
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Theses and Dissertations

12-2019

Extracting Social Network from Literary Prose Extracting Social Network from Literary Prose

Tarana Tasmin Bipasha
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Databases and Information Systems Commons, and the Digital Communications and

Networking Commons

Recommended Citation Recommended Citation
Bipasha, Tarana Tasmin, "Extracting Social Network from Literary Prose" (2019). Theses and
Dissertations. 3415.
https://scholarworks.uark.edu/etd/3415

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please
contact ccmiddle@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F3415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.uark.edu%2Fetd%2F3415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fetd%2F3415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fetd%2F3415&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/3415?utm_source=scholarworks.uark.edu%2Fetd%2F3415&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu

Extracting Social Network from Literary Prose

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

by

Tarana Tasmin Bipasha

Bangladesh University of Engineering & Technology

Bachelor of Science in Computer Science, 2011

December 2019

University of Arkansas

This thesis is approved for recommendation to the Graduate Council.

Susan Gauch, Ph.D.

Thesis Director

___________________________________ ___________________________________

Brajendra Nath Panda, Ph.D. Qinghua Li, Ph.D.

Committee Member Committee Member

ABSTRACT

This thesis develops an approach to extract social networks from literary prose, namely,

Jane Austen’s published novels from eighteenth- and nineteenth- century. Dialogue interaction

plays a key role while we derive the networks, thus our technique relies upon our ability to

determine when two characters are in conversation. Our process involves encoding plain literary

text into the Text Encoding Initiative’s (TEI) XML format, character name identification,

conversation and co-occurrence detection, and social network construction. Previous work in

social network construction for literature have focused on drama, specifically manually TEI-

encoded Shakespearean plays in which character interactions are much easier to track in due to

their dialogue-driven narrative structure. In contrast, prose is structured quite differently;

character speeches are not very clearly formatted, making it more difficult to assign specific

dialogue to each character. We implement two different parsing strategies based on context size

(chapter scope and paragraph scope) to detect character interactions. To check the accuracy of

our methods, we conduct one evaluation that is based on network statistics and another

evaluation that involves measuring similarity (edit distance) between the networks constructed

from manually encoded novels versus our constructed graphs. Our findings suggest that the

choice of context size is non-trivial and can have a substantial influence on the resulting

networks. In general, the paragraph level interaction approach seemed to be more accurate.

ACKNOWLEDGEMENTS

 I would like to thank my thesis advisor Susan Gauch, Ph.D. for providing me with the

opportunity to work with her during this project and her guidance throughout my graduate

education. I also thank my thesis committee, Brajendra Nath Panda, Ph.D. and Qinghua Li, Ph.D.

for reviewing my thesis.

I would also like to express my very profound gratitude to my parents and to my spouse

for providing me with constant support and continuous encouragement throughout this journey

and through the course of studying and writing this thesis. This achievement would not have

been possible without them.

TABLE OF CONTENTS

1. INTRODUCTION... 1

2. RELATED WORK ... 4

2.1 Social Networks in Literature ... 4

2.2 Text Encoding Initiative (TEI) XML .. 5

2.3 Named Entity Recognizer (NER) Tagging ... 5

2.4 Graph Analysis Software .. 6

2.5 Graph Similarity Measure ... 7

3. APPROACH .. 10

3.1 Data Set ... 10

3.2 Text Encoder ... 11

3.3 Character Identifier ... 15

3.4 Social Network Generator... 17

3.4.1 Information Extraction from TEI Encoded Xml .. 18

3.4.2 Construct Network Graphs .. 20

4. RESULTS .. 23

4.1 Experimental Setup ... 23

4.2 Experiment One: TEI Encoder Accuracy .. 24

4.2.1: Accuracy Based on Types of Tags ... 24

4.2.2: Accuracy Based on Total Number of Tags ... 25

4.3 Experiment Two: Character Identification .. 27

4.4 Experiment Three: Context Size .. 29

4.4.1 Accuracy Based on Network Statistics ... 29

4.4.2 Accuracy Based on Edit Distance .. 31

5. CONCLUSION ... 35

REFERENCES .. 37

 1

1. INTRODUCTION

The key areas of research in literary studies could be divided into three categories; the

first is philology - the study of words; the second is bibliography - the study of books as objects;

and the third is criticism - the understanding of literary meaning over time. Close reading of texts

has always been the primary task of literary scholarship since the very beginning of criticism. By

studying specific words precisely, it constructs word-based interpretations. On the other hand,

the computational approaches propose another technique for literary study called “Distant

reading” (F. Moretti, 2011). According to Grayson et al., distant reading takes several forms,

such as character frequency analysis, statistical topic models, character profiling and sentiment

analysis (Grayson et al., 2016). It’s not feasible for a person to read all available texts, nor very

easy to perceive insight by reading them. In order to develop new literary perceptions,

computational approaches must deliver information about the fictional texts. These approaches

are being increasingly adopted by scholars to explore the unanswered questions in literary field.

Several computational approaches employ social network analysis. It not only adopts

some of the existing analysis techniques but also offers a unique level of abstraction (i.e.

representation of social graph with nodes and edges). In a literary context, the application of

social network analysis usually involves the creation of character networks from text, where each

vertex indicates a character and each edge signifies a relation between characters. Character

associations are generally recognized by studying the co-occurrences between each pair of

characters. The scholars often adopt the methodologies derived from constructed networks to

assess novel literary hypothesis, even though the success of these approaches significantly rely

on the superiority of the underlying networks. Extracting a character network from 18th and 19th

century literary fiction is complex for two prime reasons; first, the characters are often

 2

referenced in ambiguous or implicit manners; and second, they share names and aliases with

other characters in the same novel (Grayson et al., 2016). Moreover, building a social network

from prose fiction is crucial since character interactions are much easier to track in play/drama

due to its dialogue-driven narrative structure whereas fictions are formatted differently--character

speeches are not very clearly formatted, making it more difficult to assign specific dialogue to

each character.

With the emergence of digitization, humanities scholars are always in need of more and

more texts to run corpus level computational text analysis. Even though digital texts are available

from a wide variety of sources, one generally has to go through a number of preprocessing tasks

to transform those texts into a standard format. The files found at numerous sources are not only

comprised of plain, unformatted text, they also contain a lot of boilerplate text that must be

removed prior to textual analysis. Computation approaches to literary analysis thus requires an

automatic text encoder that takes these unformatted texts as input and transforms them into an

XML file that is compatible with all kind of text processors/tools dealing with XML formatted

corpus.

Our research is primarily concerned with three goals:

[1] First, building an automatic text encoder that tags plain, un-TEI encoded text in

such a way that this approach can be made broadly applicable.

[2] Second, identifying characters (speakers) from literary text.

[3] Third, determining the appropriate context size to use when building a social

network based on character interactions.

