1 research outputs found

    Robust auto tool change for industrial robots using visual servoing

    Full text link
    This is an Author's Accepted Manuscript of an article published in Muñoz-Benavent, Pau, Solanes Galbis, Juan Ernesto, Gracia Calandin, Luis Ignacio, Tornero Montserrat, Josep. (2019). Robust auto tool change for industrial robots using visual servoing.International Journal of Systems Science, 50, 2, 432-449. © Taylor & Francis, available online at: http://doi.org/10.1080/00207721.2018.1562129[EN] This work presents an automated solution for tool changing in industrial robots using visual servoing and sliding mode control. The robustness of the proposed method is due to the control law of the visual servoing, which uses the information acquired by a vision system to close a feedback control loop. Furthermore, sliding mode control is simultaneously used in a prioritised level to satisfy the constraints typically present in a robot system: joint range limits, maximum joint speeds and allowed workspace. Thus, the global control accurately places the tool in the warehouse, but satisfying the robot constraints. The feasibility and effectiveness of the proposed approach is substantiated by simulation results for a complex 3D case study. Moreover, real experimentation with a 6R industrial manipulator is also presented to demonstrate the applicability of the method for tool changing.This work was supported in part by the Ministerio de Economia, Industria y Competitividad, Gobierno de Espana under Grant BES-2010-038486 and Project DPI2017-87656-C2-1-R.Muñoz-Benavent, P.; Solanes Galbis, JE.; Gracia Calandin, LI.; Tornero Montserrat, J. (2019). Robust auto tool change for industrial robots using visual servoing. International Journal of Systems Science. 50(2):432-449. https://doi.org/10.1080/00207721.2018.1562129S43244950
    corecore