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ABSTRACT 

Cell Type Classification Via Deep Learning on Single-Cell Gene Expression Data 

(May 2023) 

Shanta Chowdhury, PhD EE., Prairie View A & M University 

Chair of Advisory Committee: Dr. Xiangfang Li 

Single-cell sequencing is a recently advanced revolutionary technology which 

enables researchers to obtain genomic, transcriptomic, or multi-omics information through 

gene expression analysis. It gives the advantage of analyzing highly heterogenous cell 

type information compared to traditional sequencing methods, which is gaining popularity 

in the biomedical area. Moreover, this analysis can help for early diagnosis and drug 

development of tumor cells, and cancer cell types. In the workflow of gene expression 

data profiling, identification of the cell types is an important task, but it faces many 

challenges like the curse of dimensionality, sparsity, batch effect, and overfitting. 

However, these challenges can be overcome by performing a feature selection technique 

which selects more relevant features by reducing feature dimensions. In this research 

work, recurrent neural network-based feature selection model is proposed to extract 

relevant features from high dimensional, and low sample size data. Moreover, a deep 

learning-based gene embedding model is also proposed to reduce data sparsity of single-

cell data for cell type identification. The proposed frameworks have been implemented 

with different architectures of recurrent neural networks, and demonstrated via real-world 

micro-array datasets and single-cell RNA-seq data and observed that the proposed models 

perform better than other feature selection models. A semi-supervised model is also 



 

vii 

implemented using the same workflow of gene embedding concept since labeling data is 

very cumbersome, time consuming, and requires manual effort and expertise in the field. 

Therefore, different ratios of labeled data are used in the experiment to validate the 

concept. Experimental results show that the proposed semi-supervised approach 

represents very encouraging performance even though a limited number of labeled data is 

used via the gene embedding concept. In addition, graph attention based autoencoder 

model has also been studied to learn the latent features by incorporating prior knowledge 

with gene expression data for cell type classification. 

Index Terms — Single-Cell Gene Expression Data, Gene Embedding, Semi-

Supervised model, Incorporate Prior Knowledge, Gene-gene Interaction Network, Deep 

Learning, Graph Auto Encoder  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii 

DEDICATION  

To the GOD ALMIGHTY, my savior and redeemer.  



 

ix 

ACKNOWLEDGEMENTS 

First, I would like to thank my Advisor Dr. Xiangfang Li, for her guidance, support, 

inspiration, and encouragement throughout the duration of this research work. The endless 

support and opportunity she provided me is unexplainable. The office door was always 

open for me and whenever I faced problems and needed any advice, she was always there 

to steer me to the right direction. 

I would also like to thank specially Dr. Lijun Qian and Dr. Xishuang Dong. 

Without their passionate participation and input, this dissertation proposal could not have 

been successfully conducted. I also want to thank Department Head, Dr. Annamalai 

Annamalai for the generous approvals that enabled me to complete some important 

requirements of this work in the industry, Dr. Richard Wilkins, the graduate coordinator, 

Dr. John Fuller and Dr. Lin Li who are members of my advisory committee for their 

support, contributions, and encouragement throughout my program in the ECE 

Department of PVAMU. Many thanks to other faculty members and staff for their 

kindness, teaching, and educational support. 

This research work is supported in part by the Texas A&M Chancellor’s Research 

Initiative (CRI), the U.S. National Science Foundation (NSF) award 1736196, and by the 

U.S. Office of the Under Secretary of Defense for Research and Engineering 

(OUSD(R&E)) under agreement number FA8750-15-2-0119. The U.S. Government is 

authorized to reproduce and distribute reprints for governmental purposes notwithstanding 

any copyright notation thereon. The views and conclusions contained herein are those of 



 

x 

the authors and should not be interpreted as necessarily representing the official policies 

or endorsements, either expressed or implied, of the U.S. National Science Foundation 

(NSF) or the U.S. Office of the Under Secretary of Defense for Research and Engineering 

(OUSD(R&E)) or the U.S. Government. 

I am indebted to my husband, Suvagata Biswas, for his unflinching support 

throughout the course of my graduate studies. I am thankful to my mother-in-law, my 

parents, my siblings, and my friends for everything they have offered me in life. Their 

prayers, love and support have brought me this far. 

I would also like to appreciate all the members of the CREDIT (Center of 

Excellence in Research and Education for big military Data InTelligence) center for their 

support. They have not only helped me with their technical knowledge they are also the 

most friendly and helpful people I met. 

Above all, I am deeply grateful to the Almighty God for his wisdom and 

faithfulness in completing this work. 

 

 

 

 

 

 

 



 

xi 

NOMENCLATURE 

AI Artificial Intelligence 

ANN Artificial Neural Network 

ALL Acute Lymphoblastic Leukemia 

AML Acute Myelogenous Leukemia 

Bi-RNN Bi-Directional Recurrent Neural Network 

CCA Canonical Correlation Analysis   

cDNA Complementary DNA 

CNN Convolutional Neural Network 

DCA Deep Count Autoencoder 

DL Deep Learning 

DNN Deep Neural Network 

DNP Deep Neural Pursuit 

DT Decision Tree 

GO Gene Ontology 

GOA Gene Ontology Autoencoder 

GRU Gated Recurrent Network 

GNN Graph Neural Network 

GCN Graph Convolutional Neural Network 

KNN K Nearest Neighbor 

MMD Maximum Mean Discrepancy 

MNN Mutual Nearest Neighbors 



 

xii 

NB Naive Bayes 

LSTM Long Short Term Memory 

PCA Principal Component Analysis 

RF Random Forest 

ReLU Rectified Linear Unit 

ResNet Residual Neural Network 

RNA Ribonucleic Acid 

RNA-seq RNA sequencing 

RNN Recurrent Neural Network 

scRNA-seq Single-Cell RNA sequencing 

SVM Support Vector Machine 

ZINB Zero-Inflated Negative Binomial 

 

 

 

 

 

 

 

 

 

 

 

 



 

xiii 

TABLE OF CONTENTS 

 

          Page 

ABSTRACT ..................................................................... Error! Bookmark not defined. 

DEDICATION…………………………………………………………… …………...viii 

ACKNOWLEDGEMENT………………………………………………………………………………………..i

x 

NOMENCLATURE……………………………………………………………………..xi 

TABLE OF CONTENTS………………………………………………………………xiii 

LIST OF FIGURES........................................................ xError! Bookmark not defined. 

LIST OF TABLES ....................................................................................................... xviii 

CHAPTER 

1. INTRODUCTION ...................................................... Error! Bookmark not defined. 

 1.1 Cell Type Classification .................................................................................... 2  

           1.2 Different Gene Expression Analysis Technologies ........................................... 3  

 1.2.1 Micro-Array Technology  ........................................................................... 3 

 1.2.2 Single Cell RNA-Seq Technology  ............................................................. 4 

 1.2.3 Micro-array versus RNA-seq ...................................................................... 7 

 1.3 Artificial Intelligence based Classification Techniques .................................... 8 

              1.3.1 Machine Learning Model ............................................................................ 8 

    1.3.2 Deep Learning Model .................................................................................. 9 

           1.4 Challenges ....................................................................................................... 13 

    1.4.1 Curse of Dimensionality   .......................................................................... 13 

    1.4.2 Dropout Events/Sparsity ........................................................................... 14 

    1.4.3 Technical Noise ......................................................................................... 14 

    1.4.4  Batch effect ............................................................................................... 14 

    1.4.5  Overfitting ................................................................................................ 14 

           1.5 Problem Statement .......................................................................................... 15 

              1.5.1 Problem Formulation ................................................................................ 15 

    1.5.2 Contribution .............................................................................................. 15           

 1.6 Outline of the Dissertation ............................ 1Error! Bookmark not defined. 

2. LITERATURE REVIEW  ........................................ 1Error! Bookmark not defined. 



 

xiv 

             2.1 Single cell RNA sequencing and Deep learning .......... 1Error! Bookmark not 

defined. 

             2.1 Application of Cell type Classification via different learning approach ......... 19 

 2.1.1 Application of Unsupervised Learning ..................................................... 20 

            2.1.2 Application of Supervised learning approach ........................................... 21 

              2.1.3 Application of Semi-Supervised Learning………………………………23 

 2.3 Incorporate prior knowledge on cell type classification ................................. 24 

3. METHODOLOGY RECURRENT NEURAL NETWORK BASED FEATURE 

SELECTION FOR HIGH DIMENSIONAL AND LOW SAMPLE SIZE MICRO-

ARRAY DATA ......................................................... Error! Bookmark not defined.6 

 3.1 Introduction ................................................... Error! Bookmark not defined.6 

 3.2 Medthodology ................................................................................................. 30 

 3.3 Experimental Analysis ..................................................................................... 35 

              3.1 Dataset Details……………………………………………………………..35 

                3.2 Experimental Analysis Set Up ..................................................................... 36 

              3.3 Experimental Analysis Evaluation metrices ................................................ 37 

                3.4 Result and Discussion .................................................................................. 37               

 3.4 Chapter Summary ............................................................................................ 39 

 

4. CELL TYPE IDENTIFICATION FROM SINGLE-CELL TRANSCRIPTOMIC 

DATA VIA GENE EMBEDDING ............................................................................. 41 

           4.1 Introduction ..................................................................................................... 41 

 4.2 Proposed Medthodology ................................................................................. 43 

              4.2.1 Method…………………………………………………………………..43 

 4.3 Dataset Details ................................................................................................. 48 

            4.4 Experimental Result Analysis .......................................................................... 50 

 4.5 Chapter Summary ............................................................................................ 54 

 

5. CELL TYPE IDENTIFICATION FROM SINGLE-CELL TRANSCRIPTOMIC 

DATA VIA SEMI-SUPERVISED MODEL ............................................................... 55 

           5.1 Introduction ..................................................................................................... 55 

           5.2 Dataset Details……………………………………………………………….59 

 5.3 Proposed Medthodology ............................... 6Error! Bookmark not defined. 

              4.2.1 Method…………………………………………………………….….....65 



 

xv 

 5.4 Results ............................................................................................................. 68 

              5.4.1 Experimental Settings………………………………………..……….....68 

              5.4.2 Evaluation metric ………………………………………………….........69 

 4.5 Chapter Summary ............................................................................................ 85 

 

6. INTRODUCTION INCORPORATING PRIOR KNOWLEDGE OF GENE-GENE 

INTERACTION TO CLASSIFY CELL TYPE  ........................................................ 87 

 6.1 Introduction ..................................................................................................... 87 

 6.2 Proposed Methodology  .................................................................................. 89 

 6.2.1 Gene Adjacency Matrix   .......................................................................... 90 

 6.2.2 Graph Attentional Autoencoder …………………. …………………......91  

              6.2.3 Fully Connected Neural Network ............................................................. 93 

                6.2.4 Loss Function ............................................................................................ 94             

 6.3 Experimental Results and Analysis  ................................................................ 95 

              6.3.1 Dataset Details .......................................................................................... 95 

    6.3.2 Data Preprocessing .................................................................................... 96 

                6.3.3 Experimemntal Set UP .............................................................................. 97  

              6.3.4 Evaluation metrics………………………………………………….........97 

              6.3.5 Result Analysis………………………………………………………......98     

 6.4 Chapter Summary .......................................................................................... 105 

 

7. CONCLUSIONS AND FUTURE WORK ............................................................... 107 

     7.1 Conclusions ................................................................................................... 107 

      7.2  Future Work .................................................................................................. 108 

 

REFERENCES ............................................................................................................... 110 

CURRICULUM VITA ................................................................................................... 128 

 

 

 

 

 

 

 



 

xvi 

LIST OF FIGURES 

FIGURE                                                                                                                         Page  

1.1 The workflow of obtaining gene expression profiles from DNA micro- 

array data [1]…………………………………..…………………………… 

4 

1.2 Single cell RNA-seq analysis workflow [2].…………………………….. 5 

1.3 Micro-array process versus Single Cell RNA-seq process…………………. 8 

1.4 A Recurrent Neural Network (RNN) for the complete sequence. [4]………. 10 

1.5 Bi-directional RNN [4]…………………………………………………... 11 

1.6 An LSTM cell [5]………………………………………………………… 13 

3.1 Flow of feature selection under the proposed framework………………….. 31 

3.2 The architecture of feature selection via deep neural network……………..  33 

3.3 RNN based feature selection model…………………………………………………… 33 

4.1 Framework of gene embedding based cell type identification……………...  44 

4.2 Schematic diagram of retina cell [7]……………………………………….. 49 

4.3 Confusion matrix of supervised RCNN with batch size = 256………………. 53 

4.4 Performance comparison of RCNN with batch size 512……………………… 54 

5.1 Framework of the proposed semi-supervised learning……………………….  56 

5.2 Confusion matrix on different cell types generated with batch size 128 on 

Macosko2015 dataset……………………………………………………… 

74 



 

xvii 

5.3 Comparison of confusion matrix on different cell types generated with 

batch size 128 and 256……………………………………………………... 

77 

5.4 Confusion matrix on different cell types generated with batch size 256 on 

68K dataset. …………………………………………………………….. 

82 

5.5 Comparison of confusion matrix on 68k data with batch size 128 (left 

column), 256 (middle column) and 512 (right column)……………………. 

84 

6.1 Flow diagram of proposed approach………………………………………. 90 

6.2 String network………………………………………………………………………………. 92 

6.3 Performance comparison of sigGCN and GAT model…………………….. 101 

6.4 Performance comparison of sigGCN and GAT model……………………... 103 

6.5 Performance comparison of sigGCN and GAT model……………………... 105 

 

 

 

 

 

 

 

 

 



 

xviii 

LIST OF TABLES 

TABLE                                                                                                                          Page      

3.1 Dataset Details………………………………………………………….. 36 

3.2 Parameters Of Proposed Methodology…………………………………. 36 

3.3 Comparison Results For Colon Dataset…………………………………. 38 

3.4 Comparison Results For Leukemia Dataset……………………………. 39 

4.1 Cell Details And Number Of Cells In Retina Data……………………… 49 

4.2 Comparison Of Performance Analysis On Machine Learning Model 

And Supervised Deep Learning Model In Terms Of Accuracy, MacroP, 

MacroR And MacroF…………………………………………………. 

 

51 

4.3 Comparison Results Of Supervised Deep Learning Model Based On 

Different K Values. K Is The Number Of Top Genes Ranked By 

Expression Values. Here, K = 50, 100, 150 And Batch Size = 256 …… 

 

52 

4.4 Comparison Results Of Supervised Deep Learning Model Based On 

Different K Values. K Is The Number Of Top Genes Ranked By 

Expression Values. Here, K = 50, 100, 150 And Batch Size = 512……. 

 

52 

5.1 Number Of Cells For Different Ratios Of Labeled Data In 

Mackosco2015 Training Datasets…………………………………… 

60 

5.2 Number Of Cells In 68k Pbmc Data………………………………….. 61 

5.3 Number Of Cells For Different Ratios Of Labeled Data In 68k Training 

Datsets………………………………………………………………….. 

61 

5.4 The Proposed Network Architecture…………………………………….. 69 

5.5 Comparing Performance Between Traditional Machine Learning (Ml) 

And Deep Learning (Dl) On Macosko2015 Dataset…………………… 

 

72 



 

xix 

5.6 Comparing Performance Between Supervised Deep Learning (Sdl), And 

Proposed Model (Semi-Supervised Recurrent Convolutional Neural 

Networks, Semirnet) On Macosko2015 Dataset………………………… 

 

73 

5.7 Comparing Performance With Different Batch Sizes On Different Ratios 

Of Labeled Cells On Macosko2015 Dataset……………………………. 

 

76 

5.8 Performance Comparison Between State-Of-The-Art Methods, 

Traditional Machine Learning Models, And Deep Learning Models On 

68k Datasets…………………………………………………………….. 

 

79 

5.9 Comparing Performance Between Traditional Machine Learning (Ml) 

And Deep Learning (Dl) On 68k Dataset……………………………….. 

 

79 

5.10 Comparing Performance Between Supervised Deep Learning (Sdl), And 

Proposed Model (Semi-Supervised Recurrent Convolutional Neural 

Networks, Semirnet) On 68k Dataset…………………………………… 

 

80 

5.11 Comparing Performance With Different Batch Sizes On Different Ratios 

Of Labeled Cells On 68k Dataset………………………………………... 

81 

5.12 Performance Comparison Between Different Methods On Cell Type 

Identification For Inter-Dataset Validation………………………………. 

82 

6.1 Dataset Details…………………………………………………………... 95 

6.2 Comparison Of Cell Classification Model Between The Baseline Model 

And Proposed Model In Terms Of Accuracy………………………….. 

 

98 

6.3 Comparison Of Cell Classification Model Between The Baseline Model 

And Proposed Model In Terms Of Macro-Average And Weighted 

Average Values On 68k Pbmc Data…………………………………… 

 

100 

6.4 Comparison Of Cell Classification Model Between The Baseline Model 

And Proposed Model In Terms Precision, Recall And F-Score For Each 

Class On 68k Pbmc Data……………………………………………. 

 

100 



 

xx 

6.5 Comparison Of Cell Classification Model Between The Baseline Model 

And Proposed Model In Terms Of Macro-Average And Weighted 

Average Values On Zheng Sorted Data………………………………… 

 

102 

6.6 Comparison Of Cell Classification Model Between The Baseline Model 

And Proposed Model In Terms Precision, Recall And F-Score For Each 

Class On Zheng Sorted Data……………………………………………. 

 

102 

6.7 Comparison Of Cell Classification Model Between The Baseline Model 

And Proposed Model In Terms Of Macro-Average And Weighted 

Average Values On Baron Human Data…………………………………. 

 

104 

6.8 Comparison Of Cell Classification Model Between The Baseline Model 

And Proposed Model In Terms Precision, Recall And F-Score For Each 

Class On Baron Human Data……………………………………………. 

 

104 

 

 

 

 

 

 

 



1 

 

CHAPTER 1 

INTRODUCTION 

The adult individual body consists of 37 trillion cells. Although each cell contains 

almost similar genetic information, hundreds of major cell types are also present in the 

individual body. However, any kind of divergence from a certain cell type may cause 

human disease. On the other hand, drug responses may also vary based on different cellular 

systems. Therefore, identifying cell types is very important for early diagnosis and drug 

responses. 