 3

In this thesis we present a method to automatically encode plain literary text with the TEI

format. Most of the studies in social network analysis of literature start with a manually

processed and XML-encoded dataset that requires a huge amount of human effort to produce and

is thus quite expensive. To address this issue and make computation literary analysis much more

broadly applicable , we built an XML encoder that provides basic TEI tagging. Next, we

developed a technique to identify characters from prose and produce a character list. Previous

work in social network construction for literature have focused on drama. Gauch et al.’s previous

study on social network analysis is based on TEI encoded Shakespeare’s plays, in which

character interactions are much easier to track in due to their dialogue-driven narrative structure

(Gauch et al., 2018). In contrast, prose is formatted in a different way; character interactions are

not clearly structured, making it difficult to find character interactions. Our thesis implements

two strategies based on context size (chapter scope and paragraph scope) to observe character

interactions. To check the accuracy of our methods, we conduct evaluations based on network

statistics and network similarity (edit distance) measures. Our findings suggest that the choice of

context size is non-trivial and can have a substantial influence on the resulting networks.

 Chapter 2 presents a summary of related work on social network analysis strategies in the

field of literature. In Chapter 3, we describe our approaches to build the TEI Encoder designed

for converting plain text into TEI formatted XML and then describe our character identification

methodology, along with our different parsing strategies to generated social networks of literary

prose. In Chapter 4, we evaluate our techniques and present our findings. Finally, in Chapter 5,

we present conclusions and discuss future work in this area.

 4

2. RELATED WORK

In this chapter, we discuss social network analysis in the field of literature and the

research on social network applications. At its most basic, a social network graph consists of

vertices (social characters) and edges (social relations). However, we can extract a lot more

information, both explicit and implicit, from its structure. Graph theory offers some

mathematical as well as systematic methods for investigating the structure. In short, social

network analysis is the process of studying social structures using graph theory concepts.

2.1 Social Networks in Literature

An array of different tactics have been considered to detect meaningful interactions

among characters in novels. Alberich et al. conducted one of the first studies in this field

(Alberich et al., 2002). They created the Marvel Universe network by recognizing connections

between characters based only on the characters occurrence in the same comic but not the

interactions among them. This technique was improved on by Gleiser who introduced weights,

where weights represent the collaboration between actors throughout the script that occurs

repetitively (Gleiser, 2007). F. Moretti, on the other hand, adopted a completely different tactic

to analyze the works of Shakespeare. He constructed social networks based on dialogues

indicating that interactions alone can play a major role in social network analysis (F. Moretti,

2011). Taking similar approach, Elson et al. also constructs social networks from 19th century

literature (Elson et al., 2010). This method involves character name clustering and automated

speech attribution as they extract conversations from sets of dialogue acts, which results in a high

level of precision (96%) but lower recall (57). Agarwal et al. include another type of social

event, observation, along with dialogue interaction while constructing the network for Alice in

Wonderland (Agarwal et al., 2012). They construct a weighted directed network, where the

 5

direction indicates who is observing whom. Jayannavar et al. propose another extraction

technique that considers general character interactions along with conversational interactions and

observations (Jayannavar et al., 2015).

2.2 Text Encoding Initiative (TEI) XML

XML is a markup language that states a set of instructions for encoding texts in a format

that is both human-readable and machine-readable. The design goals of XML emphasize

simplicity, generality, and usability across the Internet. This textual data format offers strong

support for different languages via Unicode. Although the design of XML focuses on documents,

the language is widely used for the representation of random data structures such as those used in

web services (XML, 2019). The Text Encoding Initiative (TEI) is a text-centric community of

practice in the academic field of digital humanities (Text Encoding Initiative, 2019). TEI is a

consortium that jointly develops and maintains a standard for the digital representation of texts.

Its chief deliverable is a set of Guidelines that specify encoding methods for machine-readable

texts, mainly the ones in humanities, social sciences and linguistics. The format differs from

other well-known open formats (HTML, OpenDocument etc.) in that it's primarily semantic

rather than presentational. Since 1994, the TEI Guidelines have been widely used by libraries,

museums, publishers, and individual scholars to present texts for online research, teaching, and

preservation.

2.3 Named Entity Recognizer (NER) Tagging

 One of the primary tasks in dealing with computational analysis of literature is the need

to identify when a specific character is being referenced. Names for the same individual, in

literature and in other printed matter, may appear in many forms. The problem of named-entity

recognition (NER) (also known as entity identification, entity chunking and entity extraction) is a

 6

sub-task of information retrieval that seeks to locate and classify named entities in text into pre-

defined categories such as the names of persons, organizations, locations, expressions of times,

quantities, monetary values, percentages, etc. (Named-entity recognition, 2019). Various NER

systems have been created so far that use linguistic rule-based techniques as well as statistical

models such as machine learning. Earlier NER systems are most often based on hand-crafted

rules. These systems typically obtain better precision, but at the cost of lower recall and months

of work by experts. Therefore, even though considered as highly efficient, they are expensive,

domain-specific, and non-portable. Learning based models provide better accuracy compared to

rule based models. Stanford NER, also knows as a CRF (Conditional Random Field) Classifier,

is one of them ((Finkel et al., 2005)). It’s an open source Java implementation of a Named Entity

Recognizer. It provides a trained model to label sequences of words in a text which are the names

of things, such as person, organization and location names. Another state-of-the-art NER Model

is spaCy. Being a free and an open-source library, spaCy provides an efficient statistical system

for NER in python (spaCy, 2015). Apache OpenNLP library is also a machine learning based

toolkit for NER (Apache OpenNLP, 2019). Hybrid systems such as BI-LSTM-CRF model

performs very well for many cases. Among the very recent systems, Bert NER looks very

promising. In this thesis, we used Stanford NER because it is the most accurate and free NER

system available.

2.4 Graph Analysis Software

 The overall goal of this work is to create a social network that captures character

interactions within prose. Typically, these networks are displayed visually. The graphs can be

drawn manually, however, there are a variety of software packages to make this process much

easier. Graphviz is an open source graph visualization framework. It has several main graph

 7

layout programs suitable for social network visualization (Graph Visualization Software, 2017).

Graph-tool is another Python module for manipulation and statistical analysis of graphs which

can be used to work with very large graphs in a variety of contexts (T. de P. Peixoto, 2019). R

also contains several packages relevant for social network analysis. JUNG is a Java API and

library that provides a common and extensible language for the modeling, analysis, and

visualization of relational data. It supports a variety of graph types (including hypergraphs),

supports graph elements of any type and with any properties, enables customizable

visualizations, and includes algorithms from graph theory, data mining, and social network

analysis (JUNG, 2010). Gephi, another widely used open-source network analysis and

visualization software package, provides easy and broad access to network data (The Open

Graph Viz Platform, 2017). The Gephi Toolkit project packages essential modules (Graph,

Layout, Filters, IO etc.) in a standard Java library (Gephi Toolkit, 2017). Along with graph

visualization and manipulation capability, Gephi also computes a wide range of mathematical

features for each graph which is why we chose to use Gephi in this thesis and we make use of its

built-in mathematical functions in our graph analysis work.

