17,723 research outputs found

    A Novel Latin Square Image Cipher

    Full text link
    In this paper, we introduce a symmetric-key Latin square image cipher (LSIC) for grayscale and color images. Our contributions to the image encryption community include 1) we develop new Latin square image encryption primitives including Latin Square Whitening, Latin Square S-box and Latin Square P-box ; 2) we provide a new way of integrating probabilistic encryption in image encryption by embedding random noise in the least significant image bit-plane; and 3) we construct LSIC with these Latin square image encryption primitives all on one keyed Latin square in a new loom-like substitution-permutation network. Consequently, the proposed LSIC achieve many desired properties of a secure cipher including a large key space, high key sensitivities, uniformly distributed ciphertext, excellent confusion and diffusion properties, semantically secure, and robustness against channel noise. Theoretical analysis show that the LSIC has good resistance to many attack models including brute-force attacks, ciphertext-only attacks, known-plaintext attacks and chosen-plaintext attacks. Experimental analysis under extensive simulation results using the complete USC-SIPI Miscellaneous image dataset demonstrate that LSIC outperforms or reach state of the art suggested by many peer algorithms. All these analysis and results demonstrate that the LSIC is very suitable for digital image encryption. Finally, we open source the LSIC MATLAB code under webpage https://sites.google.com/site/tuftsyuewu/source-code.Comment: 26 pages, 17 figures, and 7 table

    An intelligent real-time occupancy monitoring system with enhanced encryption and privacy

    Get PDF

    Deciphering a novel image cipher based on mixed transformed Logistic maps

    Full text link
    Since John von Neumann suggested utilizing Logistic map as a random number generator in 1947, a great number of encryption schemes based on Logistic map and/or its variants have been proposed. This paper re-evaluates the security of an image cipher based on transformed logistic maps and proves that the image cipher can be deciphered efficiently under two different conditions: 1) two pairs of known plain-images and the corresponding cipher-images with computational complexity of O(218+L)O(2^{18}+L); 2) two pairs of chosen plain-images and the corresponding cipher-images with computational complexity of O(L)O(L), where LL is the number of pixels in the plain-image. In contrast, the required condition in the previous deciphering method is eighty-seven pairs of chosen plain-images and the corresponding cipher-images with computational complexity of O(27+L)O(2^{7}+L). In addition, three other security flaws existing in most Logistic-map-based ciphers are also reported.Comment: 10 pages, 2 figure

    Breaking a novel colour image encryption algorithm based on chaos

    Full text link
    Recently, a colour image encryption algorithm based on chaos was proposed by cascading two position permutation operations and one substitution operation, which are all determined by some pseudo-random number sequences generated by iterating the Logistic map. This paper evaluates the security level of the encryption algorithm and finds that the position permutation-only part and the substitution part can be separately broken with only (log2(3MN))/8\lceil (\log_2(3MN))/8 \rceil and 2 chosen plain-images, respectively, where MNMN is the size of the plain-image. Concise theoretical analyses are provided to support the chosen-plaintext attack, which are verified by experimental results also.Comment: 5 pages, 1 figur
    corecore