Gene expression allows to identify the cell types by underlying the concept of the 

organization of cells and tissues. Although there are different profiling technologies like 

micro-array and RNA sequencing technologies being used to discover gene expression 

profiles, still it is becoming challenging to analyze gene expression data due to sparsity, 

high dimensionality often observed in the data obtained from those technologies. Hence, 

it becomes an important research topic for identifying cell types by inferring gene 

expression information. Researchers are developing different machine learning and deep 

learning-based models to classify the cell types by addressing those challenges. 

The intention to choose this research topic is to get more insights of gene 

expression data and how to infer the information on cell classification task using deep 

learning model. It seems quite challenging as different technology-based gene expression 

data have different types of challenges. Moreover, they suffer from the curse of 

dimensionality and models cannot perform efficiently when they are fed into the model. 

It is, therefore, a very challenging research topic to build a classification cell type model 

on gene expression data. 

Hence, this dissertation work focuses on the classification of cell types on different 

technologies-based gene expression data and proposes such a classification model that can  
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recognize and identify cell types more accurately and efficiently by removing the 

challenges of the curse of dimensionality and sparsity. In this research work, a deep 

learning model-based feature selection technique has been proposed for high dimensional 

low sample size micro-array data. It selects and updates features by directly using relations 

between high dimensional features of micro-array data. This research work also proposes 

another novel semi-supervised deep learning-based model on scRNA-seq data to 

overcome the data sparsity. Word embedding concept is employed here to build gene 

sentences. Then the gene embedding layer is deployed in the deep learning model and 

trained on the model. After that, the model is used to predict the cell types of RNA-seq 

data. This work also aimed to study how to incorporate gene-gene interaction as prior 

knowledge with gene expression data. Hence, GAT based autoencoder model has been 

proposed to examine the performance of cell type identification1. 

 

1.1 Cell Type Classification 

Cell type identification plays an important role in biomedical research and recently 

reshaped our life sciences in a very efficient and effective way. Classification of cells into 

different cell types is as vital as the categorizing of the living life forms into distinctive 

species. The definition of the cell types is based on different analysis like microscopy, 

micro-array, functional assays, and different procedures for the observation of the 

molecular, morphological, functional aspects of the cells [8], [9], [10]. 

Although there are a lot of methods that endeavor to classify cells into their cell 

type, a problem emerges regarding where the boundaries of a certain cell sort should be 

coordinated. Moreover, even though a cell type has been identified, there are most likely 

cell subtypes that also should be identified. For instance, skeletal cells can also be 

classified based on the contraction speed like fast, slow, and the muscle cells can be further 

                                                        
1 This thesis follows the style of IEEE. 
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classified based on their region and morphological characteristics. Therefore, it is 

challenging to identify the cell types based on different characteristics [11]. 

Although each cell in the human body has a similar genetic template (DNA), this 

template information cannot be used to infer the characteristic of cell type. However, each 

cell exhibits its genetic information in RNA in a distinctive pattern that can be considered 

as a fingerprint for each cell. Moreover, homogeneous cells express similarity in their 

genetic pattern which can be used in solving the conflict of the cell classification problem. 

Recently, researchers have endeavored to leverage genetic cell patterns using different 

sequencing techniques. 

1.2 Different Gene Expression Analysis Technologies 

 1.2.1 Micro-Array Technology 

Micro-array technology has been widely used in the classification of cancer cell 

types as well as cancer diagnosis. Usually, DNA micro-array data consists of thousands of 

DNA sequences where robotic arrayers are used to print high density arrays on a glass 

microscope slide. These arrays are varied based on the size of the DNA spot on the array. 

For instance, when the diameter of the DNA spot is less than 250 microns it is called 

micro-array and when the diameter is greater than 300 microns it is called macro-array. 

DNA micro-array has hundreds of genes embedded into DNA chips which can help 

researchers to investigate gene information in a very limited time. The process of gene 

expression data from DNA micro-array is as follows: 

The process of gene expression profiling is involved in the reverse transcript phase 

PCR. It is applied to convert RNA into DNA on two samples which are used to monitor 

differential hybridization of the samples to the sequences on the array. The reverse 

transcripts are then labeled by two different fluorescent dyes likely red fluorescent dye 

Cy5 and green, fluorescent dye Cy3 [12]. After that, the images are scanned to measure 
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the fluorescence of each dye. The log ratio between the intensities of two dyes namely 

Cy5 and Cy3 are referred to as gene expression profiles of micro-array data [13],[14],[15]. 

 

 

 

Fig. 1.1. The workflow of obtaining gene expression profiles from DNA micro-array data 

[1]  

 

  (1.1) 

 1.2.2 Single Cell RNA-Seq Technology 

Recently, Single Cell RNA-Seq (scRNA-seq) has been widely used technology to 

identify the cell types. It is an alternative to micro-array technology which is referred to 

as the sequence of RNA molecules of cells, tissues or species. It has the advantage over 

traditional bulk RNA-seq approaches since it contains average information of the sample 
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in its gene pattern. A typical workflow of scRNA-seq data follows some steps namely: i) 

quality control, ii) mapping iii) normalization iv) dimensionality reduction v) clustering 

vi) detection of genes vii) visualization viii) assignment of cell type into clusters. Fig. 1.2 

presents the workflow of scRNA-seq. 

 

 

Fig. 1.2. Single cell RNA-seq analysis workflow [2]. We can categorize the whole 

workflow into two portions: preprocessing and downstream analysis. Initially, the raw data 

is processed and then aligned to count cell matrices. Then it undergoes the preprocessing 

steps like quality control, normalization and feature selection. After the preprocessing step, 
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the dataset is ready for downstream analysis. The subplots of the figure are generated from 

intestinal epithelium data [3]. 

There are two steps in scRNA-seq analysis: preprocessing and computational 

analysis. Raw data is generated and processed by a single cell sequencer machine. The 

machine can read matrices of molecular counts and assign unique molecular identifiers 

(UMI) in the library protocol if required. Then the produced data undergoes for quality 

control (QC) process to ensure the quality for downstream analysis and group them based 

on the assigned barcodes which is referred to as demultiplexing. After that, the data is 

ready for alignment and quantification. 

Quality control is performed to obtain outliers of the peak based on the number 

of genes and count of depth. Count data may vary for different count depths of marker 

cells in different steps. Therefore, it is quite difficult as gene expression varies due to the 

sampling effect. The normalization process resolves the issue by scaling count data to 

improve the comparison. Through the process, the gene counts are scaled based on z score; 

zero mean and unit variance which helps to weight all the genes equally. After the 

normalization, log transformation is used to reduce the skewness of the data. 

The data still needs further investigation as it still contains variability after 

normalization. However, data correction resolves the issue by correcting the covariate of 

batch, drop-out, and cell-cycle effect. Then the dimension of the dataset is reduced to 

obtain important and informative features/genes from the data. 

After pre-processing steps, downstream analysis is used to obtain and develop 

biological underlying information from the insight of the data to resolve a particular 

problem like cell type identification, cell clustering, and co-related gene expression 

profile. Distinct types of models are used to fit and interpret the data insight. 
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 1.2.3 Micro-array versus RNA-seq 

In this dissertation, two different types of technology-based data micro-array and 

scRNA-seq data have been studied to classify cell types. Though both techniques have 

some similarities, they have some differences also which are as follows: (1) micro-array 

is a hybridization-based technique used to observe the existence of specific RNA 

sequences within a sample whereas RNA-seq is a sequencing based technology used to 

observe RNA sequences in a sample, (2) RNA-seq can easily detect rare and new RNA 

sequences within the sample whereas micro-array can only detect known sequences. 

Micro-array is less sensitive compared with RNA-seq. Micro-array is less expensive 

($100-200/sample) compared with RNA-seq ($300-1000/samples). In the micro-array 

process, probes are hybridized with the RNA molecules and attached to a chip where the 

fluorescent labeling of RNA samples is hybridized 1.3a. On the other hand, in the RNA-

seq technology-based process, shotgun sequence of cDNA is used. Next-generation 

sequencing is used to obtain the sequence of cDNA 1.3b. 

 

(a) Micro-array process 
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(b) Single Cell RNA-seq process 

Fig. 1.3. Micro-array process versus Single Cell RNA-seq process 

1.3 Artificial Intelligence based Classification Techniques 

 1.3.1 Machine Learning Model 

Machine learning is an area of artificial intelligence (AI) which can learn from data 

based on analytical model building and infer the information to make a prediction or 

pattern recognition. In the classification problem, the aim of the machine learning model 

is to build a relationship between input and feature map through which the model can 

predict the target. There are two different types of machine learning approaches: 

• Supervised learning: predefined labeled datasets are used to train a model. For 

instances, Support Vector Machine (SVM), Naive Bayes (NB), Decision Tree 

(DT), Random Forest are used as supervised learning approaches in machine 

learning models. 

• Unsupervised learning: unlabeled datasets are used during training time to 

visualize the data pattern. Different clustering algorithms like k − means 

clustering. Hierarchical clustering is designed for unsupervised approaches. 
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Besides these two approaches, there is another known approach: semi-supervised 

approach. In this type of approach, only a few labeled data are used as training data and 

the rest of the training data are unlabeled. As labeled data is scarce and expensive, 

researchers are focusing more on semi-supervised approach. In this work, supervised and 

semi-supervised learning approaches are employed to classify the cell type. 

 1.3.2 Deep Learning Model 

The main challenge in the research area of AI is to develop an efficient and 

effective system that can imitate the human brain. Therefore, the researchers have 

developed and designed the deep learning model that can mimic the human brain and 

present more meaningful information about the context. It is a different and complex 

presentation than the machine learning model which contains different layers and neurons. 

In this work, one of the popular deep learning models Recurrent Neural Network 

(RNN) based feature selection has been proposed to extract features in micro-array gene 

expressed data and also used in different RNN based semi-supervised models on scRNA-

seq data for the cell classification task. 

 1.3.2.1 Recurrent Neural Network (RNN) 

In this dissertation work, Recurrent Neural Network (RNN) has been employed 

which is a prevailing deep learning model. In conventional deep learning neural networks, 

all inputs are assumed as independent of each other. However, in most of the sequential 

tasks, the model is required to predict the next word. In that case, the traditional neural 

network does not perform well. Recurrent Neural Network (RNN) paves a solution by 

performing the same task for every word of a sequence and computing the output based 

on preceding computations. Hence, RNN can be defined as an artificial neural network 

that can capture previous sequence information in its memory. 
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Fig. 1.4. A Recurrent Neural Network (RNN) for the complete sequence [4] 

 Architecture: The main difference between the traditional neural network and 

RNN is, all the parameters at each layer are shared in each step. It guarantees that RNN 

performs the same task with different inputs and reduces the total number of parameters. 

The main property of RNN is its hidden state where it stores previous information. 

Unfolded RNN is represented in Fig. 1.4. Unfolded means RNN that is employed for the 

full sequence. Consider, xt is an input word at time step t and the formulation of the current 

state is  

st = f(st−1, xt) 

Here, st is the hidden state and st−1 is the previous hidden state. f is the activation 

function such as tanh or ReLu function. In each successive step, the same weights (U,W) 

are shared in each layer. More precisely, the recurrent formulation for the current state is: 

st = tanh(Uxt + Wst−1) 

ot is the output at current time step t.  
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Fig. 1.5. Bi-directional RNN [4]. 

The probabilistic calculation of output state is: 

ot = softmax(V st) 

The output ot depends on the previous elements of the sequence. But to predict a 

missing word, the model needs both previous and future information stored in its memory. 

Hence, researchers have developed an extension of RNN, bi-directional RNN which can 

capture both past and future information. 

 1.3.2.2 Bi-directional Recurrent Neural Network (bi-RNN) 

In bi-directional RNN, forward hidden states compute forward hidden sequence 

whereas backward hidden states compute backward hidden sequence and finally generate 

the output ot by integrating two hidden states computation result. The overview of bi-

directional RNN is in Fig. 1.5. 

The main limitation of RNN/ bi-RNN is gradient vanishing, since recurrent layers 

and time steps are related through multiplications and derivatives resulting in vanishing 

gradients. Moreover, RNN shows lower performance at distinct or long related 

information. German researchers Sepp Hochreiter and Juergen Schmidhuber [16] 

proposed Long Short-Term Memory (LSTM), a special kind of RNN with memory cells 

to avoid these limitations. 
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 1.3.2.3 Long Short Term Memory (LSTM) 

An LSTM is an extension of RNN that captures long-term dependencies in its 

memory cell. The main advantage of LSTM over RNN is it can overcome the challenge 

of vanishing gradient as the LSTM has memory cell and a set of gates to control the 

information flow. Hence, the gradient does not have any chance to vanish during the 

training period. The architecture of LSTM is described as follows: 

Architecture: An LSTM consists of three main parts namely: input gate, output 

gate and forget gate to control the data flow in its memory. The figure of an LSTM block 

is shown in Fig. 1.6. The input gate controls the rate of input entries in the LSTM memory 

whereas the output gate controls the rate at which the memory gate should be used for 

computation. The forget gate handles and controls the rate at which new value is retained 

in the memory. 

The computational equation can be described as follows:  

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi).  

ft = σ(Wxfxt + Whfht−1 + Wcict−1 + bf).  

ct = ftct−1 + it tanh(Wxcxt + Whcht−1 + bc).  

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo). 

 ht = ot tanh(ct). 

where i, f, c, o and σ refer input gate, forget gate, cell activation vectors, output 

gate and logistic sigmoid function of LSTM cell respectively. These gates and activation 

functions soothe LSTM to avoid the limitation of vanishing gradients by storing long-term 

dependency terms. 
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Fig. 1.6. An LSTM cell [5]. 

1.4 Challenges 

Data generated through different technology like micro-array, scRNA-seq 

technology consists of thousands of gene expression values which pose some 

computational challenges. Although many approaches have been proposed to overcome 

the challenges, more research is still required to address these challenges. A list of 

challenges of data from different genomic platforms is listed as follows. 

 1.4.1 Curse of Dimensionality 

Transcriptomic profile data contains a huge number of gene expression values, 

where each row corresponds to the cell type along with high dimensional gene values 

presented in columns. The data points become sparse if they are plotted in high 

dimensional space. It loses the effectiveness of distance measurements like Manhattan 

distance, Mahalanobis distance, and Euclidean distance which make the data analysis 

more critical and problematic. This is called the curse of dimensionality [17]. One 

probable solution to address the problem is dimensionality reduction [18]. 
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 1.4.2 Dropout Events/Sparsity 

Another common challenging part is the dropout event. It is a common 

phenomenon in transcriptomic data analysis to observe a gene in a low expression level, 

but not detected in another cell of the same type. Therefore, the data becomes highly sparse 

due to the stochasticity of transcriptional processes [19]. The common way to address 

dropout events is the imputation technique [20]. 

 1.4.3 Technical Noise 

Technical Noise is another key challenge of transcriptomic data which can be 

referred to as biases in scRNA-seq data like cell cycle effect, cDNA amplification bias, 

sequencing depth. Recently, statistical models like different types of normalization 

techniques [21] are used to overcome the challenge. 

 1.4.4 Batch effect 

Batch effect refers to the technical differences/variations of samples as they are 

collected in multiple batches, with different conditions or laboratories at different times. 

Therefore, it leads to different values in the transcriptomic profiles. Recently, Canonical 

Correlation Analysis (CCA) [22] and Mutual Nearest Neighbors [23] are used to address 

this challenge. 

 1.4.5 Overfitting 

Overfitting is another computational challenge of transcriptomic data. While a 

large amount of gene values is computed in the development of a molecular classifier, 

there is a crucial chance of randomness between genes and classes. The data overfitting is 

reduced by the implementation of cross-validation during model development. 
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1.5 Problem Statement 

 1.5.1 Problem Formulation 

From the machine learning point of view, cell type classification on gene 

expression data is a supervised learning task which refers to identifying the cells into 

predefined categories. It can either be a binary or multi-class classification problem. For 

instance, it is defined as a multi-class classification problem with N cell types C = 

{c1,c2,...,cN} when N > 2. If N = 2, it is defined as binary class classification problem. The 

aim of the research work was to build a function that could correctly predict the cell types. 

The problem statement is as follows: 

  𝑓(𝑥, 𝜃) → 𝑐, (1.2) 

where x refers to the individual cell, c is the cell type and θ refers to the parameters in f(·). 

In this work, Leukemia and Colon cancer data are used to classify the cell types on micro-

array data. Both of the datasets are a binary classification problem. On the other hand, 

Retina cell data, 68k data, Zheng sorted, and Baron Human data are multiclass 

classification problems. In both types of problems, the gene expression values are used as 

features and feed as input into the machine learning model to extract meaningful 

information and infer the knowledge for cell type classification task. It is very challenging 

to build classification models due to high dimensionality and data sparsity [17]. 

 1.5.2 Contribution 

The major contribution of this research is to propose an automatic cell type 

classification model on gene expression data. The main contributions of the work are: 
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• Designed and implemented a novel approach, i.e., feature selection based 

Recurrent Neural Network for automated cell type classification to address the 

challenge of the curse of dimensionality. 

• Performed experimental analysis on colon cancer and leukemia data to validate the 

proposed model. Experimental results show that the proposed model outperforms 

more efficiently and effectively compared with machine learning model. 

• Proposed another novel framework namely Gene Embedding based Deep learning 

model on scRNA seq data to address the challenge of sparsity and high 

dimensionality. 

• Performed very promising results on the proposed framework since selected top 

genes have been used for training purposes. 

• Designed deep learning based semi-supervised model which can classify cell types 

using very limited amount of labeled data. 

• Studied Graph Attention based autoencoder model which can introduce gene 

interaction as prior knowledge with gene expression profile to classify the cell 

types. 

1.6 Outline of the Dissertation 

This study comprises seven chapters and is framed as follows: the first chapter 

introduced the theoretical background of the analysis of gene expression data. Then the 

chapter posed challenges to the analysis of gene expression data. It further presented the 

contribution of this study. Chapter 2 presents some current studies on single-cell 

sequencing data. Cell classification via different approaches is also been reviewed in this 

chapter. Chapter 3 presents a deep learning-based feature selection approach for high 

dimensional low sample size data. Experimental analysis has been performed to evaluate 

the model performance. Chapter 4 introduces a deep learning based novel method via gene 

embedding to overcome the challenge of data sparsity. In Chapter 5, a semi-supervised 
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model is introduced which can use very limited amount of data to classify large-scale 

sparse single-cell sequencing data. Chapter 6 presents graph attention based autoencoder 

model by incorporating prior knowledge with gene expression data to classify the cell 

type. Chapter 7 concludes the study by highlighting the future work and opportunities.  
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CHAPTER 2 

LITERATURE REVIEW 

This chapter presents a comprehensive study of recent research work on cell type 

classification using deep learning model. 