2.5 Graph Similarity Measure

 Since we will be exploring different ways of extracting character interactions within

prose, we need some method for comparing the resulting graphs. Graph similarity/matching, the

problem of finding a similarity between graphs, is a well-studied problem in computer science. It

has several applications in various fields (image processing, social networks, biological

networks, chemical compounds etc.), hence numerous similarity measure algorithms have been

suggested. The proposed techniques can be classified into three main categories: iterative

methods, feature extraction methods, and edit distance/graph isomorphism (Koutra et al., 2011) .

 8

The key idea behind the iterative methods is that “two nodes are similar if their neighborhoods

are also similar”. The nodes exchange similarity scores among each other in each iteration. The

whole process ends only when convergence is achieved. There are quite a few successful

algorithms that belong to this group: the similarity flooding algorithm by Melnik et al. which

solves the “matching” problem by determining the correspondence between the nodes of two

given graphs (Melnik et al., 2002). SimRank is another algorithm that measures the self-

similarity of a graph, i.e., it measures the similarity between all pairs of nodes in one graph (Glen

Jeh and Jennifer Widom, 2002). It computes all pairs similarity scores iteratively by propagating

similarity scores in the 𝐴2 matrix. Zager and Verghese proposed a recursive method that

introduced the idea of coupling the similarity scores of both nodes and edges; most of the

proposed previous methods focus on the nodes’ scores only (Zager and Verghese, 2008).

In contrast to the previous iterative methods, the philosophy behind feature extraction

methods is that graphs those who are similar share certain properties among them, such as

eigenvalues, degree, diameter. The process includes extracting the features first, then applying a

similarity measure to weigh in the similarity between the aggregated statistics, thus calculating

the similarity between the graphs. These methods are efficient and scale quite well. However,

depending on the selected statistics, the results that are achieved may not be always intuitive. For

example, it is not impossible to get high similarity between two graphs that do not have very

similar node set size, which is not always desirable.

Another approach to evaluating graph similarity is graph edit distance, which is a

generalization of the graph isomorphism problem. In these methods, the goal is to transform one

graph to the other by doing a number of operations such as additions, deletions, substitutions of

nodes or edges, and reversions of edges. It calculates a graph similarity measure analogous to

 9

Levenshtein distance for strings (Graph edit distance, 2019). It is defined as minimum cost of

edit path (sequence of node and edge edit operations) that associates each operation with a cost,

and it attempts to find the sequence of operations that minimizes the cost of matching the two

graphs. In this thesis, we used graph edit distance to evaluate our resulting graphs. The

mathematical definition of graph edit distance is dependent upon the definitions of the graphs

over which it is defined, i.e., whether and how the vertices and edges of the graph are labeled and

whether the edges are directed. Generally, given a set of graph edit operations (also known as

elementary graph operations), the graph edit distance between two graphs 𝑔1 and 𝑔2, written as

GED(𝑔1, 𝑔2) can be defined as

GED(𝑔1, 𝑔2) = min
(𝑒1,…..𝑒𝑘)∈ 𝒫(𝑔1,𝑔2)

∑ 𝑐(𝑒𝑖)

𝑘

𝑖=1

where 𝒫(𝑔1, 𝑔2) denotes the set of edit paths transforming 𝑔1 into (a graph isomorphic to)

𝑔2 and 𝑐(𝑒) ≥ 0 is the cost of each graph edit operation 𝑒.

The set of elementary graph edit operation that we considered in our calculation includes:

o Node insertion to introduce a new labeled node to the graph.

o Node deletion to remove a single (often disconnected) node from the graph.

o Node substitution to change the label of a specific node.

In our work, we have chosen to use the graph edit distance (GED) method for graph similarity in

our experiments because it is one of the most flexible and widely accepted similarity measure

techniques available for graphs where the basic distortion operations of GED can cope with

arbitrary labels on both nodes and edges as well as with undirected or directed edges. In contrast

with other measures, GED does not have any restriction, thus can be applied to all kinds of

 10

graphs. Additionally, GED is also known to be error-tolerant with the capability to locate graphs

that are of interest regardless of the presence of noises or errors in the data set.

3. APPROACH

The system for extracting the social network consists of three main components as shown in

Figure 1. The “Text Encoder” converts plain text into the Text Encoding Initiative’s (TEI) XML

format. The purpose of “Character Identifier” is to recognize all the characters of a prose.

Finally, the “Social Network Generator” automatically parses XML formatted novels to extract

basic information and generates social network based on various metrics for each novel. Figure 1

shows the main components of the system architecture, which are discussed in more detail in the

following subsections.

Figure 1: Block diagram of our system

3.1 Data Set

We focus our work on the six novels of Jane Austen, one of the most widely studied

authors of English literature. These plain (unstructured) text novels have been digitized by

project Gutenberg (Books by Austen, Jane, 1971). At the beginning, data preparation involves

 11

automatic annotation of the novels, i.e., we convert the plain Gutenberg text into a TEI-

compliant xml file.

To evaluate our work, we collected the same six novels of Jane Austen, manually

encoded in TEI format (Austen Said, 2017). We call them our “truth values”. These novels are

also passed through the parser to extract necessary information and generate character networks

which are then compared with the social networks produced by our models.

3.2 Text Encoder

We have designed an automatic text encoder that takes in the plain text of a novel as

input and converts them into an XML document that meets the basic TEI requirements. With the

emergence of digitization, humanities scholars are always in need of more and more texts to run

corpus level computational text analysis. Even though we have turned out to be an expert at

finding texts from a wide variety of sources, we often have to go through a number of

preprocessing tasks to transform those texts into a standard format. The files found at numerous

sources are not only comprised of plain, unformatted text; but also, a lot of boilerplate text that

demands to be removed prior to textual analysis. Our “Text Encoder” component provides a

script that takes these unformatted texts as input and transforms them into an XML file that is

compatible with all the text processors/tools dealing with TEI formatted XML.

In order to convert the plain Gutenberg text, we ran it though a python script that

normalizes the formatting, detects headings and chapter breaks, removes metadata, etc. The

output generates a teiHeader that includes the title and author of the novel and adds “text”,

“body”, “div”, and all the essential “p” tags which ultimately results in an XML document that

meets the basic TEI requirements. Full TEI encoding uses some additional tags; for example,

 12

<seg> tag inside <p>, tags related to publication information inside <teiHeader>, etc., but we are

focusing on tagging for the purpose of identifying character interactions to build a social

network. As such, we did not annotate with all TEI tags. In Table 1, we present the list of tags we

used to annotate the un-TEI encoded text to make this approach more broadly applicable.

