3 research outputs found

    Revisión del aprendizaje automático modelos para puntuación de análisis de crédito

    Get PDF
    Introduction:Increase in computing power and the deeper usage of the robust computing systems in the financial system is propelling the business growth, improving the operational efficiency of the financial institutions, and increasing the effectiveness of the transaction processing solutions used by the organizations. Problem:Despite that the financial institutions are relying on the credit scoring patterns for analyzing the credit worthiness of the clients, still there are many factors that are imminent for improvement in the credit score evaluation patterns.  Objective:Machine learning is offering immense potential in Fintech space and determining a personal credit score. Organizations by applying deep learning and machine learning techniques can tap individuals who are not being serviced by traditional financial institutions. Methodology:One of the major insights into the system is that the traditional models of banking intelligence solutions are predominantly the programmed models that can align with the information and banking systems that are used by the banks. But in the case of the machine-learning models that rely on algorithmic systems require more integral computation which is intrinsic.  Results:The test analysis of the proposed machine learning model indicates effective and enhanced analysis process compared to the non-machine learning solutions. The model in terms of using various classifiers indicate potential ways in which the solution can be significant. Conclusion: If the systems can be developed to align with more pragmatic terms for analysis, it can help in improving the process conditions of customer profile analysis, wherein the process models have to be developed for comprehensive analysis and the ones that can make a sustainable solution for the credit system management. Originality:The proposed solution is effective and the one conceptualized to improve the credit scoring system patterns.  Limitations: The model is tested in isolation and not in comparison to any of the existing credit scoring patterns.&nbsp

    Penerapan Metode Random Over-Under Sampling dan Random Forest Untuk Klasifikasi Penilaian Kredit

    Get PDF
    Abstrak Penilaian kredit telah menjadi salah satu cara utama bagi sebuah lembaga keuangan untuk menilai resiko kredit,  meningkatkan arus kas, mengurangi kemungkinan resiko dan membuat keputusan manajerial. Salah satu permasalahan yang dihadapai pada penilaian kredit yaitu adanya ketidakseimbangan distribusi dataset. Metode untuk mengatasi ketidakseimbangan kelas yaitu dengan metode resampling, seperti menggunakan Oversampling, undersampling dan hibrida yaitu dengan menggabungkan kedua pendekatan sampling. Metode yang diusulkan pada penelitian ini adalah penerapan metode Random Over-Under Sampling Random Forest untuk meningkatkan kinerja akurasi klasifikasi penilaian kredit pada dataset German Credit.  Hasil pengujian menunjukan bahwa klasifikasi tanpa melalui proses resampling menghasilkan kinerja akurasi rata-rata 70 % pada semua classifier. Metode Random Forest memiliki nilai akurasi yang lebih baik dibandingkan dengan beberapa metode lainnya dengan nilai akurasi sebesar 0,76 atau 76%. Sedangkan klasifikasi dengan penerapan metode Random Over-under sampling Random Forest  dapat meningkatkan kinerja akurasi sebesar 14,1% dengan nilai akurasi sebesar 0,901 atau 90,1 %. Hasil penelitian menunjukan bahwa penerapan  resampling dengan metode Random Over-Under Sampling pada algoritma Random Forest dapat meningkatkan kinerja akurasi secara efektif pada klasifikasi  tidak seimbang untuk penilaian kredit pada dataset German Credit.   Kata kunci: Penilaian Kredit, Random Forest, Klasifikasi, ketidakseimbangan kelas, Random Over-Under Sampling                                                   Abstract Credit scoring has become one of the main ways for a financial institution to assess credit risk, improve cash flow, reduce the possibility of risk and make managerial decisions. One of the problems faced by credit scoring is the imbalance in the distribution of datasets. The method to overcome class imbalances is the resampling method, such as using Oversampling, undersampling and hybrids by combining both sampling approaches. The method proposed in this study is the application of the Random Over-Under Sampling Random Forest method to improve the accuracy of the credit scoring classification performance on German Credit dataset. The test results show that the classification without going through the resampling process results in an average accuracy performance of 70% for all classifiers. The Random Forest method has a better accuracy value compared to some other methods with an accuracy value of 0.76 or 76%. While classification by applying the Random Over-under sampling + Random Forest method can improve accuracy performance 14.1% with an accuracy value of 0.901 or 90.1%. The results showed that the application of resampling using Random Over-Under Sampling method in the Random Forest algorithm can improve accuracy performance effectively on an unbalanced classification for credit scoring on German Credit dataset.   Keywords: Imbalance Class, Credit Scoring, Random Forest, Classification, Resamplin

    Study of Banking Customers Credit Scoring Indicators Using Artificial Intelligence and Delphi Method

    Get PDF
    With the importance of lending in the banking industry, it is very important to use the indicators affecting credit to decide on lending. The purpose of the present study is to identify and prioritize the effective features in customer accreditation using the viewpoints of bank experts in Kerman and to compare them with existing indicators in models extracted from Meta-Heuristic and Artificial Intelligence methods. The aim is to find out whether there is a match between the human views that arise from knowledge and experience and the views of artificial intelligence that look at the problem as black-box modeling. Required data were collected by questionnaire method and Quantum Binary particle swarm optimization algorithm and analyzed by Delphi. The results show that the selected indices have 80% overlap between the two methods. Due to the results of research and high accuracy of artificial intelligence techniques, it is suggested that in order to give credit to customers in banks and financial and credit institutions, to consider a higher weight for these indicators
    corecore