2.1 Single cell RNA sequencing and Deep learning 

Single-cell RNA-seq (scRNA-seq) data is able to profile the gene expression levels 

of cells and to link the dynamics at the molecular level and the cellular level. Analyzing 

scRNA-seq data is beneficial for obtaining knowledge on cancer drug resistance, gene 

regulation in embryonic development, and mechanisms of stem cell differentiation and 

reprogramming [24, 25]. In recent years, a lot of progress has been made in applying 

bioinformatics techniques and machine learning tools to scRNAseq data [26]. However, 

there still exist many challenges due to dropout events, batch effect, noise, high 

dimensionality, and scalability [17]. 

Now-a-days, several deep learning methods are applied to overcome the 

challenges. For instance, Ding et al. proposed a variational autoencoder (VAE) to 

overcome the challenge of high dimensionality. The authors used VAE to infer the 

distribution of low dimensional variables through which parametric mapping is learned 

from high dimensional space to low dimensional space [27]. Wang et al. proposed a novel 

method called “VASC” that used a deep variational autoencoder for dimensionality 

reduction and visualization [28]. In [29], the authors proposed an unsupervised method 

“GOAE” (Gene Ontology Autoencoder) and a supervised method “GONN” for 

dimensionality reduction. In this research work, they incorporated the prior knowledge 

from Gene Ontology (GO) with the neural network and enhanced the model performance. 

Another solution to deal with the curse of dimensionality is feature selection, where 

unimportant features are eliminated. RNN based feature selection method has been 
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proposed in Chapter 3 to address the challenge. Experimental results demonstrate the 

effectiveness of the proposed approach to classifying the cell type. 

To address the challenge of dropout, several imputation techniques had been 

proposed namely drImpute [30], scImpute [31], MAGIC [32]. “AutoImpute” was 

proposed in [33] to remove dropout event by recreating the imputed matrix of nonzero 

values in the sparse matrix. Eraslan et al. proposed “DCA” (deep count autoencoder) to 

address the challenge of imputation and denoising [34]. In this research work, two types 

of loss functions are used “NB” (negative binomial) for denoised data and “ZINB” (zero-

inflation negative binomial) for noise model. 

Shaham et al. proposed a residual neural network (ResNet) to address the batch 

effect challenge [35]. The authors employed maximum mean discrepancy (MMD) ResNet 

which was computed by the distance between two probability distributions helps to learn 

the loss function and remove the batch effect. DESC (deep embedding algorithm for single 

cell clustering) was proposed in [36] to remove the batch effect. 

Most of the above research works are addressing one or two challenges of data 

preprocessing. However, it would be worthwhile to incorporate different methods into one 

combined framework. In [37], the authors proposed a combined approach namely “scVI” 

(single-cell variational interference) which can address the challenges like batch effect, 

dropout event, and the curse of dimensionality. 

2.2 Application of Cell type Classification via different learning approach 

Cell type identification on scRNA-seq data is to classify the individual cell into 

predefined classes. There are different research works to identify cell types by adopting 

different learning-based approaches. Review work of different learning approaches on cell 

classification have been studied in the following subsection. 
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 2.2.1 Application of Unsupervised Learning 

The most common approach to identifying cell types is unsupervised clustering 

which is based on manual annotation using known marker genes. There are a wide variety 

of methods to perform unsupervised clustering by using distinct distance metrics and 

model presumptions. Seurat [22], graph-based clustering is a popular unsupervised 

clustering method used for cell type classification. In this method, the scRNA-seq data 

was presented in two-dimensional space through t-SNE approach to reduce the dimension 

of the dataset. After that, the DBSCAN method was applied to classify the cell types. 

However, this method showed poor performance on identification of cell types which had 

a limited number of cell types. 

In [38], authors proposed a novel framework namely SC3 which combined feature 

selection approach, dimensionality reduction, and clustering algorithm to classify the cell 

types. In this approach, distance between cells was calculated using different distance 

metrics namely Euclidean, Pearson, and Spearman metrics after removing the rare cells 

from the scRNA-seq data. After that, these distance metrics were transformed through 

eigen vectors of the graph Laplacian. Then, K-means clustering was used to construct the 

consensus matrix which was then used as input in hierarchical clustering. This proposed 

approach showed high accuracy in term of classification of cell types. However, the main 

limitation of this method was it was not scalable. In [39], the authors used k − means 

clustering algorithm and graph statistics to select the optimal number of clusters. However, 

this approach showed poor performance in terms of rare cell type classification. 

Guo et al. [40] proposed a framework namely SINCERA for scRNA-seq profiling 

analysis. In this analysis, the authors measured the centered Pearson’s correlation to 

compute the similarity matrix in hierarchical clustering. In [41], the authors used Shared 

Nearest Neighbor (SNN) to handle high dimensional sparse data. They used two types of 

similarity metrics: primary similarity measure; similarity matrix based on Euclidean 
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distance and secondary similarity measure; similarity matrix based on shared 

neighborhood. Then, SNN graph was constructed where nodes were represented by data 

points and edges represented by similarities between data points. The main limitation of 

this approach was this method was dependent on graph representation of scRNA-seq data. 

Duan et al. [42] proposed Para-DPMM model (Parallelized Split Merge Sampling 

on Dirichlet Process Mixture Model) that was highly parallelized and utilized computing 

power of high-performance computing (HPC) cluster to inference on a huge dataset. In 

[43], a hierarchical classification-based framework namely scClassify was proposed 

which is based on ensemble learning. In this approach, a cell type tree was generated from 

reference data and then scClassify was used to compute the similarity metrices from the 

tree and to build the classifiers. 

 2.2.2 Application of Supervised learning approach 

In recent days, the supervised learning approach has become more popular since 

large-scale, well-annotated scRNA-seq data are becoming available. It has a number of 

benefits in terms of the cell classification task. Firstly, it shows better performance 

compared with the unsupervised method in most cases. Secondly, the sample size of the 

data does not have a large impact on the performance of the method compared to an 

unsupervised method. On the other hand, unsupervised methods need a lot of data, and the 

number of cells have a large impact on the performance of the unsupervised approach. 

Thirdly, the supervised learning approach can be scaled up effectively with cell numbers. 

Due to all these advantages, researchers have been interested more in studying supervised 

learning approaches for cell type classification tasks in recent years. For example, Ma et 

al. performed extensive data analyses to systematically evaluate supervised methods for 

cell identification and suggested combining all individuals from available datasets to 

construct the reference dataset and use multi-layer perceptron (MLP) as the classifier [44]. 
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In [45], the authors used a Convolutional Neural Networks (CNN), to classify 

different cell types. In [46], convolutional RNN autoencoder was adapted to capture 

motility features and variations in cells through unsupervised manner for cell type 

classification. Troullinou et al. [47] proposed deep learning-based formalization for cell 

type classification based on the activity signal. Duan et al. [48] proposed interweaving 

convolutional LSTM (LIC-LSTM) that combines CNN for the feature extraction ability 

and LSTM for sequential data modeling to improve accuracy. 

Wang et al. proposed an interpretable deep-learning architecture using capsule 

networks (called scCapsNet) to perform feature selection to identify groups of genes 

encoding different subcellular types [49]. Shao et al. built a pre-trained cell-type 

annotation tool scDeepSort by combining a deep learning model with a weighted graph 

neural network (GNN), which is the first attempt to annotate cell types of scRNA-seq data 

with a pre-trained GNN model [50]. O’Connor et al. classified cells based on their time-

varying behavior by a recurrent bi-directional long short-term memory (Bi-LSTM) 

network [51]. Lieberman et al. employed transfer learning [52] to reuse a classification 

scheme that was learned from previous similar experiments for cell type classification 

[53]. Hu et al. developed a transfer learning algorithm that borrowed ideas from supervised 

cell type classification algorithms but also leveraged information in target data to ensure 

sensitivity in classifying cells that were only present in the target data [54]. 

Moreover, recent studies focused on data representation as scRNA-seq suffers 

from sparsity. Therefore, there are some review works to improve the data representation 

in two-dimensional space. For instance, Du et al. [55] built distributed representation by 

using transcriptomic wide gene co-expression. In [56], BioVec was proposed where 

biological sequences were embedded to generate biological representation into vector 

representation. Yang et al. [57] proposed doc2vec embedding model to learn distributed 

representation of proteins with an unsupervised embedding model that is used to learn and 

predict the context of kmers and sequence vectors. Alshahrani et al. [58] proposed 
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SmuDGE (Semantic Disease Gene Embeddings) to generate vector-based representations 

of phenotypes by combining phenotype similarity with network-based representation 

learning. In this dissertation work, gene embedding is studied in Chapter 4 and the cells 

in scRNA-seq data are transformed into gene sentences similar to word embedding. Then 

the gene embedding was fed into the RNN based deep learning model to perform the 

classification task. Experimental results demonstrate that this gene embedding concept 

outperforms traditional machine learning models. 

 2.2.3 Application of Semi-Supervised Learning 

Most of the existing work focuses on supervised learning-based methods to 

implement cell identification, which requires large amounts of fully annotated samples to 

train the model. However, cell type annotation requires manual effort, is time consuming 

and also needs domain expertise to classify the cells. Therefore, in recent days, researchers 

have been interested in building semi-supervised learning approaches for classification 

tasks. In semi-supervised methods, a small part of labeled data is leveraged together with 

large amounts of unlabeled data for cell identification, which will not require fully 

annotated training sets. 

In [59], the authors proposed a semi-supervised based framework scReClassify to 

identify mislabeled cells and reclassify them into correct cells. Initially, the cell type was 

annotated by combining the computational approach and biological knowledge. After that, 

the dimensionality of data was reduced into PCA and then Adasampling procedure was 

applied. After that, SVM or RF was used to reclassify the cell types. However, these 

methods were sensitive to data sparsity and required prior knowledge. 

In [60], the authors proposed a novel semi-supervised Category Identification and 

Assignment (SCINA) method for cell type classification on scRNA-seq or bulk RNAseq 

data. In this algorithm, prior knowledge of signature genes was constructed through an 

estimation process. This algorithm generated a set of signature genes for different cell 
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types and expression matrices. Using these prior references, this approach was used to 

search for segregation to extract the cells. The main limitation of this approach was it 

considered only the signature genes without considering the stronger marker cell type. 

Dong et al. proposed a semi-supervised dimensionality reduction approach namely 

scSemiAE for classifying cell subpopulations on scRNA-seq data [61]. In this approach, 

a classifier was trained with known cell types and true predicted cells with high probability 

scores. After that, low dimensional representations of the target dataset were learned by 

partial cell and this labeled information was then transferred to classify the cell types. In 

[62], the authors proposed semi-supervised clustering and annotation framework, 

scSemiCluster to annotate the cell types. In [63], the authors presented Solo, a semi-

supervised deep learning model that can identify the doublet cells. Variational autoencoder 

was used to embed the cells and then appended to a feed forward neural network to build 

a classifier. RNN based semi-supervised model has been studied in Chapter 5. This 

approach comprises two paths to train: supervised bidirectional LSTM RNN and 

unsupervised bidirectional LSTM RNN. 

2.3 Incorporate prior knowledge on cell type classification 

Recently, the study of incorporating prior domain knowledge in different forms 

like pathway information, gene-gene interaction has become popular due to overcoming 

the challenge of data sparsity and limited number of labeled data. In genomic research, it 

has been found/proved that gene interaction can capture the relationships between the 

genes which can be used as prior knowledge to classify the cell types which makes the 

classification model more sparser and more consistent in terms of biological inference. In 

[64], the authors proposed conditional graphs and were interested in identifying the graphs 

which could capture dependencies in gene expression data to demonstrate the efficiency 

as prior knowledge by the graphs. 
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Suphavilai et al. proposed Grandline, graph convolution neural network by 

combining gene expression data and protein interaction network to identify the specific 

phenotype. In this approach, the model learned the nonlinear relationship in genes and 

integrated the relevant information as prior knowledge. In [65], the authors presented the 

NR2DRP approach, integrated PPI with drug responses to identify drug responses. The 

similarity of cell lines was learned and extracted through network representation. This 

representation was used as a feature to predict the drug responses. 

Similarly, Wang et al. proposed a multimodal end-to-end deep learning model by 

integrating a graph convolutional network (GCN) and a neural network [66]. Cheng et al. 

combined deep learning with graphic cluster (DGCyTOF) visualization to identify cell 

types [67]. Chen et al. proposed a probabilistic generative model integrated with a 

Bayesian neural network to annotate scCAS data in a supervised manner [68]. Motivated 

by the benefit of GAT network, graph attention based autoencoder model has been studied 

in Chapter 6. 
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CHAPTER 3 

RECURRENT NEURAL NETWORK BASED FEATURE SELECTION FOR 

HIGH DIMENSIONAL AND LOW SAMPLE SIZE MICRO-ARRAY DATA 

 

3.1 Introduction 

The analysis of gene expression data becomes a very important research topic for 

early disease diagnosis and drug development [69]. However, gene expression data 

processing is very challenging due to the rapid development of experimental technologies 

such as micro-array, next generation sequencing, and mass spectrometer [70] as they 

generate high dimensional data. These types of data usually contain a large number of 

features, however, typically only a portion of the features are relevant to the research 

problem at hand. If all the features are treated equally while performing machine learning 

(ML) such as the classification on the data, it will degrade the performance of the ML 

model. Moreover, the model can suffer from the risk of overfitting through poor 

generalization ability [71]. These challenging issues of high dimensional data are called 

as “the curse of dimensionality” [72]. A promising approach for the analysis of high 

dimensional biomedical data is to reduce the number of features, a technique known as 

feature selection. The goal of feature selection is to select an optimal subset of features so 

that the data can be presented in a more computationally feasible fashion. As a result, the 

classification performance will be improved through feature selection even though some 

features are dropped or ignored [73]. 

Feature selection approaches can be classified as linear and non-linear approach. 

In the linear approach, data is mapped into a lower dimensional space. PCA (Principal 
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Component Analysis) is a popular linear model for feature selection. PCA maximizes the 

variance of data and employs orthogonal transformation to convert the data into the lower 

dimensional space. The features associated with large feigen value contain a huge amount 

of information. When the feigen value is small, the PCA fails to project the features in low 

dimension space [74]. However, PCA does not inherently capture the feature information 

from the data and does not work well for the classification of data. Linear Discriminant 

Analysis (LDA) proposed by Ronald Fisher [75] is a popular linear model for feature 

selection and the classification of data. It maximizes the distance between the means, 

normalized by a measure of the sample-class variability. However, the model cannot 

perform well on high dimensional low sample data. l1 regularized approach (Lasso) is a 

very popular approach for dealing with high dimension low sample size data [76]. It 

minimized the loss by l1 norms. The main limitation of this sparse linear model is it cannot 

capture the nonlinear relationship among input features. Therefore, HSIC lasso is used to 

handle the non-linear relation of data. It employs Hilbert-Schmidt Independence Criterion 

(HSIC) to calculate the dependency between variables. It also used l1 norms to a subset of 

features which results in a convex optimization problem. Fast correlation Based Filter 

(FCBF) uses symmetric uncertainty to compute the best subset of features with sequential 

search [77]. It selects features by establishing high correlation with the target variable and 

little correlation with other variables. Sparse additive model (SpAM) is used to select 

features by back-fitting algorithm [78]. It is based on the combination of sparse linear 

modeling and additive regression. The main limitation of this model is it cannot capture 

important interactions among features due to its additive manner. 
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For the non-linear, Minimum redundancy maximum relevancy (mRMR) is a 

prominent non-linear approach that ranks the features based on minimum redundancy 

maximum relevancy (mRMR) [79] criteria. Through mRMR criteria, it selects high 

relevance features. It computes the relevancy using F-statistics and mutual information for 

discrete and continuous features respectively. Redundancy is calculated through Pearson 

correlation coefficient. However, this model selects highly relevant features with a high 

correlation with the class (output) and presents the low correlation between themselves 

which results in the loss of temporal data information. 

Traditional feature selection methods can also be categorized into four different 

types, namely, filter approach [80], wrapper approach [81], embedded approach [82], and 

hybrid approach [83]. Filter methods are the simplest and most computationally efficient 

compared with other methods. It evaluates the value of features without any prior 

knowledge of the learning algorithm. In this method, feature dependencies and interaction 

between classifiers are ignored which leads the model to be misclassified. On the contrary, 

the wrapper method considers the interaction in features which guarantees better accuracy 

to classify the algorithm. The main disadvantage of the approach is its high complexity 

and poor generality. The wrapper method suffers from overfitting on a small training set 

whereas the filter method can be used as a large number of features. On the other hand, 

the embedded approach considers a variable subset of selections to learn intensive feature 

dependencies. The hybrid approach is the combination of the filter method and wrapper 

method. The goal of this approach is to gain the best performance by intensive learning 

procedure. 

Most recently, deep neural networks have achieved dramatic advancement in 

selecting features from high dimensional data [84]. Deep neural network is framed by 

multiple layers with non-linear activation functions which leads the model to mine more 



29 

 

efficiently the pattern of complex feature format. It takes advantages of its non-linear 

pattern recognition to dig deep inside the data. However, it suffers from overfitting and 

high variance gradients for low sample sizes. Deep neural pursuit (DNP) [84] selects a 

subset of features by overcoming the challenges. It incrementally selects and learns 

features and adds them through multiple dropout techniques to train the model for high 

dimension, low sample size data. However, for the gene expression data, DNP is not able 

to fully utilize relations between features to accomplish feature selection while genes, as 

the features, are correlated to each other. 

In this chapter, the recurrent neural network-based feature selection model is 

proposed to extract features by directly using relations between features on micro-array 

data. Firstly, the features are divided into two categories: selected features and candidate 

features. Then, the model starts with an empty subset of feature and considers the bias as 

selected features. In each step, the model chooses an individual feature from candidate 

features and compute gradients through backpropagation. Then the model calculates the 

average gradients and through this way, the model can include and exclude the features 

from select and candidate features accordingly. The main contribution of the work is to 

use the recurrent model to select and update features from high dimension data, where the 

feature relations can be built by the recurrent connections of the neurons in the recurrent 

neural networks. Compared to DNP, the advantage of this proposed model is during each 

computation time, it is not only using its input feature information but also using the 

information of neighbor feature information to enhance the performance of feature 

selection. 