Table 1: List of tags we used to annotate the un-TEI encoded text

Primary Tags

1. <teiHeader>

2. <text>

3. <body>

4. <div>

5. <p>

Inner Tags

6. <fileDesc>

7. <publicationStmt>

8. <title>

9. <author>

10. <listPerson>

Our algorithm follows top down parsing strategy based on pattern matching in an

iterative manner. It basically scans through every line from start to end. At the beginning, it

detects the title and author information and generates the <teiHeader> of the XML. After that, it

constructs the main part, i.e., the <body> of the XML. Inside the <body>, the parser looks for the

chapter or volume information and starts the <div> tag which ends before the next chapter

begins. So, each chapter is wrapped inside a <div> tag. The parser considers an empty line as the

start of a new paragraph. Therefore, all other lines between the empty lines are concatenated into

a single paragraph and tagged with <p> tag. The parser also removes metadata and redundant

 13

whitespaces before writing the output to a file. Figure 2 presents the algorithm for the overall

task and Figure 3 shows a sample XML output from the converter.

 Initialize encodedText

 For each line of input text

 If the line contains “Author” information

extract author

 If the line contains “Title” information

extract title

 If the line starts with “**start**”

 startSeen = true

 paragraph = “”

continue

 If the line starts with “**end**”

 Break

 If not startSeen

continue

 Append title and author information to the header

 If not line

 paragraph = paragraph.strip()

 if paragraph

 encodedText.append(paragraph)

 encodedText.append("</p>")

 paragraph = "<p>"

 else:

 if line.startswith("Volume"):

 volume = line.strip()

 line = ""

Figure 2: Algorithm to convert plain text to TEI XML format

 14

 if line.startswith("Chapter "):

 if len(volume) > 0:

 line = volume + ":" + line.strip()

 if firstChapter:

 paragraph = "<div><p>"

 firstChapter = False

 else:

 paragraph = "</div><div><p>"

 paragraph += " " + line

encodedText.append("</div></body></text></TEI>")

remove metadata and whitespaces

open file to write encodedText

close file

Figure 2: Algorithm to convert plain text to TEI XML format (Cont.)

<?xml version="1.0" encoding="utf-8"?><TEI xmlns=http://www.tei-c.org/ns/1.0

version="5.0">

<teiHeader>

 <fileDesc>

 <titleStmt>

 <title> Pride and Prejudice </title>

 <author> Jane Austen </author>

 </titleStmt>

 <publicationStmt>

 <availability status="free"><p>Project Gutenberg</p></availability>

 </publicationStmt>

 </fileDesc>

</teiHeader>

<text>

 <body>

 <div>

 <p> Chapter 1 </p>

 <p> “My dear Mr. Bennet,” said his lady to him one day, “have you heard …” </p>

 <p>Mr. Bennet replied that he had not. </p>

 ……………

 </div>

Figure 3: The structure of the generated TEI encoded XML of a novel

 15

 <div>

 <p> Chapter 2 </p>

 <p>Mr. Bennet was among the earliest of those who waited on Mr. Bingley…. </p>

 ……………

 </div>

 ……………

 </body>

</text>

Figure 3: The structure of the generated TEI encoded XML of a novel (Cont.)

3.3 Character Identifier

One of the most challenging task of our thesis was to identify the characters (speakers) by

“chunking” names (such as Mr. Bennet) from the plain text. Since our goal is to correctly

identify the speakers of a novel, we focus on the characters who actively participate in direct

conversations. The process itself comprises of several steps. First, we detect conversations

between characters. Then, we automatically build a character map wherein each character has

only one entry and the corresponding aliases for that character (i.e., all possible names). Using

this map’s unique name (key), we replace all occurrences of a character's aliases throughout the

text.

Our algorithm (Figure 4) proposes an iterative, novel approach to extract and build

character map with the help of Stanford NER tagger (Finkel et al., 2005). It passes each of the

prose through the NER tagger to locate and classify named entities in the text and extracts only

the noun phrases which are categorized as persons. During this tokenization procedure, we

implemented N-gram (mainly bi-gram and tri-gram) technique to identify all the variations of a

character name. For example, in “Pride and Prejudice”, Elizabeth Bennet was referred to as Miss

Bennet, Miss Elizabeth, Eliza Bennet, etc., throughout the text. Since the Stanford tagger is

unable to identify the honorific titles preceding a person’s name such as Mr., Mrs., etc., we used

 16

a list of these titles to resolve the names that contain prefix. The list consists of 10 titles (Mr.,

Mrs., Miss, Ms., Master, Lady, Mx, Sir, Dr, Lord) that are most common. Then, we combine all

the variations of a character’s name into a list and eventually store that list in a character map

where the associated key represents the unique id of that entity. Figure 5a shows part of the

constructed character map for the novel “Pride and Prejudice”. Finally, we match and replace all

the occurrences of a name throughout the text with the unique id associated to it as shown in

Figure 5b.

Initialize and start ner_tagger server

Initialize a character map

For each line of text

 tokenized_text = word_tokenize(line)

 tagged_words = ner_tagger.tag(tokenized_text)

 For each word in tagged_words

 if the tag of the word is ‘Person’:

check if this is a multiword name by checking the consecutive

words before and after the current word

put the name in character list

For each item of character list

 If it appears in a line that contains quoted speech:

 Put item in a character map

For key, value of character map

 Find co-referents of the item and combine them

 For item in value:

 If item in line:

 line = line.replace(item, key)

Figure 4: Algorithm for character name identification

 17

 character_1 : ['Mr. Bennet']

 character_2 : ['Miss Lydia Bennet', 'Lydia Bennet', 'Miss Lydia']

 character_3 : ['Catherine de Bourgh', 'Catherine de', 'de Bourgh', 'Catherine']

 character_4 : ['Lady Anne Darcy', 'Lady Anne', 'Anne Darcy']

 ……. …….. ……..

 character_25 : ['Michael S. Hart', 'Michael S.', 'S. Hart', 'Michael']

Figure 5a: Character map constructed from original text

Original Text :

“My dear Mr. Bennet,” said his lady to him one day, “have you heard that Netherfield Park is let

at last?” Mr. Bennet replied that he had not.

“But it is,” returned she; “for Mrs. Long has just been here, and she told me all about it.”

Mr. Bennet made no answer.

Text after character name replacement:

<p> “My dear character_2,” said his lady to him one day, “have you heard that Netherfield

Park is let at last?” </p>

<p> character_2 replied that he had not. </p>

<p> “But it is,” returned she; “for character_3 has just been here and she told me about it”</p>

<p> character_2 made no answer. </p>

Figure 5b: All the character names are replaced with their unique id throughout the text of the

novel

3.4 Social Network Generator

The main purpose of this component is to determine appropriate context size to use when

building a social network based on character interactions. We describe two different character

network construction strategies/parsers; Chapter Level Parser and Paragraph Level Parser, to

detect co-occurrences, based on the scope of context window over the text of a novel. With

 18

Chapter Level Parser, we automatically parse TEI-encoded XML formatted novels to extract

information within the scope of chapter to determine which characters were speaking to whom

and total number of interactions among those characters. Paragraph Level Parser extracts similar

information, but within the scope of a paragraph; significantly smaller context size compared to

the chapter scope. These co-occurrences are then used to construct a weighted undirected

network representation of the novel.

