3 research outputs found

    Gene Expression-Based Predictive Markers for Paclitaxel Treatment in ER+ and ER− Breast Cancer

    Get PDF
    One of the objectives of precision oncology is to identify patient’s responsiveness to a given treatment and prevent potential overtreatments through molecular profiling. Predictive gene expression biomarkers are a promising and practical means to this purpose. The overall response rate of paclitaxel drugs in breast cancer has been reported to be in the range of 20–60% and is in the even lower range for ER-positive patients. Predicting responsiveness of breast cancer patients, either ER-positive or ER-negative, to paclitaxel treatment could prevent individuals with poor response to the therapy from undergoing excess exposure to the agent. In this study, we identified six sets of gene signatures whose gene expression profiles could robustly predict nonresponding patients with precisions more than 94% and recalls more than 93% on various discovery datasets (n = 469 for the largest set) and independent validation datasets (n = 278), using the previously developed Multiple Survival Screening algorithm, a random-sampling-based methodology. The gene signatures reported were stable regardless of half of the discovery datasets being swapped, demonstrating their robustness. We also reported a set of optimizations that enabled the algorithm to train on small-scale computational resources. The gene signatures and optimized methodology described in this study could be used for identifying unresponsiveness in patients of ER-positive or ER-negative breast cancers

    Cell Type Classification Via Deep Learning On Single-Cell Gene Expression Data

    Get PDF
    Single-cell sequencing is a recently advanced revolutionary technology which enables researchers to obtain genomic, transcriptomic, or multi-omics information through gene expression analysis. It gives the advantage of analyzing highly heterogenous cell type information compared to traditional sequencing methods, which is gaining popularity in the biomedical area. Moreover, this analysis can help for early diagnosis and drug development of tumor cells, and cancer cell types. In the workflow of gene expression data profiling, identification of the cell types is an important task, but it faces many challenges like the curse of dimensionality, sparsity, batch effect, and overfitting. However, these challenges can be overcome by performing a feature selection technique which selects more relevant features by reducing feature dimensions. In this research work, recurrent neural network-based feature selection model is proposed to extract relevant features from high dimensional, and low sample size data. Moreover, a deep learning-based gene embedding model is also proposed to reduce data sparsity of single-cell data for cell type identification. The proposed frameworks have been implemented with different architectures of recurrent neural networks, and demonstrated via real-world micro-array datasets and single-cell RNA-seq data and observed that the proposed models perform better than other feature selection models. A semi-supervised model is also implemented using the same workflow of gene embedding concept since labeling data is very cumbersome, time consuming, and requires manual effort and expertise in the field. Therefore, different ratios of labeled data are used in the experiment to validate the concept. Experimental results show that the proposed semi-supervised approach represents very encouraging performance even though a limited number of labeled data is used via the gene embedding concept. In addition, graph attention based autoencoder model has also been studied to learn the latent features by incorporating prior knowledge with gene expression data for cell type classification. Index Terms — Single-Cell Gene Expression Data, Gene Embedding, Semi-Supervised model, Incorporate Prior Knowledge, Gene-gene Interaction Network, Deep Learning, Graph Auto Encode
    corecore