In summary, the contributions of this research work are as follows: 

• A novel feature selection framework based on recurrent neural network model is 

proposed to select features from high dimension data. Different feature selection 

models with various types of recurrent models, namely, gate recurrent unit (GRU), 
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long-short term memory (LSTM) and bi-directional LSTM (Bilstm) are 

implemented to verify the proposed framework by testing on micro-array data.  

• The proposed model is validated by experiments on two types of high dimensional 

low sample size sparse bio-medical micro-array data namely Colon and Leukemia 

data and observe that proposed model performs better than deep neural pursuit 

(DNP). 

The rest of the chapter is organized as follows: in Section 3.2, the proposed 

approach is briefly described. Dataset details, experimental setup and performance 

evaluation are presented in Section 3.3. Finally, the chapter is concluded in section 3.4. 

3.2 Methodology 

A novel framework of feature selection is proposed to select relevant feature sets 

among sparse high dimensional low sample size data in order to enhance the biomedical 

sequencing data analysis. Firstly, the features are divided into two types of feature sets: 

selected set and candidate set. Initially, the selected feature set starts from a bias. All 

weights including bias in the neural network are initialized as zero. The input weight 

comprises selected weights and candidate weights. The input weights are initialized 

through Xavier Initializer. The Neural Network utilizes multiple dropout techniques to 

avoid high variance gradients. It randomly drops neurons multiple times, computes 

gradients based on neurons and connections and averages multiple gradients. Such 

multiple dropout technique obtains averaged gradients with low variance. Then the whole 

neural network will converge until all candidate weights are zero. In this way, features are 

added and removed. When the number of selected features and the maximum number of 

features will be equal, the proposed model will have a subset of feature selection. Then 

the feature subset is used to train machine learning classifiers such as Decision Tree, Naive 
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Bayes, and Support Vector Machine to complete data analysis. The training dataset also 

fits into the model. After the training procedure, the machine learning models are used to 

evaluate the model performance through test data. The flow of feature selection is shown 

in Fig. 3.1. 

 

Fig. 3.1. Flow of feature selection under the proposed framework 
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Specially, the recurrent neural network (RNN) is used to select features for cell 

classification on micro-array data. Inspired by the DNP model, RNN based feature 

selection-based model has been proposed. In the DNP model, the deep neural network is 

used. Fig. 3.2 represents how DNP works [84]. Firstly, DNP trains smaller subnetworks 

and incrementally selects features to find local optima. It drops neurons multiple times 

and uses back-propagation technique to add and remove features. DNP uses the deep 

neural network architecture whereas in the proposed framework it takes advantage of 

recurrent neural network model which helps the model to store feature information in its 

memory and enhance the performance. It computes each feature of the input sequence and 

transforms it into vector format using the following equation (3.1) and (3.2) [85]. 

ht = H(Uxhxt + Uhhht−1 + bh). (3.1) 

yt = Uhyht + by. (3.2) 

where Uxh, Uhh, Uhy denote the weight matrices of input-hidden, hidden-hidden, and 

hidden-output processes, respectively. ht is the vector of hidden states that derive the 

information from the current input xt and the previous hidden state ht−1. Fig. 3.3 represents 

how RNN works features in each sequence. 

In this proposed model, the features are fed as input into the model. Initially, the 

selected feature set starts as a bias term. The input weights are initialized through Xavier 

Initializer. Each time the weights are updated through back propagation and compute the 

dropout. As the weights are shared through all the layers in the recurrent network, it 

contains the sequence information in its neuron. Hence, when it is computing its gradient, 

the gradient computation is not only based on current feature information but also based 

on sequence feature information which helps the model to enhance the performance. 
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Fig. 3.2. The architecture of feature selection via deep neural network, where solid lines 

indicate selected feature and red dashed lines indicate candidate feature. 

 

 

Fig. 3.3. RNN based feature selection model. 
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Moreover, different types of RNN models namely Gated recurrent unit (GRU) 

[86], Long short-term memory (LSTM) [87], and bi-LSTM have also been used to observe 

the model performance. The main limitation of the recurrent model is it may suffer from 

vanishing gradients at the time of computation. GRU and LSTM are advanced types of 

RNNs which are structured in a special way so that they can deal with the limitation of 

RNN. 

GRU consists of an update gate and a reset gate which helps the model to decide 

which feature should be passed through the output layer. It uses the following equations 

(3.3)-(3.6) to compute how much information, GRU will carry forward through the 

network. 

zt = σ(Wzxt + Uzht−1) (3.3) 

rt = σ(Wrxt + Urht−1) (3.4) 

 ) (3.5) 

  (3.6) 

Here, zt, rt and hti denote the equation for update gate, reset gate and current 

memory respectively. W and U represent the weight matrices of each gate. In the final 

memory content, element wise multiplication is applied to update the information in 

update gate and determines how much information will be kept through the network. 

On the other hand, LSTM has three gates: input, output and forget gate to regulate 

dataflow in its memory. The computation equations that LSTM uses are presented as 

follows: 

it = σ(Uxixt + Uhiht−1 + Ucict−1 + bi) (3.7) 
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ft = σ(Uxfxt + Uhfht−1 + Ucict−1 + bf) 
(3.8) 

ct = ftct−1 + itRELU(Uxcxt + Uhcht−1 + bcc) (3.9) 

ot = σ(Uxoxt + Uhoht−1 + Ucoct + b) (3.10) 

ht = otRELU(ct) (3.11) 

  

where U and σ indicate weight matrices and logistic sigmoid function respectively. 

Different gates refer to different indices, like input gate as i, forget as f, cell as c and output 

as o. These gates and activation functions soothe LSTM to avoid the limitation of 

vanishing gradients by storing long term dependencies terms. 

Both GRU and LSTM have similar types of architecture. GRU is much simpler 

and trains faster than LSTM. Besides, GRU performs better when the model does not 

require long-term dependencies information and is trained on less training data. On the 

other hand, there are two different states in bi-directional RNN. In forward states, they 

compute future sequence information whereas backward states compute past sequence 

information and finally generate the output ot by integrating two hidden states computation 

results. 

3.3 Experimental Analysis 

 3.3.1 Dataset Details 

In this study, the publicly available bio-medical micro-array data namely Colon 

and Leukemia datasets were used to evaluate the performance of the proposed framework. 

Each of the datasets consisted of a large amount of sparse data. Colon cancer dataset 

contained 62 samples and 2000 genes. The dataset is classified as tumor and normal 

tissues. Leukemia dataset has totaled 7070 number of genes and 72 samples. All the 

samples were collected from Leukemia patients. Either they had acute lymphoblastic 
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leukemia (ALL) or acute myelogenous leukemia (AML). The details of both datasets are 

represented in TABLE 3.1. 

TABLE 3.1 DATASET DETAILS  

Data Colon Leukemia 

Sample Size 62 72 

Feature Size 2000 7070 

Zero 51554 222326 

Non-zero Value 72446 286715 

Sparsity 41.58% 43.67% 

  

 3.3.2 Experimental setup 

The key parameters for the proposed methodology are: Learning rate: 0.1, Dropout 

rate: 0.5, Dropout iteration: 50, Maximum iteration: 25. DNP has been used as a baseline 

model as it outperforms the traditional feature selection models [84]. In addition, different 

types of recurrent models have also been implemented using the proposed framework to 

observe the performance. In this work, the same experimental setup has been used every 

time. The details of the experimental setup are shown represented in Table 3.2: 

TABLE 3.2: PARAMETERS OF PROPOSED METHODOLOGY 

 

Name Description 

Input Feature set 

Number of features 25 

Recurrent model RNN, GRU, LSTM, Bi-LSTM 

Number of layers 2 

Number of neurons in each layer [30, 20] 
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3.3.3Evaluation metrics 

In this work, the 10-fold cross validation was employed to select features from 

high dimensional data. After extracting features from high dimensional sparse data using 

RNN model, the data was fit into traditional machine learning classifiers to evaluate the 

performances. Confusion matrices like Precision, Recall, and F1-score were used to 

demonstrate the evaluation. Precision [88] defines how accurately and exactly a model 

can recognize the correct category whereas Recall [89] indicates the percentage of total 

relevant results correctly classified through a model. F1-score [90] is the harmonic mean 

of precision and recall value. 

  (3.12) 

  (3.13) 

  (3.14) 

whereas TP (True Positive) counts the total number of the predicted classes matched with 

the actual classes. FP (False positive) counts the total number of the predicted classes that 

does not match with the actual class. FN (False negative) measures actual labels do not 

present in the predicted labels. 

 3.3.4 Result and Discussion 

The experimental results are summarized in TABLEs 3.3 and 3.4 using different 

evaluation matrices and employing different classifiers to evaluate the model performance. 

In TABLE 3.3, the comparison result showed that the proposed model outperformed the 

DNP model in some cases. For instance, F1-score was improved by 20% for Decision Tree 
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and SVM classifiers using RNN with the comparison of using DNP model. On the other 

hand, the improvement of the F1-score in terms of NB was around 2%. 

The comparison results for the leukemia dataset are presented in TABLE 3.4. It is 

observed that the proposed model showed the effectiveness for all the classifiers. The F1-

score was improved by 11% and 15% for decision tree and NB classifiers in terms of RNN 

based feature selection. For RNN based feature selection for SVM classifier, the model 

performance degrades by 15%. The reason behind the lower performance of the classifier 

may be the data is too sparse to be suitable for the classifier. Hence, lower performances 

for SVM classifier are being observed on different RNN models for leukemia dataset. 

Based on comparing the performance of the proposed model on different 

classifiers, it is observed that RNN based feature selection model outperforms the DNP 

model. Comparing two TABLEs, it is found that GRU performs best whereas LSTM 

model showed poor performance among all the recurrent models. The reason behind poor 

performance of LSTM is due to the independency of data patterns. LSTM performs best 

when it arises to restore information in long dependencies of features in sequence data. 

Moreover, LSTM performs better for large training data. Comparatively, GRU performs 

best for low sample size data. Here, in the experiment, the datasets are low sample sizes 

and do not require long-term dependencies among features. Hence, poor performance is 

obtained for LSTM model. 

TABLE 3.3. COMPARISON RESULTS FOR COLON CANCER DATASET 

 

 

Feature 

Selectio

n 

Decision Tree Naive Bayes Support Vector 

Machine 

Precisio

n 

Recal

l 

F1-

scor

e 

Precisio

n 

Recal

l 

F1-

scor

e 

Precisio

n 

Recal

l 

F1-

scor

e 

DNP 0.47 0.47 0.46 0.60 0.62 0.62 0.38 0.62 0.47 

RNN 0.68 0.64 0.65 0.65 0.64 0.64 0.68 0.70 0.66 
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GRU 0.72 0.68 0.69 0.60 0.60 0.60 0.66 0.66 0.66 

LSTM 0.60 0.62 0.61 0.65 0.64 0.64 0.8 0.72 0.65 

Bi-

LSTM 

0.46 0.54 0.67 0.36 0.60 0.45 0.36 0.60 0.45 

 

While analyzing the performance of Colon and Leukemia data on different 

classifiers, it is observed that Naive Bayes (NB) performs better than the other two 

machine learning classifiers (Decision Tree and Support Vector Machine). The reason is 

the sparsity which seriously affects model performance. Leukemia data is more sparse 

than Colon data. Among other classifiers, NB is less affected through sparsity [91]. Hence, 

it is observed better performance for NB than other classifiers. 

TABLE  3.4 COMPARISON RESULTS FOR LEUKEMIA DATASET 

Feature 

Selectio

n 

Decision Tree Naive Bayes Support Vector 

Machine 

Precisio

n 

Recal

l 

F1-

scor

e 

Precisio

n 

Recal

l 

F1-

scor

e 

Precisio

n 

Recal

l 

F1-

scor

e 

DNP 0.64 0.53 0.55 0.58 0.60 0.59 0.76 0.66 0.67 

RNN 0.77 0.66 0.66 0.74 0.74 0.74 0.43 0.66 0.52 

GRU 0.63 0.59 0.60 0.77 0.72 0.73 0.79 0.79 0.79 

LSTM 0.58 0.52 0.53 0.57 0.57 0.57 0.78 0.67 0.56 

Bi-

LSTM 

0.56 0.59 0.57 0.68 0.69 0.66 0.41 0.64 0.50 

 

3.4 Chapter Summary 

In this chapter, the recurrent neural network-based feature selection model was 

proposed to improve the cell classification on high dimension low sample size data. 

Initially, it was started with an empty subset of features as bias. Then, features were 

incrementally added by averaging gradients through multiple dropout technique. The 
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selected features were fitted in machine learning classifiers to evaluate the model’s 

performance. Experimental results showed that the proposed model had better 

performance of selecting subset of features in some cases. 
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CHAPTER 4 

CELL TYPE IDENTIFICATION FROM SINGLE-CELL 

TRANSCRIPTOMIC DATA VIA GENE EMBEDDING 

4.1 Introduction 

Single-cell RNA sequencing (scRNA-seq) is an emergent technology that provides 

unprecedented scopes to scale and profile a large amount of cells per experiment at the 

single cell level [11]. It generates a high volume of data which requires a complex pipeline 

to implement the effective analysis. Specifically, cell type identification is an important 

task in this pipeline, which aims at identifying and categorizing groups of cells based on 

their gene expression profile [92]. Most of the traditional methods of cell type 

identification are unsupervised methods that are assigned to group cells into different 

clusters to identify marker genes, and then use these genes to manually classify the cell 

types. However, the main challenge is that these methods rely on prior knowledge of cell 

type canonical markers, where obtaining these markers is laborious and requires domain 

specific expertise [93]. 

Recently, a number of neural network-based models for cell type identification 

have emerged to address this challenge. For example, Automated Cell Type Identification 

using Neural Network (ACTINN) [93] was proposed to identify the cell type automatically 

by using all the genes to capture the features for each cell type without any prior 

knowledge of marker genes. Wang et al. inferred the similarity between all the cell types 

and leverages the cell type similarity to transfer annotations to a novel, unseen cell type 

[94]. Characterization of cell Types Aided by Hierarchical classification (CHETAH) was 

proposed to allow the assignment of cells to an intermediate or unassigned type by 

imposing tree that is constructed from the reference data [95]. However, these methods 
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are sensitive to data sparsity, which means that the model performance will be degraded 

significantly when processing data with serious data sparsity. 

In this study, a novel framework was proposed to learn the gene embeddings on 

scRNA-seq data to reduce the data sparsity for cell type identification. The cells in scRNA-

seq data are transformed into “gene sentences” by taking advantage of similarities between 

the natural language system and the gene system. Furthermore, to overcome data sparsity, 

word embedding techniques [6] were employed to represent the genes in these sentences 

as gene vectors. Extensive experiments on scRNA-seq data macosko2015 [7] were 

performed to validate the proposed method. Experiment results generated with different 

hyper-parameters such as batch size and embedding size demonstrated the effectiveness 

of the proposed method. 

In summary, the contributions of this research work are as follows. 

• A novel approach was proposed to classify cell type by learning gene embeddings 

to reduce data sparsity. Word2vec technique was employed to learn gene 

embeddings on gene sentences. Gene embedding concept has been implemented 

to train different deep learning models namely Recurrent Neural Network (RNN), 

Attention RNNs and Bi-directional LSTM RNNs and evaluated the performance. 

• The performance of the proposed approach was validated by comparing it with 

machine learning model performance as raw data had been used in machine 

learning models to identify the cell types. 

• Different evaluation metrics were employed to validate and observe the proposed 

method performance. 

The rest of the chapter is organized as follows: in Section 4.2, the proposed 

approach is briefly described. Details of the dataset are presented in Section 4.3. 
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Experimental setup and performance analysis are presented in Section 4.4. Finally, Section 

4.5 summarizes the chapter. 

4.2 Proposed Methodology 

 4.2.1 Method 

In this work, the genes are presented as gene embeddings of scRNA-seq data for 

cell type identification. Motivated through the natural language system, the problem is 

viewed exactly the same as words in sequence. In sequence, each word has a relationship 

with other words. In the natural language system, each word is presented in word 

embedding by word2vec. Similarly, the genes are considered as the words in sequence and 

presented as the gene embedding by gene2vec. However, to generate gene embedding on 

scRNA-seq data is challenging as it contains thousands of zero values. Hence, the genes 

were reranked based on the highly expressed value of genes and the top k genes were 

selected and then the samples were rebuilt. Therefore, there are three steps: 1) Gene 

ranking 2) Gene embedding and 3) Model training. Fig. 4.1 presents our proposed 

framework. 

 4.2.1.1 Gene Ranking 

ScRNA-seq data contains differentially expressed profiling genes along with multiple 

samples. To handle and interpret this large amount of scRNA-seq data becomes 

cumbersome and time consuming. Moreover, it contains a huge amount of sparse data 

which degrades machine learning performance. Therefore, preprocessing is required to 

analyze the data and build a significant genes network from the scRNA-seq data. Gene 

ranking is a probable solution which plays an important role to obtain important genes 

from sparse data. In [96], the authors ranked the genes based on relevance to the disease. 

Discriminant Non-Negative Matrix factorization (DNMF) was proposed for gene ranking 

method in [97]. 
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Fig. 4.1. Framework of gene embedding based cell type identification. gi is the gene with 

corresponding expression values,  is the gene selected in terms of gene expression values, 

and ei is the gene embedding generated with the word2vec technique [6]. 

 

In this work, the gene ranking approach was used to get the most important and 

significant genes from sparse scRNA-seq data. In the first step, the data was sorted without 

consideration of the data type. After that, the gene list was sorted in descending numerical 
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order. The value was then matched with the gene list and the sorted list were presented 

through the gene id. Here, the samples were rebuilt based on the top k values of gene 

values. 

Consider, the gene expression matrix is presented by  where i 

denotes the number of samples and Xab is the expression values in ab position in the gene 

matrix, M indicates the number of genes and D is the dimension. The problem formulation 

of gene ranking is to sort the value in descending order and create a list, Si = [Xc, Xy, Xq......] 

where Xc > Xy. The expression values are replaced with gene id, Si = [Gc,Gy,Gq......] where 

Xc, Xy, Xq are the corresponding expression values of genes, namely, Gc, Gy, Gq. At the end 

of the gene ranking procedure, the samples are rebuilt as top-k genes and then they are 

used to generate gene embedding. 