3.4.1 Information Extraction from TEI Encoded Xml

We used Java DOM API to parse the XML files as it works well with mixed content

model and is language independent. This task is made easier since all our TEI encoded novels

use a consistent tagging scheme. For each novel, we store the relevant parsed information into a

Character object, which is later used for social network/graph analysis process. In this section we

discuss how we extract information from our encoded novels using Chapter Level parsing.

Paragraph level parsing basically follows similar procedure differing only in the size of context

scope.

Our algorithm has three main steps. In the first step, we focus on the header section of the

XML that contains information such as the title of the novel, which is extracted from the node

‘title’ (see Figure 6 for details). In the next step of our algorithm, we iterate through the node

‘listPerson’ and fetch the person list of the novel. Each <person> contains full name of the

character (see Figure 7 for details). It is worth noting that some of the characters mentioned in

the listPerson never appear in any direct conversation. We removed such characters from the list.

In the final step, we fetch chapter specific information, where each chapter contains multiple

paragraphs. We parse information within a <p> tag if it contains a quoted speech by a character.

 19

To assign a speaker to the quoted text, we look for the pattern “character_[0-9]+” in the same

text (see Figure 8 for details).

<teiHeader>

 <fileDesc>

 <titleStmt>

 <title> Pride and Prejudice </title>

 <author> Jane Austen </author>

 ……..

</teiHeader>

Figure 6: Novel Title Extraction from Encoded XML

<listPerson>

 <person xml:id=" character_2">

 <persName> Mr. Bennet </persName>

 </person>

 <person xml:id="character_7">

 <persName> Mrs. Bennet </persName>

 </person>

 ………..

</listPerson>

Figure 7: Character List information extraction from Encoded Xml

<div>

 <p> Chapter 1 </p>

 <p> “My dear character_2,” said his lady to him one day, “have you heard that Netherfield

Park is let at last?” </p>

 <p> character_2 replied that he had not. </p>

 ……………

</div>

Figure 8: Speaker, Interaction extraction from Encoded Xml

The parsed information is stored in a Character object that has attributes to store the total

number of words spoken by a character to all other characters, the total number of interactions

between each two characters and the total number of segments in which it actively participated in

 20

a conversation, as mentioned in Figure 9. After building the Character object, we pass the list of

characters to next component, Social Network Generator.

public class Character {

 String Name;

 ArrayList<String> segments;

 int no_of_interaction;

 int no_of_words_spoken;

 HashMap<String, ArrayList<Integer>> segmentInfo;

….

}

• name - stores name of the Character.

• segments – stores information about the chapter number or paragraph identifier in which the

character appeared.

• no_of_words_spoken - stores information about total number of words spoken by the

character in the novel.

• no_of_interaction - stores information about total number of interaction by the character in

the novel.

• segmentInfo - maps segments to number of words spoken by the character and number of

interactions with other characters in that scene.

Figure 9: Character Object (Java)

3.4.2 Construct Network Graphs

Using the information generated by the Parsers, we create each novel’s social network

graph and then calculate social network metrics from the generated graph. These metrics allow

us to compare the social network graphs created from our automatically tagged novels with those

from the manually tagged novels. We could also compare automatically generated networks

with manually created ones or compare different novels by similar authors. We use Gephi’s API

 21

to generate the graph files. The Character object from the Parsers is used to calculate some graph

metrics. Each entry of the Character object maps to a graph node. Once we have all the nodes

identified, we use the segment information for each character to create an edge between this

character and the remaining characters in the list, if they both appeared in the same segment.

For our non-directional graphs, we considered the total number of interactions between

two characters as the weight of the edge. The output to the social network generator is gexf file.

In figure 10 and 11, we present part of a generated gexf file. We chose gexf format as with this

file format literary scholars can directly import the file into Gephi tool to visualize and perform

various analysis on the graph. Once the basic structure of graph is ready, we compute the

following graph metrics as shown in Table 2 using functions provided by Gephi.

Table 2: Metrics extracted from the novels. Here g represents a graph, c a character node in the

graph, and e an edge between two character nodes in the graph.

Metrics Extracted from Text

1. No of edges = total number of edges of g

2. Total words = total number of words spoken by c

Metrics Extracted from Graph

3. Eigenvector Centrality = A measure of c’s importance in a network based on c’s connections.

4. Path Length = The average graph-distance between all pairs of nodes.

5. Average Degree = Sum of the degrees of all the nodes in the graph divided by the total

number of nodes in the graph.

Some of the metrics we calculated were extracted from the novel itself, i.e., not generated

by the network, e.g., the total number of words spoken by a character. We compute the graph

metrics using Gephi’s library. Node-specific metric such as Eigenvector capture information

 22

about a particular node in the graph. In contrast, Graph metrics such as Path Length and Average

Degree capture information about the graph as a whole.

In order to be able to compare nodes in multiple networks, the Node metrics, we

normalized the values by calculating the network centralization value using the following

equation developed Newman (Newman, M.E.J. 2010):

C =
∑ [c∗ − ci]i

Max ∑ [c∗ − ci]i

 where,

c* = maximum value for all the nodes in the graph

 ci = value of current node

The denominator represents the maximum of the summation over all the possible networks.

<node id="15" label="Mr. Bennet">

 <attvalues>

 <attvalue for="key" value="character_2"/>

 <attvalue for="words" value="1501"/>

 <attvalue for="total_interactions" value="23"/>

 <attvalue for="clustering" value="0.79"/>

 <attvalue for="eigencentrality" value="0.86"/>

 <attvalue for="degree" value="22"/>

 </attvalues>

 <viz:size value="20.0"/>

 <viz:position x="-584.0573" y="1552.123"/>

</node>

Figure 10: Sample output - part of gexf file (Node representation)

 23

<edge id="141" source="9" target="15" label="Mrs. Bennet -- Mr. Bennet" weight="2113.0">

 <attvalues>

 <attvalue for="chapters" value="11"/>

 <attvalue for="character1" value="Mrs. Bennet"/>

 <attvalue for="character2" value="Mr. Bennet"/>

 <attvalue for="interaction" value="39"/>

 <attvalue for="character1_words" value="775"/>

 <attvalue for="character2_words" value="1338"/>

 </attvalues>

</edge>

Figure 11: Sample output - Part of gexf file (Edge representation)

4. RESULTS

4.1 Experimental Setup

 Among the six novels of Jane Austen as shown in Table 3, we focused on one while

developing our algorithms, “Pride & Prejudice”. We evaluated and trained our algorithms

working exclusively with that novel. Once they were developed to our satisfaction, we evaluated

the algorithms using the remaining five novels for testing.

