character. We implement two different parsing strategies based on context size (chapter scope and paragraph scope) to detect character interactions. To check the accuracy of our methods, we conduct one evaluation that is based on network statistics and another evaluation that involves measuring similarity (edit distance) between the networks constructed from manually encoded novels versus our constructed graphs. Our findings suggest that the choice of context size is non-trivial and can have a substantial influence on the resulting networks. In general, the paragraph level interaction approach seemed to be more accurate

    Hierarchical Catalogue Generation for Literature Review: A Benchmark

    Full text link
    Multi-document scientific summarization can extract and organize important information from an abundant collection of papers, arousing widespread attention recently. However, existing efforts focus on producing lengthy overviews lacking a clear and logical hierarchy. To alleviate this problem, we present an atomic and challenging task named Hierarchical Catalogue Generation for Literature Review (HiCatGLR), which aims to generate a hierarchical catalogue for a review paper given various references. We carefully construct a novel English Hierarchical Catalogues of Literature Reviews Dataset (HiCaD) with 13.8k literature review catalogues and 120k reference papers, where we benchmark diverse experiments via the end-to-end and pipeline methods. To accurately assess the model performance, we design evaluation metrics for similarity to ground truth from semantics and structure. Besides, our extensive analyses verify the high quality of our dataset and the effectiveness of our evaluation metrics. Furthermore, we discuss potential directions for this task to motivate future research
    • …
    corecore