 4.2.1.2 Gene Embedding 

Distributed representation of a word or word embedding has become a recent 

revolution in NLP based research work. The aim of word embedding is to represent the 

individual words in continuous Euclidean space such that similar words will be mapped 

to points closely in the embedding space. Motivated through word embedding, the aim of 

this study was to imply the gene embedding concept which can map similar genes as 

similar vectors [6]. Moreover, by gene embedding, the model stores gene and sample 

relationships by itself. It can help researchers to overcome the challenges of data sparsity. 

Some researchers have proposed different frameworks based on gene embedding 

techniques to extract meaningful gene information from gene co-expression values for 

building predictive systems [98]- [99]. 

In this work, a gene embedding layer was used to present the embedding look up 

table and present them in gene2vec format. The dimension has been used as 256 

embedding to present that into vector format. The output of the embedding layer, i.e., gene 

embedding, was then used in the model to train it. More formally, the rebuilt samples after 
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reranking gene expressing value were the list of sample-genes, S =[Gc,Gy,Gq........] where 

the value of Gc > Gy > Gq and used as the input of embedding layer. After gene embedding, 

the representation of gene embedding had the presentation in vector format Gc = 

[v1,v2,........,vn]. 

 4.2.1.3 Model Training 

After the representation of gene embeddings, it was used as the input to deep 

learning models for cell type identification. Gene sentence classification is similar to 

sentence classification since both of them employ gene (or word) features to complete 

classification. In addition, recurrent neural networks (RNNs) have shown encouraging 

performance in sentence classification. Therefore, three categories of RNNs are employed 

to implement cell type identification, namely, RNNs, Attention RNNs, and bi-directional 

RNNs. 

RNN [100] is an artificial neural network which can capture previous word 

information of a sequence in its memory. It computes each word of the input sequence (x1, 

x2, ···, xn) and transforms it into a vector form (yt) by using the following equations: 

                            ℎ𝑡 = tanh (𝑈𝑥ℎ𝑥𝑡 + 𝑈ℎℎℎ𝑡−1 + 𝑏ℎ)                                      (4.1) 

                                             𝑦𝑡 = softmax (𝑈ℎ𝑦ℎ𝑡 + 𝑏𝑦)                                      (4.2) 

  

where Uxh, Uhh, Uhy denote the weight matrices of input-hidden, hidden-hidden, and 

hidden-output processes, respectively. ht is the vector of hidden states that captures the 

information from the current input xt and the previous hidden state ht−1. 

Attention RNN [101, 102] creates context vectors and extracts most available relevant 

information of the input sequence. Each context vector is a weighted sum of output 

vectors, and each vector contains information about the whole input sequence, where the 

computation equation is given as follows: 
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                                                   𝑐𝑡 =  ∑ 𝑎𝑖,𝑡ℎ𝑡
𝑛
𝑡=1                                                          (4.3) 

where ci is the context vector, ai,t is the attention weight which is learned by the using 

attention fully connected network, and ht is the hidden state vector. The details on 

computing the attention weights (ai,t) are presented as following equations (4.4)-(4.5) 

 . (4.4) 

 

ai = f(ci,hi) = tanh(wc[ci,hi]). (4.5) 

  

where ai,t is the output score of feedforward RNN with tanh activation function. It attempts 

to capture the information from both the context vector (ci) and hidden state vector (hi). 

Bi-directional RNNs (Bi-RNNs) are used to exploit both past and future contexts, 

where forward hidden states (  ) compute forward hidden sequences while backward 

hidden states (  ) compute backward hidden sequences. The output yt is generated by 

integrating the two hidden states. 

 . (4.6) 

 . (4.7) 

 . (4.8) 

In this work, a special form of Bi-RNNs, the Bi-RNNs with LSTM cell [103] was 

used. LSTM is a special kind of RNN where hidden states are replaced by memory cells 

to capture long-term dependent contextual phrases. The computation of LSTM is quite 

similar to RNN except for the hidden units, and it is given below: 
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it = σ(Uxixt + Uhiht−1 + Ucict−1 + bi). (4.9) 

gt = σ(Uxgxt + Uhght−1 + Ucict−1 + bg). (4.10) 

ct = gtct−1 + it tanh(Uxcxt + Uhcht−1 + bc). (4.11) 

yt = σ(Uxyxt + Uhyht−1 + Ucyct + by). (4.12) 

ht = yt tanh(ct). (4.13) 

  

where i, g, c, o and σ are the input gate, forget gate, cell activation vector, output gate, and 

logistic sigmoid function of LSTM cell, respectively. These gates and activation functions 

soothe LSTM to avoid the limitation of vanishing gradients by storing long-term 

dependencies terms of a sequence. 

4.3 Dataset Details 

In this work, Macosko2015 [7], a retina scRNA-seq dataset was used to validate 

the proposed approach. The dataset consists of 44,825 mouse retinal cells. The schematic 

representation of major cell classes is presented in Fig. 4.2. It contains 24,760 genes along 

with 12 cell types, namely, rods, cones, muller glia, astrocytes, fibroblasts, vascular 

endothelium, pericytes, microglia, retinal ganglion, bipolar, horizontal, and amacrine. The 

cell type distribution is shown in TABLE 4.1. It can be observed that the cell distribution 

is imbalanced across different cell types. Therefore, machine learning models built on this 

data will have a bias to majority classes. In other words, the models will tend to obtain 

high performance for identification of majority cell types, but low performance for the 

identification of minority cell types. It will be a challenge to implement cell type 

classification with high performance for all cell types. 
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Fig. 4.2. Schematic diagram of retina cell [7] 

. 

TABLE 4.1 CELL DETAILS AND NUMBER OF CELLS IN RETINA DATA 

Cell Id Cell name Number Cell function 

c1 Retinal Ganglion Cells 432 Type of neuron near the inner 

surface of retina, receives visual 

information from retinal neurons to 

the rest of the brain [104] 

c2 Cones 1865 Photoreceptor cells, responsible for 

color vision 

c3 Horizontal Cells 252 Interconnecting neurons, integrate 

and regulate signal from 

photoreceptor cells 

c4 Amacrine Cells 4422 Receive signal from bipolar cells 

to amacrine and ganglion cells 

[105] 

c5 Bipolar Cells 6283 Transmit signal from photoreceptor 

cells to ganglion cells 

c6 Fibroblast Cell 85 Common mammalian connective 

tissue cells and plays an important 

role in wound healing 

c7 Rods 29424 Photoreceptor cells, responsible for 

low light level [106] 

c8 Vascular Endothelium 251 Play important role in retina 

barrier, regulation of blood flow 

[107] 

c9 Muller Glia 1628 Serve as a support cell for neurons 
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c10 Pericytes 63 Regulate capillary blood flow 

c11 Astrocytes 54 Located in the nerve fiber layer 

[108] 

c12 Microglia 67 Play important roles in retinal 

homeostasis, recovery from injury 

[109] 

 

4.4 Experimental Result Analysis 

Different evaluation metrics have been implemented to evaluate the proposed 

approach. Moreover, confusion matrices are employed to demonstrate the details on the 

performance differences using different hyper-parameters. 

TABLE 4.2 gives the performance comparison between machine learning models 

and deep learning models. Raw gene expression values were directly used to train machine 

learning models whereas in the gene embeddings concept first top genes were selected to 

generate the embedding and then utilized to train the deep learning models. It is observed 

that only SVM performed best both for accuracy and MacroF values. Naive Bayes shows 

poor performance among all ML models due to data sparsity and class imbalance. Decision 

Tree, Random Forest, and Adaboost showed better accuracy but they have poor 

performance in terms of MacroF values due to class imbalance. On the other hand, deep 

learning models show above 93% accuracy, where Bi-directional LSTM RNNs 

outperformed other deep learning models since it can extract gene correlation features 

more effectively. Moreover, this observation indicates that transforming gene samples into 

gene sentences and building gene embeddings are able to reduce data sparsity to improve 

performance effectively. 
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TABLE 4.2 COMPARISON OF PERFORMANCE ANALYSIS ON MACHINE LEARNING MODEL AND 

SUPERVISED DEEP LEARNING MODEL IN TERMS OF ACCURACY, MACROP, MACROR AND MACROF 

Model Models Accuracy MacroP MacroR MacroF 

 
Naive Bayes 35.06 36.96 30.40 35.48 

Machine Decision Tree 93.78 86.60 80.34 82.69 

Learning Random Forest 85.09 55.44 27.45 31.03 

 Adaboost 74.07 30.38 26.88 25.67 

 Support Vector Machine 97.28 98.24 93.32 95.50 

 
Word RNN 94.04 88.71 83.72 85.46 

Deep Attention RNN 93.96 87.33 88.60 87.48 

Learning RCNN 95.03 94.60 90.85 92.54 

 

In addition, TABLE 4.3 and TABLE 4.4 present the performance comparison based 

on different top k genes on two batch sizes, namely, 256 and 512. It is observed that the 

model did not make any significant difference when the size of the rebuild samples was 

changed. If the performance of each TABLE is compared, it is observed that there was no 

significant difference in the performance when employing different top-k genes to build 

gene sentences. It implies that the proposed method will not be sensitive to this hyper-

parameter. In addition, the difference of performance shown in these two TABLEs is not 

significant, which means that batch size will not materially affect the performance a lot. 

However, small batch size will lead to better performance since large batch size will have 

higher risk of data sparsity when building gene embedding. 
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TABLE 4.3. COMPARISON RESULTS OF SUPERVISED DEEP LEARNING MODEL BASED ON 

DIFFERENT K VALUES. K IS THE NUMBER OF TOP GENES RANKED BY EXPRESSION VALUES. 

HERE, K = 50, 100, 150 AND BATCH SIZE = 256 

Top k values Models Accuracy MacroP MacroR MacroF 

50 

Word RNN 

Attention RNN 

94.04 

93.96 

88.71 

87.33 

83.72 

88.60 

85.46 

87.48 

 RCNN 95.03 94.60 90.85 92.54 

100 

Word RNN 

Attention RNN 

94.76 

94.34 

83.05 

86.82 

77.38 

85.69 

77.14 

85.83 

 RCNN 95.31 94.02 89.75 91.73 

150 

Word RNN 

Attention RNN 

93.58 

94.32 

79.09 

85.88 

75.54 

87.78 

76.35 

86.43 

 RCNN 95.09 94.97 90.71 92.72 

 

TABLE 4.4. COMPARISON RESULTS OF SUPERVISED DEEP LEARNING MODEL BASED ON 

DIFFERENT K VALUES. K IS THE NUMBER OF TOP GENES RANKED BY EXPRESSION VALUES. 

HERE, K = 50, 100, 150 AND BATCH SIZE = 512 

Top k values Models Accuracy MacroP MacroR MacroF 

50 

Word RNN 

Attention RNN 

94.11 

93.72 

88.40 

83.20 

87.17 

82.63 

87.72 

82.56 

 RCNN 94.83 94.40 92.90 93.57 

100 

Word RNN 

Attention RNN 

94.36 

93.22 

88.63 

86.89 

77.47 

88.72 

79.06 

87.53 

 RCNN 95.03 93.88 91.34 92.51 
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150 

Word RNN 

Attention RNN 

94.33 

94.54 

79.22 

90.75 

70.59 

89.59 

73.16 

89.91 

 RCNN 95.28 94.97 89.53 91.97 

 

Furthermore, the performance comparison on different batch sizes were 

investigated through Fig.s 4.3 and 4.4, where Fig. 4.3 represented the confusion matrix for 

batch size 256 and Fig. 4.4 represented the confusion matrix for batch size 512. When the 

results shown in Fig. 4.3 are examined, it is found that the larger the k value is, the worse 

performance the minority class such as c12 will obtain. The similar observation can be 

obtained from Fig. 4.4. On the other hand, the majority classes such as c5 and c7 are not 

sensitive to the k values. 

(a) k=50                             (b) k=100 

 

(c) k=150 

Fig. 4.3. Confusion matrix of supervised RCNN with batch size = 256 
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(a) K = 50 (b) K =100 

 

Fig. 4.4. Performance comparison of RCNN with batch size 512 

 

4.5 Chapter Summary 

In this paper, a novel method of gene embedding wass proposed for classifying cell 

type on scRNA-seq data by reducing data sparsity. The genes were ranked based on their 

corresponding gene expression values and the samples are transformed by implementing 

gene embedding for each gene. Then three deep learning models were built to implement 

cell type classification, where the models included RNNs, Attention RNNs, and Bi-

directional RCNN. Experimental results showed that the proposed method performed 

effectively and efficiently in identifying cell types on scRNA-seq data. 
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CHAPTER 5 

CELL TYPE IDENTIFICATION FROM SINGLE-CELL TRANSCRIPTOMIC 

DATA VIA SEMI-SUPERVISED MODEL 

 

5.1 Introduction 

Single-cell RNA sequencing (scRNA-seq) enables the profiling of the 

transcriptomes of individual cells, thus characterizing the heterogeneity of biological 

samples since scRNA-seq experiments are able to yield high volumes of data. For 

example, in a single experiment, the expression profile is up to 105 cells, at the level of the 

single cell [11]. It is not possible for traditional bulk RNAseq [22] to examine biological 

samples in such high-resolution. 

Cell type identification is a common goal of scRNA-seq data analytics to identify 

the cell type of each individual cell. It can be implemented by unsupervised methods with 

manual input [53]. To accomplish this, cells are first grouped into different clusters in an 

unsupervised manner, and the number of these clusters allows to approximately determine 

how many distinct cell types are present. To attempt to interpret the identity of each cluster, 

marker genes are identified as those that are uniquely highly expressed in a cluster, 

compared to all other clusters. These canonical markers are then used to assign the cell 

types for the clusters by cross-referencing the markers with lists of previously 

characterized cell type specific markers. To speed up this process, a set of annotation tools 

were developed. For example, Kiselev et al. proposed scmapcell [110] to project cells 

from an scRNA-seq data set onto cell types or individual cells from other experiments. 

Alquicira-Hernandez et al. built scPred [111] was a new generalizable method for 

prediction of cell types through combining unbiased feature selection from a reduced-
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dimension space, and machine learning classification. It can capture the subtle effects of 

many genes and enhance prediction accuracy. 

 

Fig. 5.1. Framework of the proposed semi-supervised learning. Input x is the cell. Cell 

types are available only for the labeled inputs and the associated crossentropy loss 

component is evaluated only for those. z0 and z00 are outputs from the supervised 

bidirectional LSTM RNN and the unsupervised bidirectional LSTM RNN, respectively. 

Cross entropy loss and mean squared error loss are jointly optimized for supervised 

learning and unsupervised learning with these outputs. ⊕ is the concatenation operation. 
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Aran et al. proposed SingleR [112] that is to implement the annotation of scRNA-

seq by considering bulk transcriptomes. It enabled the sub clustering of macrophages and 

revealed a disease-associated subgroup with a transitional gene expression profile 

intermediate. Recently, novel computational methods based on neural networks have been 

proposed to further improve the performance [53, 113], since cell type classification based 

on a large number of genes is more robust to noise. For example, Ma et al. proposed 

ACTINN (Automated Cell Type Identification using Neural Networks) [113] with simple 

neural networks of three neuron layers, which trains on datasets with predefined cell types 

and predicts cell types for other datasets based on the trained model. It uses all the genes 

to capture the features of each cell type instead of relying on a limited number of canonical 

markers. 

However, it still faces two main challenges: 1). annotating a large amount of 

individual cells costs intensive labor efforts and a time-consuming task, especially since 

single-cell sequencing technique becomes more and more popular and generates larger 

and larger datasets. For example, the number of cells involved in the single cell data 

analysis has been much larger, like over 100,000 [114], which will require more efforts 

for labeling the data. In addition, this may not be feasible if the task on hand is time 

sensitive. For instance, if the labeling has to be done for COVID-19 patients who require 

urgent care; 2). it is observed that existing neural network-based models seems not to 

consistently perform well across different datasets. For example, ACTINN [113] and 

scmapcell [110] show strong performance on certain datasets such as Baron Mouse and 

Baron Human [115] while they have weak performance on 68K dataset [116]. However, 

performing consistently well across different datasets is imperative to build real 

applications. This study aimed to implement a semi supervised method that only uses a 

few labeled samples together with huge amounts of unlabeled samples to reduce the mass 

efforts of data annotation. In addition, the proposed method was able to consistently 

produce promising performance across different data sets. 
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In this study, a novel deep semi-supervised learning model was proposed when 

only a very limited number of cells were labeled, and a large number of cells were 

unlabeled. The proposed framework is shown in Fig. 5.1. It is trained on cells with 

predefined cell types and then can be used to predict cell types on new datasets. The cells 

in scRNA-seq data were transformed into “gene sentences” by taking advantage of 

similarities between the natural language system and the gene system. Furthermore, to 

overcome data sparsity, word embedding techniques [6] were employed to represent the 

genes in these sentences as gene vectors. Then, these vectors were used as inputs into the 

proposed semi-supervised neural networks built on recurrent convolutional neural 

networks (RCNN) [117]. It consisted of three components, namely, a shared bidirectional 

Long Short-Term Memory Recurrent Neural Network (LSTM RNN), a supervised 

bidirectional LSTM RNN, and an unsupervised bidirectional LSTM RNN. One path was 

composed of the shared bidirectional LSTM RNN and supervised bidirectional LSTM 

RNN while the other path consisted of the shared bidirectional LSTM RNN and 

unsupervised bidirectional LSTM RNN. All data (labeled and unlabeled data) was 

evaluated to generate the mean squared error loss, while only labeled data was evaluated 

to calculate the cross entropy loss. Experimental results of intra-dataset validation on 

macosko2015 [7] and 68K [118], and inter-dataset validation on MTG (Human) data [119] 

for training and ALM (Mouse) data [120] for testing demonstrate the effectiveness of the 

proposed model even when training it with a very limited amount of labeled cells. 