Table 3: Dataset

Novel Name Purpose

Pride & Prejudice Experiment

Emma Evaluation

Mansfield Park Evaluation

Northanger Abbey Evaluation

Persuasion Evaluation

Sense & Sensibility Evaluation

 24

4.2 Experiment One: TEI Encoder Accuracy

4.2.1: Accuracy Based on Types of Tags

 We first evaluated our TEI encoder by calculating the accuracy of the types of tags we

used to annotate the novels against the tags that are used in the manually encoded novels. In

Table 4, we present a sample evaluation of the various tags that are added for the novel “Pride &

Table 4: Comparing types of tags used on “Pride & Prejudice” for truth vs encoder

Truth Tags TEI Encoder Tags

<teiHeader> <teiHeader>

<text> <text>

<body> <body>

<div> <div>

<p> <p>

<fileDesc> <fileDesc>

<publicationStmt> <publicationStmt>

<title> <title>

<author> <author>

<listPerson> <listPerson>

<seg>

<said>

<floatingText>

Total Tags = 13 Total Tags = 10

Accuracy 77%

Prejudice” where the left column shows the tags that are used in the truth and the right column

shows the tags used for encoding. Similarly, we calculated the correctness of the tag types that

were added for all other novels of our study in Table 5. On average, we achieved around 80%

accuracy in successfully implementing different types of tags over the plain, un-TEI encoded

texts.

 25

Table 5 : Tag accuracy based on type calculation for each novels of our study

Novel Accuracy

Emma 72%

Mansfield Park 77%

Northanger Abbey 83%

Persuasion 83%

Pride & Prejudice 77%

Sense & Sensibility 83%

Average Accuracy 80 %

4.2.2: Accuracy Based on Total Number of Tags

We again evaluated the TEI encoder by calculating the precision, recall and accuracy of

adding each tag with which we annotated the plain text to convert them to TEI- encoded html. In

Table 6, we presented a sample calculation for the novel “Pride & Prejudice” where the

correctness of each tag was measured by comparing the same with the manually encoded ones.

We used false positive value as 100 for minor inner tags that are mainly considered in the header.

Table 6:Tagging statistics for “Pride & Prejudice” (Truth vs Encoder)

Tags Total count from

Truth

Total Count from

Encoder

<teiHeader> 1 1

<text> 1 1

<body> 1 1

<div> 61 61

<p> 2184 2128

<head> 61 0

 26

Table 6:Tagging statistics for “Pride & Prejudice” (Truth vs Encoder) (Cont.)

Tags Total count from

Truth

Total Count from

Encoder

<fileDesc> 1 1

<publicationStmt> 1 1

<title> 1 1

<author> 4 3

<listPerson> 3 1

Here,

 Precision = 0.96

Recall = 0.95

Accuracy = 91.3%

 Similarly, we calculated the precision, recall and accuracy of adding each of these tags

for all other novels in our study. Table 7 presents these values and their average. The overall

average precision of correctly tagging the plain text of the novels is around 0.96, recall 0.92 and

accuracy 92.1%.

Table 7: TEI Encoder precision, recall and accuracy for each novels of our study

Novel Precision Recall Accuracy

Emma 0.95 0.94 89.4%

Mansfield Park 0.97 0.93 91.4%

Northanger Abbey 0.96 0.92 88.8%

Persuasion 0.94 0.85 83.4%

Pride & Prejudice 0.96 0.95 91.3%

Sense & Sensibility 0.98 0.94 92.1%

Average 0.96 0.92 89.4 %

 27

4.3 Experiment Two: Character Identification

 Our strategy to evaluate the proposed Character Identifier was to compare the similarity

between the character names derived from our model and the character names from manually

encoded novels. In table 8, we showed the comparison between the characters from the novel

“Pride & Prejudice”. Then, we measured the precision, recall and accuracy.

Table 8: Finding similarities between the character names of “Pride & Prejudice” (Truth vs

Character Identifier)

Truth Value Derived Value Matched

Elizabeth Bennet Elizabeth Bennet Yes

Mrs. Bennet Mrs. Bennet Yes

Mr. Darcy Mr. Darcy Yes

Jane Bennet Jane Bennet Yes

Mr. Bennet Mr. Bennet Yes

Miss Bingley Miss Bingley Yes

Mr. Wickham Mr. Wickham Yes

Mr. Collins Mr. Collins Yes

Lady de Bourgh Lady de Bourgh Yes

Mr. Bingley Mr. Bingley Yes

Mrs. Gardiner Mrs. Gardiner Yes

Lydia Bennet Lydia Bennet Yes

Charlotte Lucas Charlotte Lucas Yes

Colonel Fitzwilliam Colonel Fitzwilliam Yes

Mr. Gardiner Mr. Gardiner Yes

Mrs. Reynolds Mrs. Reynolds Yes

Sir Lucas Sir Lucas Yes

Mary Bennet Mary Bennet Yes

Mrs. Hurst Mrs. Hurst Yes

Maria Lucas Maria Lucas Yes

Mrs. Hill Mrs. Hill Yes

Mrs. Phillips Mrs. Phillips Yes

Lady Lucas Lady Lucas Yes

Mr. Hurst Mr. Hurst No

Mr. Collins Lewis de Bourgh No

Mr. Denny Miss Darcy No

Kitty Bennet Mrs. Long No

 Mrs. Collins Unavailable

 George Wickham Unavailable

 Mr. Jones Unavailable

 28

Here,

Precision = 0.77,

Recall = 0.85

Accuracy = 68%

Similarly, we calculated these values for all other novels as shown in Table 9.

“Persuasion” had the best precision value whereas “Northanger Abbey” scored the best recall

and accuracy. On average, we had 69% accuracy for this character identifier model. While

building the character dictionary, we ended up with unwanted names on some occasions. For

example, in the novel Emma, “Donwell Lane” were recognized as a person while actually it

belongs to a location name. We also extracted names such as Mr. Dixon and Miss Smith from

Emma as they are mentioned many times throughout the text, however they are not documented

as character in the manually encoded corpus since they never actually speak but are merely

referred to. As a result, our extracted social networks produced more characters compared to the

truth networks in most cases. If we filtered out some of these minor characters from our list, i.e.,

those who never speak, the accuracy would be a lot higher. Moreover, due to the limitation of

NER tagger, some of the PERSON entities were left unrecognized. The tagger also performs

poorly while identifying prefix or suffix of a name. We had to pay special attention to this issue

since many characters in Jane Austen’s novels are addressed with prefix followed by last name.

Table 9: Precision, Recall and Accuracy in character identification for the novels in our study

Novel Precision Recall Accuracy

Emma 0.75 0.84 66%

Mansfield Park 0.76 0.85 67%

 29

Table 9: Precision, Recall and Accuracy in character identification for the novels in our study

(Cont.)