The contributions of this study are as follows: 

• Semi-supervised deep learning models with RCNN were proposed which can be 

trained jointly through supervised bidirectional LSTM RNN and unsupervised 

bidirectional LSTM RNN. It was shown that the proposed model can learn on 

unlabeled cells and labeled cells jointly to identify cell types with high 

performance. It can reduce the efforts of labeling data to build high performance 

models for cell type identification. 
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• The proposed model was validated on two large-scale scRNA-seq datasets: 

macosko2015 [7] and 68K [118]. Experimental results indicated that the new 

representations of cells enabled cell type identification to accomplish with 

promising performance. Moreover, the proposed semi-supervised learning model 

was able to effectively identify the cell types by learning on a very limited number 

of labeled cells together with a large amount of unlabeled cells on various datasets 

for cell type identification. In addition, the experimental results on inter-dataset 

validation also demonstrated the effectiveness of the proposed methods. 

The structure of the chapter is organized as follows: in Section 5.2 the dataset 

details and the generation of the dataset are briefly described. Then, the proposed approach 

is presented in Section 5.3. Section 5.4 provides the experimental results, setup and 

performance analysis where the model’s performance of the proposed approach is 

compared with machine learning and deep learning model based on different evaluation 

metrics. Finally, the chapter is concluded through section 5.5. 

5.2 Dataset Details 

Two large single-cell sequencing datasets were employed: Macosko2015 [7] and 

68K [118] to validate the proposed methods. 

1) Macosko2015: Macosko2015 [7] is a retina scRNA-seq dataset including 44,825 

mouse retinal cells with 39 transcriptionally distinct cell populations. The dataset with 

24,760 genes contained 12 cell types, namely, rods, cones, muller glia, astrocytes, 

fibroblasts, vascular endothelium, pericytes, microglia, retinal ganglion, bipolar, 

horizontal, and amacrine. The cell distribution was imbalanced across different cell types. 

Therefore, machine learning models built on this data would have a bias to majority 

classes. In other words, the models will tend to obtain high performance for the 

identification of majority cell types, but low performance for the identification of minority 

cell types. It was a challenge to implement cell type classification with high performance 
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for all cell types. In addition, the number of cells for different ratios of labeled data to train 

the proposed semi-supervised approach is presented as TABLE 5.1, where the total 

number of training samples is 31, 386. 

TABLE P 5.1 NUMBER OF CELLS FOR DIFFERENT RATIOS OF LABELED DATA IN MACKOSCO2015 

TRAINING DATASETS 

Labeled Ratio Labeled Cells Unlabeled Cells 

1% 314 31,072 

3% 942 30,444 

5% 1,570 29,816 

10% 3,139 28,247 

30% 9,416 21,970 

 

2) 68K: 68K [118] is the largest scRNA-seq dataset generated by profiling 68, 000 

fresh peripheral blood mononuclear cells (PBMCs) that are related to immune populations. 

It contains 11 sub-types of immune cells including CD8+Cytotoxic T, 

CD8+/CD45RA+Naive, CD56+NK, CD4+/CD25T Reg, CD19+B, CD4/CD45RO + 

Memory, Dendritic, CD14+Monocyte, CD4+CD5RA, CD34+, and CD4+T Helper 2. 

There are 65, 943 individual cells with 20, 387 genes through data preprocessing. Detailed 

cell distribution shown in TABLE 5.2 below presents class imbalance that is the same 

challenge to Macosko2015, which might lead to model bias to the majority classes such 

as CD8+Cytotoxic T and CD8+/CD45RA+Naive. In addition, this dataset contained 11 

immune cell populations which were harder to differentiate, particularly the T cell 

compartment (6 out of 11 cell populations) [10]. Moreover, the number of cells for 

different ratios of labeled data is shown in TABLE 5.3, where the total number of training 

samples is 42, 204. 
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TABLE 5.2. NUMBER OF CELLS IN 68K PBMC DATA 

Cell type Number of cells 

CD8+Cytotoxic T 20,307 

CD8+/CD45RA+Naive 16,361 

CD56+NK 8,522 

CD4+/CD25T Reg 6,116 

CD19+B 5,579 

CD45RO+Memory 3,031 

Dendritic 1,946 

CD14+Monocyte 1,944 

CD4+CD5RA 1,857 

CD34+ 188 

CD4+T Helper 2 92 

Total 65,942 

 

3) ALM and MTG: The inter-dataset validation employed MTG (Human) data [119] 

for training and ALM (Mouse) data [120] for testing, which is a case from the 

comprehensive comparison of automatic cell identification methods for single-cell RNA 

sequencing data [116]. MTG (Human) data and ALM (Mouse) data are from different 

anatomical structures of the brain, namely, the middle temporal gyrus, and the anterior 

lateral motor area. MTG (Human) data consists of 14,636 cells while ALM (Mouse) data 

contains 8,758 cells. 

TABLE 5.3. NUMBER OF CELLS FOR DIFFERENT RATIOS OF LABELED DATA IN 68K TRAINING 

DATASETS 

Labeled Ratio Labeled Cells Unlabeled Cells 

1% 423 41,781 

3% 1,267 40,937 

5% 2,111 40,093 

10% 4,221 37,983 

30% 12,662 29,542 
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5.3 Proposed Methodology 

 5.3.1 Method 

A Semi-supervised Recurrent convolutional neural Network (SemiRNet) was 

proposed to address the challenge of lacking labeled individual cells for cell type 

identification from scRNA-seq data. The proposed model was based on RCNN [117] and 

the detailed architecture is shown in Fig. 5.1. The first step was to preprocess the scRNA-

seq data to reduce the data sparsity [17, 121] by building “gene sentences” and 

representing the gene with word embedding techniques [6, 122]. Specifically, each cell in 

the scRNA-seq data is composed of thousands of gene expression values. Unfortunately, 

most of these values are zeros because of the limitation of current single-cell sequencing 

techniques [121], which would reduce the performance of machine learning models 

significantly [123, 124]. Therefore, it is important to solve the data sparsity problem for 

cell type identification. 

To overcome the data sparsity, the gene sequences were represented as “gene 

embedding” [125]. Although genomics data is not identical to text data, they share certain 

similarities: (1) they are all sequencing data. Genomics data is composed of gene 

sequences while text data consists of word sequences; (2) gene sequences contain a subset 

of genes with high gene expression values from the gene database. Similarly, word 

sequences have a subset of words from the whole word dictionary; (3). the context of a 

gene can be defined by other genes that co-expressed with it [55]. Analogously, the word 

context can be determined by its concurring words. 

With respect to these similarities, gene sentences are built by selecting k genes and 

employing word2vec [126] to represent these genes, where word2vec is a powerful 

technique to overcome data sparsity for natural language processing and understanding 

[126, 127, 128]. Word2vec [126] constructed distributed representations of words that can 

represent the semantics of a word by mapping them to vectors in a high-dimension space, 
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which is implemented by maximizing the probability of word co-occurrences in context, 

i.e., only a few words apart in the same sentence. Analogously, Gene2Vec [129, 99, 55, 

130] was implemented by defining the context of a gene by the other genes that co-

expressed with it, which was able to capture gene correlations in a more effective manner. 

In detail, it aimed to derive an embedding such that the probability of the context of a gene 

was maximized. It has been successfully applied to many tasks such as biomarker 

discovery [99] and gene-gene interaction prediction [55]. In the proposed method, top k 

genes were selected in terms of their expression values to build the gene sentence defined 

by equation (5.1). 

 S(g) =< g1,g2,g3,...,gt,...,gk > , (5.1) 

where g is the original gene sequence with n genes generated by the single cell sequencer 

for the cell and t < k < n. gt is the gene selected with respect to the expression value. Then 

the genes in the gene sentence S(g) are represented as gene embeddings. For instance, the 

gene sentence <g1,g2,g3,...,gt,...,gk> will be represented as a sequence of gene embedding 

<e1,e2,e3,...,et,...,ek>, where et is the embedding representation of the gene gt. Gene 

embedding provides a way to use an efficient, dense representation in which similar genes 

have a similar encoding. An embedding is a dense vector of floating point values, where 

the length of the vector is a parameter set manually. Instead of specifying the values for 

the embedding manually, the gene embedding is trainable parameters learned by the model 

during training. A higher dimensional embedding can capture fine-grained relationships 

between genes. 

After the preprocessing procedure, these gene sentences with gene embeddings 

were input to the shared bidirectional LSTM RNN to extract common features for cell 

identification. The forward layer and backward layer generated two directional correlation 

features, respectively. Next, these two groups of features were combined with the gene 
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embedding and obtained the output z of the shared RNN, where z is a sequence 

<z1,z2,z3,...,zt,...,zk> and zt is given by 

 , (5.2) 

where 

  , (5.3) 

  , (5.4) 

zt is the output of gt of the gene sentence <g1,g2,g3,...,gt,...,gk>. ⊕ is the 

concatenation operation. a(·) is the activation function for hidden layers.  and we
f are 

forward weights for two layers, namely, forward hidden layer and embedding hidden 

layer. wh
b and are backward weights for these two layers, respectively. bf

h and bb
h are 

bias for these two layers. 

The idea to introduce this shared RNN to the proposed model was motivated by 

deep multi-task learning [131, 132], since different tasks share a common feature 

representation based on the original features. In addition, the reason for learning common 

feature representations instead of directly using the original ones is that the original 

representation may not have enough expressive power for multiple tasks. With the training 

data in all tasks, a more powerful representation can be learned for all the tasks and this 

representation can improve the performance. Therefore, the output z from the shared RNN 

is evaluated by two bidirectional RNNs, namely, supervised bidirectional LSTM RNN and 

unsupervised bidirectional LSTM RNN. As shown in Fig. 5.1, the structures of these two 

RNNs are the same as that of shared RNN. For the supervised RNN, it is to learn the deep 

features of cells when the sample has the label. The output z0 of supervised RNN is the 

sequence , where is given by 
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  , (5.5) 

where 

  , (5.6) 

  , (5.7) 

  , (5.8) 

The same activation function a(·) is employed for the hidden layers of supervised 

bidirectional RNN. tanh(·) is the activation function for the dense layer. wsup and bsup are 

the weights and a bias between the max-pooling and the dense layer in the supervised 

RNN. wh
f
0 and wsup

f are forward weights for the forward layer and embedding layer in the 

supervised bidirectional RNN. wh
b

0 and are backward weights for these two layers, 

respectively. 
bf

h0 and bb
h0 are bias for these two layers, respectively. 

Moreover, the unsupervised bidirectional RNN was built to generate another repre- 

sentation of the input and the output z00 is a vector , where 

zt
00 is given by 

  , (5.9) 

where 

 , (5.10) 

  , (5.11) 

  , (5.12) 

wunsup and bunsup are the weights and a bias between the max-pooling layer and the dense 

layer in the unsupervised RNN. wh
f
00 and wunsup

f are forward weights for two layers, namely, 

forward layer and embedding layer in the unsupervised bidirectional RNN. wh
b

00 and 
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 are backward weights for these two layers, respectively. 
bf

h00 and bb
h00 are bias for 

these two layers, respectively. 

Two vectors z0 and z00 are being used to calculate the cross entropy loss (CEL) and 

mean squared error loss (MSEL) for supervised and unsupervised paths, respectively. 

They are given by 

 lCEL = −
X

y × logφ(z0) , (5.13) 

lMSEL = ||z0 − z00||2 , (5.14) 

  

where y is the label for the input and φ(·) is the softmax activation function. lCEL is the 

standard cross entropy loss to account for the loss of labeled inputs. Because training 

RNNs with dropout regularization and gradient-based optimization is a stochastic process, 

the two RNNs will have different link weights after training. In other words, there will be 

differences between the two prediction vectors z0 and z00 that are from these two RNNs 

(supervised RNN and unsupervised RNN). These differences can be treated as an error 

and thus minimizing its mean square error (MSE) is another objective lMSEL, in the 

proposed model. Furthermore, to combine the supervised loss lCEL and unsupervised loss 

lMSEL, the unsupervised loss is scaled by time-dependent weighting function w(t) [133] that 

ramps up, starting from zero, along a Gaussian curve. The total loss is defined by 

 Loss = lCEL + w(t) × lMSEL , (5.15) 

At the beginning of training, the total loss and the learning gradients are dominated 

by the supervised loss component, i.e., the labeled data only. At the later stage of training, 

unlabeled data will contribute more than the labeled data. The detailed learning of the 

proposed model is shown in Algorithm 1, which demonstrated the training of the proposed 

model. fr(·) is to represent cells as gene sentences, fe(·) is to learn gene embeddings on the 
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gene sentences, and fθshared(·) is to learn the common features from the gene embeddings. 

Parameters of the shared neural network θshared include , and . 

After extracting common features from gene samples, fθsup(·) and fθunsup(·) are being 

used to obtain higher level representations of cells to complete cell type identification and 

enhance the cell representations through optimizing supervised loss and unsupervised loss 

jointly. Parameters of the supervised RNN θsup include wh
f
0,  

, and bsup. Parameters of the unsupervised RNN θunsup consist of

, and bunsup. 

During the testing stage, only the supervised path including shared bidirectional 

RNN and supervised bidirectional RNN is used for cell type identification, which involves 

parameters of the supervised part θsup including , bb
h0, wsup, and 

bsup, and those of shared part including , and bb
h.  

 

Algorithm 1 Learning of SemiRNet

 

Require: training sample xi, the set of training samples S, labeled samples yi for xi (i ∈ S) 

1: for t in [1, num epochs] do 

2: for each minibatch B do 

3:  . preprocessing 

4:  . gene embedding 

5: zi∈B ← fθshared(x00
i∈B) . common feature extraction 

6:  . supervised representation 

7:  . unsupervised representation 

8:  . supervised loss component 

9:  . unsupervised loss component 

10:  . total loss 

11: update θshared, θsup, θunsup using the optimizer, e.g., ADAM 

12: end for 

13: end forreturn θshared, θsup, θunsup 
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The proposed model combined the advantages of deep multi-task learning [131] 

and Π model [133]. However, there exist significant differences. Compared to deep multi-

task learning, the subtasks in the proposed model had two categories of learning, namely, 

supervised learning and unsupervised learning while there was only supervised learning 

in deep multi-task learning. On the other hand, instead of using one path neural networks, 

two independent RNNs were applied to generate supervised and unsupervised outputs. 

Furthermore, the proposed model was more flexible as the two independent RNNs can be 

tuned in terms of specific goals. 

5.4 Results 

 5.4.1 Experimental settings 

In this experiment, the proposed model was employed to implement cell type 

identification. The key hyperparameters of the proposed model were: Embedding size: 

256, Minibatch size: 128, Number of epochs: 300, Optimizer: Adam optimizer, Learning 

rate: 0.001, Learning rate decay: 0.9. They were determined by trial and error. To obtain 

the optimal value of k for building gene sentences, a set of values such as 50, 100, 150, 

and 200 for Macosko2015 dataset was experimented, and the experimental results with 50 

genes demonstrated optimal performance. For 68K dataset, Chi-Square Test 1  was 

employed to select 10,000 genes and then gene expression values whose values were not 

zeros were used to build gene sentences. Therefore, the k values were various in different 

samples regarding different numbers of genes with zero values of gene expression. 

Moreover, the details of the model architecture is illustrated in TABLE 5.4. Specifically, 

the output of the proposed model contains two parts: cell type φ(z0) and a new 

representation z00. 

                                                        
1 https://scikit-learn.org/stable/modules/generated/sklearn.feature selection.chi2.html 
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 5.4.2 Evaluation metric 

Different evaluation metrics were applied to evaluate the performance of the 

proposed model, which includes accuracy, macro-average Precision (MacroP), 

macroaverage Recall (MacroR), and macro-average Fscore (MacroF) [135]. Accuracy is 

calculated by dividing the number of cells identified correctly over the total number of 

testing cells. 

                                                                                       (5.16)   

TABLE 5.3. THE PROPOSED NETWORK ARCHITECTURE  

Name Description 

Input Gene Sentence 

Gene Embedding Mikolov Model [126, 134] 

Shared RNN 256 LSTM cells for each hidden layer, 

One forward hidden layer, 

One backward hidden layer 

Supervised RNN 256 LSTM cells for each hidden layer, 

One forward hidden layer, 

One backward hidden layer 

One dense layer with 256 neurons, 

One 2×2 maxpooling layer 

Unsupervised RNN 256 LSTM cells for each hidden layer, 

One forward hidden layer, 

One backward hidden layer 

One dense layer with 256 neurons, 

One 2×2 maxpooling layer 

Output Cell type and a new representation 

 .  
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Macro-average [136] is to calculate the metrics such as Precision, Recall, and F-

scores independently for each cell type and then utilize the average of these metrics. It is 

to evaluate the whole performance of classifying cell types. 

 . (5.17) 

 . (5.18) 

 . (5.19) 

where C denotes the total number of cell types and Fscorec, Precisionc, Recallc are Fscore, 

Precision, Recall values in the cth cell type which are defined by 

 . (5.20) 

where Precision indicates precision measurement that defines the capability of a model to 

represent only correct cell types and Recall computes the aptness to refer all corresponding 

correct cell types: 

 . (5.21) 

 . (5.22) 

whereas TP (True Positive) counts the total number of cells matched with the cells in the 

types. FP (False Positive) measures the number of recognized types that do not match the 

annotated cells. FN (False Negative) counts the number of cells that do not match the 

predicted cells. The main goal for learning from imbalanced datasets such as 

macosko2015 [7] is to improve the recall without hurting the precision. However, recall 

and precision goals are often conflicting, since when increasing the true positive (TP) for 
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the minority class (True), the number of false positives (FP) can also be increased. This 

will reduce the precision [137]. 

In addition, three deep supervised learning models have been employed as 

baselines including: 1) Word-level CNN (Word CNN) [138], 2) Attention-Based 

Bidirectional RNN (Att RNN) [139], and 3) Recurrent CNN (RCNN) [117], where these 

models perform well on similar problems such as text classification. For example, Word 

CNN performs well on sentence classification, which is more suitable to process 

sequencing data as the length of the content of the data is short like that of the gene 

sentence. In addition, it has been built 4) word-level bidirectional RNN (Word RNN) to 

compare the implemented model, where Word RNN contains one embedding layer and 

one bidirectional RNN layer concatenate all the outputs from the RNN layer to feed to the 

final layer that is a fully-connected layer. Moreover, six traditional machine learning 

models have also been used as the baselines, namely, Naive Bayes, Decision Tree, Random 

Forest, Adaboost, Neural Networks (NN), and Support Vector Machine (SVM). 