Novel Precision Recall Accuracy

Northanger Abbey 0.80 0.89 73%

Persuasion 0.83 0.83 72%

Sense & Sensibility 0.73 0.84 64%

Average Precision Average Recall Average Accuracy

0.77 0.85 69%

4.4 Experiment Three: Context Size

 Our thesis implements two strategies based on context size (chapter scope and paragraph

scope) to observe character interactions. To check the accuracy of our methods, we conducted

one experiment that is based on network statistics and another evaluation involved measuring

similarity (edit distance) between the networks constructed from manually encoded novels

versus our constructed graphs which can be categorized as follows:

 1. Comparing chapter versus paragraph level interactions based on network statistics

2. Comparing chapter versus paragraph level interactions based on edit distance

4.4.1 Accuracy Based on Network Statistics

This experiment involved observing the network statistics we derived from each novel for

both chapter and paragraph level parsers. Evaluating a social network is tough since there does

not exist any established, quantitative metric for the evaluation. This suggests that the evaluation

essentially be of a qualitative nature which largely depends on the person who investigate the

 30

network and judge the result; hence, the notion of importance is ambiguous here. In our thesis,

we compute graph metrics such as Average Degree, Eigenvector, and Path Length along with

total number of words and edges to capture information about the graph as a whole. A summary

of each novel's metrics for both network construction strategies is given in figure 12, 13 and 14.

Novel Edges Words Eigenvector Path Length Avg Degree

Emma 273 75682 0.265 1.328 0.352

Mansfield Park 130 59054 0.241 1.316 0.351

Northanger Abbey 68 27974 0.404 1.569 0.493

Persuasion 119 26958 0.449 1.530 0.573

Pride & Prejudice 152 47959 0.475 1.598 0.644

Sense & Sensibility 93 51239 0.396 1.511 0.509

Figure 12: Social network metrics generated from manually encoded novels

Novel Edges Words Eigenvector Path Length Avg Degree

Emma 361 57633 0.286 1.357 0.379

Mansfield Park 231 55988 0.125 1.163 0.178

Northanger Abbey 125 19638 0.216 1.269 0.301

Persuasion 173 30175 0.138 1.176 0.195

Pride and Prejudice 273 21467 0.322 1.413 0.441

Sense & Sensibility 199 28339 0.274 1.337 0.366

Figure 13: Social network metrics generated by Chapter Level Parser

Novel Edges Words Eigenvector Path Length Avg Degree

Emma 217 58067 0.286 1.657 0.573

Mansfield Park 155 56205 0.125 1.475 0.299

Figure 14: Social network metrics generated by Paragraph Level Parser

 31

Novel Edges Words Eigenvector Path Length Avg Degree

Northanger Abbey 94 19820 0.216 1.552 0.611

Persuasion 117 30187 0.138 1.502 0.490

Pride & Prejudice 130 21520 0.322 1.919 0.512

Sense & Sensibility 113 28339 0.274 1.641 0.406

Figure 14: Social network metrics generated by Paragraph Level Parser (Cont.)

In Table 10, we presented a comparative analysis between the Chapter and Paragraph

Level Parser based on the data on Figure 12, 13 and 14. We can see that the Paragraph Level

Parser clearly has higher overall accuracy than Chapter Level Parser on all novels except for

Emma.

Table 10: Comparing chapter versus paragraph level interactions based on network statistics

Novel Chapter Level Parser

Average Accuracy

Paragraph Level Parser

Average Accuracy

Winner

Emma 85% 74% Chapter Level Parser

Mansfield Park 72% 88% Paragraph Level Parser

Northanger Abbey 67% 81% Paragraph Level Parser

Persuasion 67% 93% Paragraph Level Parser

Pride & Prejudice 64% 74% Paragraph Level Parser

Sense & Sensibility 66% 77% Paragraph Level Parser

4.4.2 Accuracy Based on Edit Distance

 This experiment involved calculating the edit distance between the social network graphs

of each novel for both chapter and paragraph level parsers. In the area of pattern analysis, inexact

 32

graph matching plays a very crucial role. Graph edit distance (GED) is the base of inexact graph

matching, i.e., it measures the similarity between pairwise graphs error-tolerantly. For this

purpose, we used NetworkX which is a Python package for the creation, manipulation, and study

of the structure, dynamics, and functions of complex networks. The default algorithm is sub-

optimal for some graphs and the problem of finding the exact GED is NP-hard, so it is often slow

(Hagberg et al., 2008).

 The “graph_edit_distance” method from NetworkX package assumes that both graphs, g1

and g2, have equal number of nodes. To fulfill this requirement, we removed the extra nodes

from our generated graphs using Gephi software so that both graphs have similar number of

character nodes before they are passed to the “graph_edit_distance” method. We achieved this by

filtering the character nodes based on interactions. For instance, the total character nodes in the

manually encoded “Pride & Prejudice” is 28 whereas the number is 31 for the network generated

from the Character Level Parser. We first sorted the characters in descending order by the

number of their interactions and then removed the 3 characters with lowest interaction value.

After this modification, we pass the gexf files to the “graph_edit_distance” method to calculate

the edit distance. Figure 15 and 16 show the network graphs generated from the gexf files using

Gephi.

The NetworkX package of Python reads the graph properties from our generated gexf

files while calculating the edit distance. Since it only reads certain versions of gexf files, we had

to modify the version number located in the gexf file header in order to make the graph files

compatible to the Python library.

 33

Figure 15: Truth network graph of Pride & Prejudice

Figure 16 : Network graph of Pride & Prejudice generated by Character Level Parser

 34

Similarly, we filtered the character nodes generated by Paragraph Level Parser based on

interaction and generated gexf files using Gephi. Figure 17 shows the network graph generated

from the corresponding gexf file using Gephi.

Figure 18 : Network graph of Pride & Prejudice generated by Paragraph Level Parser

In Table 11, we have shown the results of edit distance calculation for each pair of graphs

categorized by parsing methods (context size) based on character interaction. We observe that

Paragraph Level Parser outperforms Chapter Level Parser on all six novels.

 35

Table 11: Comparing chapter versus paragraph level interactions based on edit distance

Novel

Edit distance

Winner
Chapter Level Parser Paragraph Level Parser

Emma 30 22 Paragraph Level Parser

Mansfield Park 20 14 Paragraph Level Parser

Northanger Abbey 20 16 Paragraph Level Parser

Persuasion 24 12 Paragraph Level Parser

Pride & Prejudice 22 20 Paragraph Level Parser

Sense & Sensibility 16 12 Paragraph Level Parser

5. CONCLUSION

This thesis successfully implements several approaches to extract social networks from

unstructured prose fiction. Our process involves automatic encoding of plain literary text into

TEI formatted xml, character name identification, conversation and co-occurrence detection, and

social network construction. We successfully evaluate our proposed methods using several

strategies. The accuracy of text encoder and character identifier are measured by calculating

precision and recall whereas the extracted social networks are evaluated by network statistics and

also by measuring the graph similarity (edit distance) with the manually constructed (truth)

networks.

The text sources that are examined consist of six novels from Project Gutenberg by

author Jane Austen. We design an automatic text encoder which serves the purpose of tagging

plain, unformatted literary text, and then converting the text to a TEI-compliant XML file in such

a way that this approach can be broadly applicable. We also propose a method to identify

 36

characters from literary prose which comprises of tasks such as generating a character lexicon

where each entry belongs to a single character and the corresponding aliases to that character.

One of the primary goal of our thesis is to determine appropriate context size to use when

building a social network based on character interactions. We describe two strategies to detect

character co-occurrences, based on the context size of the text. The Chapter Level Parser extracts

information using chapter scope to determine which characters were speaking to whom and total

number of interactions among those characters. Paragraph Level Parser extracts similar

information, but within the scope of a paragraph. These co-occurrences are then used to construct

a weighted undirected network representation of the novel. To check the accuracy of our

methods for extracting social networks, we conduct evaluations based on network statistics and

edit distance. Our findings suggest that the choice of context size is non-trivial and can have a

substantial influence on the resulting networks. Overall, the paragraph level interaction approach

provided more accurate result.

For future work, it would be very beneficial to implement a pronoun resolution system.

Since literary texts contain a large number of pronouns to represent the named entities, resolving

what those pronouns refer to would certainly boost up the overall accuracy of the constructed

network. Considering that our methods are highly extensible, future work applying these parsers

can be extended for literary analysis of not only TEI encoded novels, but also, unformatted plain

literary text, written by different authors, as well as written in different languages.

 37

REFERENCES

1. F. Moretti. Network Theory, Plot Analysis. New Left Review, 68:80–102, 2011.

2. Siobhán Grayson, Karen Wade, Gerardine Meaney, Jennie Rothwell, Maria Mulvany,

and Derek Greene, 2016. Discovering structure in social networks of 19th century fiction.

In Proceedings of the 8th ACM Conference on Web Science (WebSci '16). ACM, New

York, NY, USA, 325-326.

3. S. Grayson, K. Wade, G. Meaney, and D. Greene, “The Sense and Sensibility of

Different Sliding Windows in Constructing Co-occurrence Networks from Literature,”

IFIP Advances in Information and Communication Technology Computational History

and Data-Driven Humanities, pp. 65–77, 2016.

4. Manisha Shukla, Susan Gauch and Lawrence Evalyn, 2018. Theatrical Genre Prediction

Using Social Network Metrics. In 10th International Conference on Knowledge

Discovery and Information Retrieval, Seville, Spain.

5. R. Alberich, J. Miro-Julia, and F. Rossello. Marvel Universe looks almost like a

real social network. arXiv:cond-mat/0202174, (February 2008):14, 2002.

6. P. M. Gleiser, “How to become a superhero,” Journal of Statistical Mechanics: Theory

and Experiment, vol. 2007, no. 09, 2007.

7. D. K. Elson, N. Dames, and K. R. McKeown. Extracting social networks from literary

fiction. In Proc. 48th Meeting of Assoc. Comp. Ling., pages 138-147, 2010.

8. A. Agarwal, A. Corvalan, J. Jensen, and O. Rambow. Social network analysis of Alice in

Wonderland. In Proc. Workshop on Comp. Linguistics for Literature, pages 88-96, 2012.

9. P. A. Jayannavar, A. Agarwal, M. Ju, and O. Rambo. Validating literary theories using

automatic social network extraction. Proc. 4th Workshop on Comp. Linguistics for

Literature, pages 32-41, 2015.

10. “XML,” Wikipedia, 31-Jul-2019. [Online]. Available: https://en.wikipedia.org/wiki/XML

[Accessed: 01-May-2019].

11. “Text Encoding Initiative,” Wikipedia, 07-Apr-2019. [Online]. Available:

https://en.wikipedia.org/wiki/Text_Encoding_Initiative. [Accessed: 02-May-2019].

12. “Named-entity recognition,” Wikipedia, 30-Jul-2019. [Online]. Available:

https://en.wikipedia.org/wiki/Named-entity_recognition. [Accessed: 09-Jun-2019].

13. J. R. Finkel, T. Grenager, and C. Manning, “Incorporating non-local information into

information extraction systems by Gibbs sampling,” Proceedings of the 43rd Annual

Meeting on Association for Computational Linguistics - ACL 05, 2005.

 38

14. “spaCy · Industrial-strength Natural Language Processing in Python,” · Industrial-

strength Natural Language Processing in Python. [Online]. Available: https://spacy.io/.

[Accessed: 05-Jun-2019].

15. “Apache OpenNLP,” Brand. [Online]. Available: https://opennlp.apache.org/. [Accessed:

04-Jun-2019].

16. “Graph Visualization Software,” Graphviz. [Online]. Available: http://graphviz.org/.

[Accessed: 12-Jun-2019].

17. T. de P. Peixoto, “tool,” graph. [Online]. Available: https://graph-tool.skewed.de/.

[Accessed: 01-Aug-2019].

18. “JUNG,” JUNG. [Online]. Available: http://jung.sourceforge.net/. [Accessed: 12-Jun-

2019].

19. “The Open Graph Viz Platform,” graph exploration and manipulation. [Online].

Available: https://gephi.org/. [Accessed: 01-Jun-2019].

20. “Gephi Toolkit,” graph exploration and manipulation. [Online]. Available:

https://gephi.org/toolkit/. [Accessed: 01-Jun-2019].

21. Danai Koutra, Ankur Parikh, Aaditya Ramdas, and Jing Xiang. "Algorithms for graph

similarity and subgraph matching." In Proc. Ecol. Inference Conf, vol. 17. 2011.

22. Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. “Similarity flooding: A

versatile graph matching algorithm and its application to schema matching”. In 18th

International Conference on Data Engineering (ICDE 2002), 2002.

23. Glen Jeh and Jennifer Widom. “SimRank: a measure of structural-context similarity”. In

Proceedings of the eighth ACM SIGKDD international conference on Knowledge

discovery and data mining, KDD ’02, pages 538–543, New York, NY, USA, 2002.

ACM.

24. L Zager and G Verghese. Graph similarity scoring and matching. Applied Mathematics

Letters, 21(1):86–94, 2008.

25. “Graph edit distance,” Wikipedia, 22-Feb-2019. [Online]. Available:

https://en.wikipedia.org/wiki/Graph_edit_distance. [Accessed: 05-AJun-2019].

26. “Books by Austen, Jane,” Project Gutenberg. [Online]. Available:

http://www.gutenberg.org/ebooks/author/68. [Accessed: 01-Aug-2018].

27. “Austen Said:” Austen. [Online]. Available: http://austen.unl.edu/. [Accessed: 01-Sep-

2018].

 39

28. Newman, M.E.J. 2010. Networks: An Introduction. Oxford, UK: Oxford University

Press.

29. Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, “Exploring network structure,

dynamics, and function using NetworkX”, in Proceedings of the 7th Python in Science

Conference (SciPy2008), Gäel Varoquaux, Travis Vaught, and Jarrod Millman (Eds),

(Pasadena, CA USA), pp. 11–15, Aug 2008.

	Extracting Social Network from Literary Prose
	Recommended Citation

	tmp.1574367483.pdf.hz0kN