Specifically, NN is a shallow neural network that is similar to ACTINN [113]. Thus, there 

are total of 10 baseline models. Baseline models are built on all labeled cells from the 

original training datasets. 

 

 5.4.2.1 Macosko2015 

The proposed model was evaluated from two perspectives. One was to verify 

whether the data preprocessing of the cell was able to be employed to identify cell types 

effectively. The other was to validate the performance of the proposed model on cell type 

identification with a limited amount of labeled cells. 

a. Data preprocessing: TABLE 5.5 presents the comparison of identification 

performance between traditional machine learning (ML) models and deep learning (DL) 

models, where the ML models were built on the original gene values without data 
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preprocessing while the DL models were built on preprocessed data that included gene 

sentences along with gene embeddings. 

TABLE 5.5 COMPARING PERFORMANCE TRADITIONAL MACHINE LEARNING (ML) AND DEEP 

LEARNING (DL) ON MACOSKO2015 DATASET 

 

 

 

It can be observed that most of ML models performed not well on the cell 

identification due to the data sparsity. For example, Naive Bayes’s accuracy and MacroF 

are not high since it was sensitive to data sparsity and cell imbalance. The other four MLs 

including Decision Tree, Random Forest, Adaboost, and NN identified cell type with high 

accuracy, but low MacroF since they could not overcome the challenge of cell imbalance 

even if data sparsity did not affect their performance significantly. Only SVM can perform 

well on accuracy and MacroF. However, it will take almost one and a half hours to obtain 

a converged model with respect to training on such a big scRNA-seq data. 

On the contrary, different DL models built on preprocessed cell data can identify 

cell types with promising and consistent performance. For instance, compared to ML 

models, all DL models are able to gain high accuracy above 95%, which means they are 

not struggling to the data sparsity. Moreover, considering MacroF values, DL models can 

obtain encouraging performance since these models can overcome cell imbalance to some 

extent. Specifically, the performance difference between RCNN and SVM is not 

significant regarding accuracy and MacroF. Moreover, compared to SVM, building RCNN 
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only takes about a half of hour to become converged. Based on the observations, it can be 

said that deep learning methods can outperform traditional machine learning models by 

learning on the preprocessed data generated by gene embedding. 

b. Cell type identification: In this section, it is examined whether the proposed model 

is able to effectively identify the cell types by training on a very limited amount of 

annotated cells. TABLE 5.6 presents the comparison of identification performance 

between supervised deep learning (SDL) and the proposed model, where the proposed 

model is built based on RCNN with different ratios of training labeled cells. Firstly, it can 

be observed that the performance of the proposed model is enhanced through increasing 

the ratios of annotated cells. In other words, the proposed model is able to obtain stronger 

identification ability when learning on more labeled data. It is because the unsupervised 

path is able to enhance the data representation for improving cell identification that is 

implemented with the supervised path. 

TABLE 5.6 COMPARING PERFORMANCE BETWEEN SUPERVISED DEEP LEARNING (SDL), AND 

PROPOSED MODEL (SEMI-SUPERVISED RECURRENT CONVOLUTIONAL NEURAL NETWORKS, 

SEMIRNET) ON MACOSKO2015 DATASET 

SDL Accuracy MacroP MacroR MacroF 

RCNN [117] 96.56% 96.55% 92.70% 94.45% 

Our model Accuracy MacroP MacroR MacroF 

SemiRNet (1%) 95.47% 91.73% 93.90% 92.64% 

SemiRNet (3%) 95.76% 92.62% 94.21% 93.28% 

SemiRNet (5%) 95.76% 93.12% 93.39% 93.18% 

SemiRNet (10%) 95.70% 94.92% 93.18% 93.87% 

SemiRNet (30%) 96.44% 96.53% 92.66% 94.46% 

 

Compared to supervised deep learning (SDL), the proposed model can identify the 

cell types even with an extremely small number of annotated cells. For example, it can be 

obtained encouraging performance with 1% annotated cells. Furthermore, the proposed 

model is robust since similar performance can be gained with different ratios of annotated 

cells. For instance, the differences in accuracy and MacroF between the case of 1%, 5%, 
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and 30% are about 1%. Specifically, the MacroP is improved significantly when increasing 

the ratios of labeled cells for training while the MacroR is stable. The reason for this 

observation is that enhancing representation with unsupervised learning in the proposed 

model seems to be more useful to identify cell type precisely. 

To further investigate the detailed performance of TABLE 5.6, the performance on 

each cell is represented with confusion matrix. Fig. 5.2 presents the confusion matrix on 

performance generated with different ratios of annotated cells. It is observed that for 

different cell types, the accuracy was increased when involving more labeled cells to build 

the model. Specifically, when different ratios of labeled cells were used to build the model, 

the error distributions were not changed significantly. For instance, for the cell type c2, the 

majority errors were from incorrectly classifying the cells into the cell type c7. 

 

 

Fig. 5.2. Confusion matrix on different cell types generated with batch size 128 on 

Macosko2015 dataset. There are 12 cell types including c1 (Bipolar), c2 (Pericytes), c3 
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(Vascular endothelium), c4 (Retinal ganglion), c5 (Horizontal), c6 (Rods), c7 (Cones), c8 

(Amacrine), c9 (Fibroblasts), c10 (Microglia), c11 (Astrocytes), c12 

(Muller glia) 

Furthermore, considering the unbalanced feature of cell distribution, the results in 

Fig. 5.2 present the model bias for the majority cell types. It means that the model will 

obtain higher performance for the majority type, but lower performance for the minority 

types. For the cell type c12, compared to the case of 1% labeled cells, the accuracy is 

decreased because of the model bias when using 10% labeled cells for training. 

On the other hand, although the overall prediction accuracy in Table 5.6 was 

increased when increasing the ratios of labeled cells, it was not always true that the 

accuracy for each cell type will be enhanced. This can be observed in Fig. 5.2. Take the 

cell type c12 as an example. The prediction accuracy is not always increased when 

increasing the ratios of labeled cells. On the contrary, for the cell type c11, the accuracy is 

improved whenever more labeled cells are involved in building the identification model. 

In addition to examining the performance comparisons between the proposed models and 

baselines, the sensitivity of the proposed model on the hyperparameter was also been 

studied. There are various hyper-parameters involved in the learning procedure of the 

proposed model. Here, experiments on different batch sizes have been analyzed since 

different batch sizes will involve different numbers of labeled cells for building the 

proposed model when using the same ratio of labeled cells. TABLE 5.7 shows the 

comparison results for two different batch sizes. From the observation, it is found that 

there were no significant differences in the performance. It means that the proposed model 

was not sensitive to the batch size since the supervised and unsupervised RNN in the 

proposed model could collaborate with each other to overcome the effects of the difference 

in batch size. 
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TABLE 5.7 COMPARING PERFORMANCE WITH DIFFERENT BATCH SIZES ON DIFFERENT RATIOS 

OF LABELED CELLS ON MACOSKO2015 DATASET 

  1% Labeled Data   

Batch size Accuracy MacroP MacroR MacroF 

128 95.47% 91.73% 93.90% 92.64% 

256 95.11% 89.99% 94.40% 91.88% 

  3% Labeled Data   

Batch size Accuracy MacroP MacroR MacroF 

128 95.76% 92.62% 94.21% 93.28% 

256 95.44% 91.76% 94.21% 92.79% 

  5% Labeled Data   

Batch size Accuracy MacroP MacroR MacroF 

128 95.76% 93.12% 93.39% 93.18% 

256 95.49% 91.34% 93.74% 92.31% 

  10% Labeled Data   

Batch size Accuracy MacroP MacroR MacroF 

128 95.70% 94.92% 93.18% 93.87% 

256 95.93% 95.13% 93.11% 94.00% 

  30% Labeled Data   

Batch size Accuracy MacroP MacroR MacroF 

128 96.44% 96.53% 92.66% 94.46% 

256 96.45% 96.58% 92.02% 94.10% 

 

Moreover, compared to TABLE 5.7, Fig. 5.3 presented the accuracy of each cell to 

check the effects with different hyper-parameters in detail. To sum up, for the majority 

cell type c6, the performance was enhanced for the case of a larger batch size. For the 

minority cell types, when employing a larger batch size to build the model, the 

performances for some cell types such as c1 and c2 were decreased whereas, for the cell 

types like c9 and c11, the accuracy was increased. It means that the optimal batch size 

should be selected for improving the performance of certain minority cell types. 
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Fig. 5.3. Comparison of confusion matrix on different cell types generated with 

batch size 128 and 256. The left column is for the case of 128 while the right column is 

for the case of 256. 

On the other hand, compared to the case with more labeled data, the case with low 

ratios of labeled cells needed a larger batch size to improve the performance for the 

majority cell type such as c6. For instance, when the confusion matrix for the case of 1% 

labeled cells was compared, the confusion matrix with batch size 256 had better 
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performance compared to that of batch size 128. It is consistent with the intuition that with 

a larger batch size, a larger size of labeled samples can be obtained to enhance the 

performance of supervised path when using extremely low ratio of labeled cells. In other 

words, to improve the performance for the proposed model in the case of extremely low 

ratios of labeled data, a larger batch size can be applied for the case of majority cell type. 

 5.4.2.2 68K 

To further validate the proposed methods, a larger dataset, 68k were used to 

validate the model’s effectiveness. 

a. Data preprocessing: Compared to the case of Macosko2015, in addition to the 

traditional machine learning methods, different state-of-the-art methods including 

scmapcell [110], SingleR [112], singleCellNet [92], and ACTINN [93] was employed to 

compare the proposed methods, where the Median F1-score of these models are from 

Abdelaal et al.’s work [116]. TABLE 5.8 showed the performance comparison in detail. It 

can be observed that the proposed method via deep learning outperforms other methods. 

Specifically, RCNN presented the optimal performance, which is consistent with the case 

of Macosko2015. In other words, combining data preprocessing like building gene 

sentences and learning with bidirectional RNN is able to enhance the performance 

significantly. For traditional machine learning methods, SVM performed better than other 

machine learning models. 

On the other side, TABLE 5.9 presents the comparison of identification 

performance between traditional machine learning (ML) models and deep learning (DL) 

models with comprehensive evaluation metrics. It can be obtained the similar observation 

that generally deep learning-based methods perform better than machine learning based 

methods, especially regarding the MacroF scores. Only SVM showed competitive 

performance on accuracy. On the contrary, different DL models presented higher and 

consistent performance. For example, all DL models were able to gain higher accuracies 
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above 70%. Furthermore, DL models can obtain MacroF values. Based on the 

observations, it can be demonstrated that the preprocessing step was an effective step to 

prepare the data for deep learning-based cell type identification. In addition, the 

performance observed by training SVM and RCNN on fewer labeled training samples 

were also studied with two cases: 10% labeled samples and 30% labeled samples. In terms 

of performance comparison, fewer labeled samples led to lower performance regarding 

accuracy and MacroF scores. In other words, it needs more labeled data for building 

models to obtain higher identification performance. 

TABLE 5.8 PERFORMANCE COMPARISON BETWEEN STATE-OF-THE-ART METHODS, TRADITIONAL 

MACHINE LEARNING MODELS AND DEEP LEARNING MODELS ON 68K DATASET 

 

 

TABLE 5.9 PERFORMANCE COMPARISON BETWEEN TRADITIONAL MACHINE LEARNING MODELS 

AND DEEP LEARNING MODELS ON 68K DATASET 
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c. Cell Type Identification: TABLE 5.10 demonstrates the comparison of 

identification performance between supervised deep learning (SDL) and the proposed 

model, where the proposed model is built based on RCNN with different ratios of training 

labeled cells. Moreover, 5-fold cross validation was applied to validate the performance 

and present the performance with 95% confidence intervals. Obviously, the performance 

of the proposed model is enhanced through increasing the ratios of annotated cells, which 

is consistent to the case of Macosko2015. In other words, the proposed model is able to 

obtain stronger identification ability when learning on more labeled data together with 

unlabeled data. Specifically, regarding the confidence intervals, compared to Accuracy 

and MacroP, the confidence intervals of MacroF and MacroR were smaller, which means 

that they would be more suitable to evaluate the performance for this case since smaller 

confidence intervals indicate less uncertainty. In addition, compared to the performance 

shown in TABLE 5.9, the performance is improved for the case of 10% and 30% with the 

proposed method. It is proved that unsupervised path is able to enhance the performance 

significantly. 

TABLE 5.10 COMPARING PERFORMANCE BETWEEN SUPERVISED DEEP LEARNING(SDL) AND 

PROPOSED MODEL (SEMI-SUPERVISED RECURRENT CONVOLUTIONAL NEURAL NETWORK, 

SEMIRNET) ON 68K DATASET  

 

In addition, compared to supervised deep learning (SDL) training on 100% labeled 

data, the proposed model can identify the cell types even with an extremely small number 
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of annotated cells. For example, it represents very encouraging performance with 10% 

annotated cells. Specifically, Accuracy and MacroF are improved significantly when 

increasing the ratios of labeled cells for training. It is because enhancing representation 

with unsupervised learning in the proposed model seems to be more helpful to recognize 

cell types. 

TABLE 5.11 COMPARING PERFORMANCE WITH DIFFERENT BATCH SIZES ON DIFFERENT RATIOS 

OF LABELED CELLS ON 68K DATASET 

  1% Labeled Data   

Batch size Accuracy MacroP MacroR MacroF 

128 60.18% 52.07% 57.79% 52.86% 

256 59.98% 49.48% 54.64% 49.98% 

512 50.93% 44.08% 52.61% 44.80% 

  3% Labeled Data   

Batch size Accuracy MacroP MacroR MacroF 

128 64.20% 54.26% 60.91% 55.79% 

256 58.77% 58.82% 56.34% 51.96% 

512 66.92% 56.32% 53.30% 53.53% 

  5% Labeled Data   

Batch size Accuracy MacroP MacroR MacroF 

128 53.52% 54.68% 56.73% 54.66% 

256 66.10% 55.33% 52.83% 52.05% 

512 70.13% 59.40% 57.50% 56.34% 

  10% Labeled Data   

Batch size Accuracy MacroP MacroR MacroF 

128 63.73% 58.39% 56.29% 54.28% 

256 69.37% 57.89% 55.96% 56.36% 

512 70.22% 64.44% 57.04% 58.85% 

  30% Labeled Data   

Batch size Accuracy MacroP MacroR MacroF 

128 71.57% 64.54% 60.63% 62.10% 

256 72.99% 65.73% 56.98% 59.95% 

512 70.79% 64.44% 57.04% 58.85% 
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Moreover, regarding the sample unbalance, Fig. 5.4 showed the model bias to the 

majority cell types as the model obtained higher performance for the majority types like 

c1, c2, and c6, but lower performance for the minority types such as c7, c8 and c9, which is 

consistent to the observations on results of Macosko2015 dataset. Furthermore, regarding 

the cell type c9, compared to the case of 1% labeled data, the model bias led to lower 

performance for the case of 10% labeled data. On the other hand, although the accuracy 

(in TABLE 5.10) is improved when increasing the ratios of labeled data for training, it 

does not mean that the accuracy for each cell type has been enhanced. When examining 

the accuracy in Fig. 5.4, the accuracy of the cell c8 and c9 is not always increased when 

using more labeled data for training. 

 

 

Fig. 5.4. Confusion matrix on different cell types generated with batch size 256 on 68K 

dataset. There are 11 cell types including c1 (CD8+Cytotoxic T), c2 

(CD8+/CD45RA+Naive), c3 (CD4/CD45RO+Memory), c4 (CD19+B), c5 
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(CD4+/CD25T Reg), c6 (CD56+NK), c7 (CD4+T Helper 2), c8 (CD4+CD5RA), c9 

(CD34+), c10 (Dendritic), and c11 (CD14+Monocyte). The majority types include c1, c2, 

and c6 while the minority types contain c7, c8, and c9. 

 

In summary, since the datasets employed for validation including 68K and 

Macosko2015 are not balanced, more labeled samples for training might result in model 

bias during prediction, which decreases the performance for supervised learning. On the 

contrary, semi-supervised method will use less labeled samples for training, which would 

reduce model bias to some extent. Therefore, the proposed semi-supervised method 

performance a little bit better compared to the supervised methods for some cases. 

Furthermore, it was also examined whether the proposed model was sensitive to 

the hyperparameters through comparing the performance on three different batch sizes. 

TABLE 5.11 shows the comparison results for three different batch sizes. It can be 

observed that smaller batch sizes like 128 will lead to higher MacroF scores for lower 

ratios of labeled data such as 1% and 3%. For larger ratios such as 5% and 10%, larger 

sizes like 256 should be taken for better performance like MacroF scores. Furthermore, 

the confusion matrix in Fig. 5.5 allows to check the detailed performance for TABLE 5.11. 

In summary, the proposed model performed better on the majority cell types such as c2 

and c6 for cases of larger ratios of labeled data (30%) for different batch sizes. For minority 

cell type such as c7, larger batch sizes and larger ratios of labeled data should be employed 

to obtain higher performance in general.  



84 

 

 



85 

 

 5.4.2.3 Inter-dataset validation 

Top k genes were selected to build gene sentences and applied word2vec to 

generate gene embeddings. In terms of results shown in TABLE 5.12, RCNN model’s 

performance was not very good, which is consistent with observations in the literature 

such as ACTINN [93]. The reason for this observation is that supervised deep learning 

models can learn not only general features, but also specific features on the training data 

for specific tasks. It will lead to low performance on testing data whose distribution is 

significantly different from that of training data. Thus, it is not suitable to directly apply 

supervised deep learning techniques to inter-dataset applications. However, compared to 

supervised learning, the proposed semi-supervised method improved the performance 

significantly since it reduces the influence of distribution differences between training data 

and testing data by using less labeled data. Furthermore, unlabeled data can enhance the 

performance through improving data representations. 

TABLE 5.12 PERFORMANCE COMPARISON BETWEEN DIFFERENT METHODS ON CELL TYPE 

IDENTIFICATION FOR INTER-DATASET VALIDATION  

 

State-of-the-art SingleR [112] singleCellNet [92] ACTINN [93] 

Median F1-score 44% 22% 11% 

Supervised Learning SVM Random Forest RCNN 

Median F1-score 18% 12% 19 

Semi-supervised DL SemiRNet (1%) SemiRNet (5%) SemiRNet (10%) 

Median F1-score 30% 29% 32% 

 

5.5 Chapter Summary 

In this chapter, a novel framework of deep semi-supervised learning was proposed 

for cell type identification on scRNA-seq data. As an emerging research area, 

implementing cell type identification automatically is extremely important for the 

downstream analysis on the scRNA-seq data. However, current methods using neural 



86 

 

networks rely on the availability of large number of labeled cells, which costs a huge 

amount of efforts to label these cells with high quality. Hence, a deep semi-supervised 

learning model based on recurrent convolutional neural networks (RCNN) was proposed 

that can utilize unlabeled cells to enhance identification performance. There were two 

paths in the model for obtaining supervised cross entropy loss and unsupervised mean 

squared error loss, respectively. Then training was performed by jointly optimizing these 

two losses, and this allowed the proposed scheme to take advantage of both information 

from the labeled cells and information from the unlabeled cells. Experimental results 

indicated that the proposed model could identify cell type effectively using very limited 

labeled cells and a large amount of unlabeled cells. 
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CHAPTER 6 

INCORPORATING PRIOR KNOWLEDGE OF GENE-GENE 

INTERACTION TO CLASSIFY CELL TYPE 

 

6.1 Introduction 

Genes are the basic building blocks that carry the individual information of 

heredity. Sometimes these genes work together to perform a complex task or sometimes it 

functions with others to build complex structures. The functional relationship between 

genes can be represented as graphs and called the gene interaction network. In this 

network, a set of genes are considered as nodes while the interactions in genes are 

considered as edges. These gene interactions play a very vital role in terms of biological 

processes [140], e.g., in the classification of cell types, identification of the state of cancer 

cells and marker genes. However, this gene-gene interaction information, and pathway 

process can be used as a domain based prior knowledge to predict cell type. 

ScRNA-seq technology has revolutionized in the field of gene expression analysis 

as it has enabled access of the study of expression for the individual cell which allows the 

researcher to study biological process, e.g., cell state mechanism, development of gene 

regulatory network, and cell type classification. However, the gene expression profile that 

is generated from scRNA-seq technology suffers from data sparsity, imbalance, and lack 

of labeled data. There are a variety of research works on cell type classification to address 

these challenges. However, most of the works do not allow to incorporate protein-protein 

interaction, i.e., gene-gene interaction information as prior knowledge to the analysis of 

scRNA-seq data. Therefore, there is a huge scope of incorporating gene-gene interaction 

information in gene expression analysis of cell types in predictive models. 
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Recently, few studies have led to conduct research that to classifies the cell types 

by leveraging prior knowledge such as gene-gene interaction, pathway information, and 

marker gene information. In [141], the authors incorporated pathway-based information 

to classify the disease states of a patient. In this work, the activity score of the pathway 

was learned from the gene expression profile through the z-score. Then the expression 

vector of each gene was overlaid with the activity score of the pathway to select key genes 

and a pathway activity matrix was generated to train the classifier. In [142, 143], the 

authors ranked the genes and utilized the score to infer pathway activity for the 

classification of disease states. However, the pathway knowledge limits some genes and 

as a result some genes were not being considered through this pathway based approach. 

Therefore, the researchers have now been motivated to build a gene network by exploiting 

gene-gene interaction with gene expression profile. In [144, 145], the authors introduced 

a gene network by mapping the genes based on gene expression profile to protein-protein 

interaction network and chose the subnetworks of the gene set which was used to identify 

the disease state. Maddouri et al. proposed GCNCC, a graph convolutional network-based 

approach for clustering and classification that combined gene networks with gene 

expression data to learn the deep representation of gene patterns [146]. However, the 

disadvantage of this work was it showed poor performance on high dimensional scRNA-

seq data and was limited to binary cell classification. Gan et al., autoencoder and graph 

neural network were jointly used to learn representation and employed that in the 

unsupervised clustering method to classify the cell type [147]. In [66], the authors 

proposed sigGCN, a cell classification model for scRNA-seq by aggregating gene-gene 

interaction with the gene expression profile. By motivating this approach, graph attention 

based autoencoder model was studied in this dissertation work. 

In this study, graph attention based autoencoder model was introduced to classify 

cell types by incorporating prior knowledge with gene expression values. The proposed 

framework is shown in Fig. 6.1. The proposed approach comprised two parts: GAT 
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autoencoder and Fully connected NN. The GAT autoencoder model consisted of three 

GAT layers; 1 multi-head GAT layer and the rest of them single headed, a mean pooling 

layer, a dropout layer, and a decoder part. The feature was learned in the GAT layer by 

introducing the attention mechanism using gene expression values and gene-gene 

interaction. This attention mechanism helped to enhance the model performance in most 

of the cases and also handled the data sparsity and dimensionality more efficiently and 

effectively. Moreover, the approach was trained using two losses: MSE and CE loss for 

GAT autoencoder and NN paths respectively. Through these losses, the model was trained 

to capture the global feature extracted from two paths. The performance of the approach 

was evaluated using high dimensional, sparse scRNA-seq data. In summary, the 

contribution of this research work was: 

1. Incorporated gene-gene interaction as prior knowledge with gene expression profile 

and built cell classification model; 

2. Proposed graph attention neural network based autoencoder model to classify the 

cell types and learned attention score introduced in the study to enhance the 

performance; 

3. Validated model performance on three large-scale datasets namely, 68k, Zheng 

sorted and Baron Human. 

The remainder of this chapter is organized as follows: Section 6.2 contains the 

details about the approach, the results and analysis are presented in Section 6.3, and 

Section 6.4 concludes the chapter. 

6.2 Proposed Methodology 

In this study, Graph Attention Network based Autoencoder model was proposed to 

classify the cell types using incorporating prior knowledge. Here, this network consisted 

of two stages: 1. Graph Attention Model and 2. Fully connected Neural Network model. 
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Gene Adjacency matrix and gene expression values were used as input in the Graph 

Attention model while gene expression values along with cell types were used as input of 

Neural Network. The features were learned from gene-gene interaction through the GAT 

network and the node embedding of the GAT network was then concatenated with the 

output of a fully connected neural network model to classify the cell types. Fig. 6.1 

represents the flow diagram of the proposed approach. 

 

 

Fig. 6.1 Flow diagram of proposed approach 

 

 6.2.1 Gene Adjacency Matrix 

Gene adjacency matrix waas been built using the data from the STRING database 

[148]. The matrix represents the confidence score between pairs of genes extracted from the 

gene-gene interactions database (STRING). Fig. 6.2 represents the interaction of genes. The 

weights are normalized in the adjacency matrix. Using the normalized adjacency matrix, the 

edges represent the connection between genes, and the normalized confidence scores are then 

used as weights of edges. 
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 6.2.2 Graph Attentional Autoencoder 

Motivated by the graph attention network [149], Graph Attention based autoencoder 

was used to extract features from gene expression values in this study. In this approach, 

gene expression values were used as features and the gene-gene interaction values, i.e., is 

the confidence scores, were used as the weights of the graph model. This autoencoder 

model comprised two parts: 

1. Encoder: it consisted of three stacked graph attention layers, a mean pooling layer, 

a fully connected layer; 

2. Decoder: it consisted of a fully connected layer to construct the gene expression 

values; 

 6.2.2.1 Mechanism of GAT Layer 

The study of the GAT network has become popular in recent days. In GNN, all the 

neighbors are considered as same important as others whereas that is not the case all the 

time. Nodes should not have the same importance all the time. However, in the GAT 

model, it gives everyone the opportunity to assign weighting scores to the nodes. [150]. 

Hence, importance of each neighbor node is considered to build a graph network. 
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Fig. 6.2. String network. 

In GAT layer, the importance of each connection is computed by the following 

equation 6.1: 

 kij = Watt[Wxi||[Wxj] (6.1) 

Where Wxi and Wxj are the embeddings of two nodes xi and xj. First, these embeddings are 

concatenated. Then the dot product of these embeddings and the learnable weight vector 

Watt are used to compute the self attention score. 

After that, this computed score was used to compute the attention co-efficient score 

eij by the following equation 6.2: 
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 eij = LeakyReLu(kij) = LeakyReLu(Watt[Wxi||[Wxj]) (6.2) 

Here, eij is the additive attention score of i and j node. This eij is calculated for each head. 

LeakyReLu is the activation function. 

Then the additive attention score is normalized 6.3. Dropout regularization is 

applied. Then the final output for each head is computed 6.4. 

  (6.3) 

 hi = 𝛾(∑ (𝛼𝑖𝑗(𝑊𝑥𝑗𝑗∈𝑁 ))) (6.4) 

 

In this study, multi-head attention [151] was employed to stabilize the learning process. 

Then the concatenation operation was performed to aggregate all the learned 

representation from the attention head output 6.5. 

 ht = hi ⊕ hi1 ⊕ hi2..... ⊕ hn (6.5) 

Here, ht is the multi-head attention output and hi,hi1,hi2,....,hn is the learned representation 

from single head attention layer. 

 6.2.3 Fully Connected Neural Network 

In this approach, fully connected Neural Network was used. The gene expression 

values were used as input for the model. This NN was constructed to avoid the overfitting. 

It had two fully connected layers of hidden neuron sizes 256 and 32. The output features 

learned by the NN were concatenated with the output of the GAT autoencoder model. Then 

the concatenated output was used as input for the final output softmax layer. 
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 6.2.4 Loss function 

For two layers, two types of losses are used. 

1. GAT autoencoder: this autoencoder model is used to reconstruct the genes. 

Therefore, the dimension of the final stage of this model is similar to the number of 

top variant genes. In this study, the top 1000 genes were selected to conduct different 

experimental analyses. Hence, the output of this GAT autoencoder model is 1000. 

In this stage, Mean Square Error (MSE) is used to compute the loss function by 

following equation 6.6: 

  (6.6) 

Where m = top number genes variant. In this case, m=1000 xj = jth gene expression value, xˆj = 

jth gene expression value after learning through the GAT autoencoder model 

2. Fully connected neural network: in the layer, the classification performance is 

computed. Therefore, the loss function uses cross entropy loss function to compute 

the performance by using the following equation 6.7: 

 𝐿𝑛𝑛 = − ∑ 𝑦𝑜,𝑐 log(𝑝𝑜,𝑐)𝑁
𝑐=1  (6.7) 

 

Where N = total number of classes, log = the natural log, y = binary indicator if class 

label c is the correct classification for observation, p = predicted probability observation o 

is of class c. 

3. Total Loss: Total loss is computed by combining two losses together: Lgat and Lnn. 

The equation 6.8 is as follows: 

 Ltotal = Lgat + Lnn (6.8) 
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6.3 Experimental Results and Analysis 

 6.3.1 Dataset Details 

In this study, three large-scale single-cell sequencing datasets were used: 68k 

PBMC data, Zheng sorted PBMC data, and Baron Human Pancreatic data. The first two 

datasets contained several ten cells. The summary of the datasets are represented in 

TABLE 6.1. Details of the datasets are as follows: 

TABLE 6.1 DATASET DETAILS 

 

Types 68k PBMC Zheng sorted Baron Human 

Number of genes 20,387 21,950 17,499 

Total Samples 65,943 20,000 8,569 

Number of Labels 11 10 14 

Train size 52,754 16,000 6,855 

Test size 6,594 2,000 1,713 

Validation size 6,595 2,000 1,713 

  

6.3.1.168k PBMC 

68k PBMC [118] is the largest scRNA-seq dataset generated by profiling 68,000 

fresh peripheral blood mononuclear cells (PBMC) that are related to the immune 

population. After preprocessing, the dataset contained 65,943 individual cells with 20,387 

genes. The cells were labeled as 11 subtypes names as CD8+Cytotoxic T, 

CD8+/CD45RA + Naive, CD56+ NK, CD4+/CD25T Reg, CD19+ B, CD4/CD45RO+ 

Memory, Dendritic, CD14+ Monocyte, CD4+ CD5RA, CD34+, and CD4+ T Helper 2. 

 

 6.3.1.2 Zheng sorted PBMC 

In Zheng sorted data, Antibody based bead enrichment was used by authors to 

extract the cell population. Through this process, 10 cell populations were extracted, 

and then the cell types were validated by FACS sorting. Then these cell populations 
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were used to generate a large set of single cell individually. As a result, Zheng sorted 

PBMC data were generated which included 20,000 individual cells with 21,950 genes 

[116]. The cells were labeled as 10 subtypes and named: CD8+Cytotoxic T, 

CD8+/CD45RA+Naive Cytotoxic, CD56+NK, CD4+/CD25T Reg, CD19+B, 

CD4/CD45RO+Memory, CD14+Monocyte, CD4+CD5RA+/CD25Naive T, CD34+, 

and CD4+T Helper 2. 

 6.3.1.3 Baron Human Pancreatic data 

Baron Human is collected from human pancreas data [115]. The cells were 

sequenced using inDrop protocol. Then the cells were clustered using t-SNE and based on 

the cluster, the cell types were assigned. After that, the iterative hierarchical clustering 

method was employed to determine the marker genes. As a result, 8,569 cells and 17,499 

genes from 14 cell types were extracted. Baron Human dataset is obtained from Gene 

expression omnibus, accession code GSE84133. 

 6.3.2 Data Preprocessing 

The gene expression values were transformed into log scale and normalized the dataset. 

After that, the variances of genes were computed and then the genes were sorted in 

descending order based on the variant values. After that, the top k variant genes were 

chosen. Here, in this study, top 1000 variant genes were used to conduct the experiment. 

Then gene-gene interaction network was built using the STRING database by uploading 

the top k genes to extract the confidence score. This confidence score was used as the 

weights of the network while the gene expression values are used as features of the 

model. The dataset was split into three parts: Training (80%), Validation (10%) and Test 

(10%). 
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 6.3.3 Experimental Set Up 

In this experiment, this proposed approach was employed to implement cell type 

identification by incorporating prior knowledge of gene-gene interaction information. The 

key hyperparameters of the proposed approach were: Embedding size:256, batch size: 16, 

number of epoch: 20, Optimizer: Adam optimizer, Learning rate: 0.0001. Two types of 

inputs were used: Adjacency matrix which is built on the dataset obtained from the 

STRING database and gene expression values with cell types. Moreover, the output of the 

proposed model contained two parts: cell type y and new gene representation ˆxj. 

 6.3.4 Evaluation Metrics 

Different evaluation metrics were used to evaluate the model performance. 

Precision, Recall, and F1-score were computed in terms of Macro average, and Weighted 

average. Moreover, confusion matrix and accuracy were observed to validate the model 

performance. 

In macro-average, all classes equally contributed to the final averaged metric. It 

reduced the multiclass predictions down to multiple sets of predictions and calculated the 

corresponding metric for each of the binary cases and then averaged the results together. 

Macro Precision, Macro Recall, and Macro F-score were calculated using the following 

equations: 

 . (6.9) 

 . (6.10) 

 . (6.11) 

where C denotes the total number of cell types and Fscorec, Precisionc, Recallc are Fscore. 
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On the other hand, the value of each class is weighted by the number of samples from the 

class to compute the weighted average score. 

  (6.12) 

  (6.13) 

  (6.14) 

where, 

Pc1,Pc2,...,PcC = Precision for class labels c1,c2,...,cC 

Rc1,Rc2,...,RcC = Recall for class labels c1,c2,...,cC 

Fc1,Fc2,...,FcC = F-score for class labels c1,c2,...,cC 

|c1|,|c2|,...,|cC| = Number of samples in c1,c2,...,cC 

 6.3.5 Result Analysis 

To validate the proposed approach, three different datasets were used for 

evaluation of the performance. In this study, sigGCN was considered as a baseline 

approach. In this approach, Graph Convolution Neural (GCN) was used to capture the 

feature information. In the dissertation work, the attention mechanism was introduced, and 

the GAT model was used to build graph neural network model. TABLE 6.2 represents the 

comparison between the baseline model and the proposed model. 

TABLE 6.2 COMPARISON OF CELL CLASSIFICATION MODEL BETWEEN THE BASELINE MODEL 

AND PROPOSED MODEL IN TERMS OF ACCURACY 

 

Model sigGCN(Baseline model) GAT autoencoder 

68k PBMC 73.10% 75.90% 

Zheng sorted 90.10% 88.70% 
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Baron Human 97.90% 97.08% 

 

From TABLE 6.2, it is observed that the proposed model showed promising 

performance in terms of the complex and largest dataset 68K PBMC data. The result 

showed similar performance like the baseline model in terms of Zheng sorted and Baron 

Human. The detailed performance analysis is presented in the following sections: 

 6.3.5.1 68k PBMC 

TABLE 6.3 presents a comparison study between the sigGCN and proposed 

approach in terms of Macro average and Weighted average. From this TABLE, it is 

observed that, the performance was improved by 2% and 1% in terms of Macro Fscore 

and Weighted Fscore respectively. The detailed performance of each cell type was also 

studied in TABLE 6.4. The dataset was highly imbalanced where c3, c4 is minority class 

and c9,c10 are majority cell types. From the TABLE, it can be observed that F-score 

showed better performance in most of the cases in the proposed approach. Specifically, 

the F-score in the minority cell types was improved by 3%-12% compared with the 

baseline model. The confusion matrix was also examined in Fig. 6.3 to compare the 

performance of different cell types. From the Fig., it is observed that the majority cells 

types c9,c10 outperform compared to the baseline model. Moreover, the minority cell type 

c3 can be identified more accurately 93% through the proposed approach while it showed 

poor performance around 71% in sigGCN (baseline model). Therefore, it can be said the 

attention mechanism in the proposed approach had some impact on the performance of 

the imbalanced data and can enhance the performance of minority class type. Another 

minority cell type c4 still cannot be recognized accurately in both the cases. The reason 

behind the poor performance of this cell type is there may still be some bias in the model 

which is impacting the performance of minority cell types. 
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TABLE 6.3 COMPARISON OF CELL CLASSIFICATION MODEL BETWEEN THE BASELINE MODEL 

AND PROPOSED MODEL IN TERMS OF MACRO-AVERAGE AND WEIGHTED 

AVERAGE VALUES ON 68K PBMC DATA 

Model sigGCN(Baseline model) GAT autoencoder 

Macro Precision 63% 63% 

Macro Recall 58% 59% 

Macro Fscore 58% 60% 

Weighted Precision 74% 74% 

Weighted Recall 74% 75% 

Weighted Fscore 73% 74% 

  

TABLE 6.4 COMPARISON OF CELL CLASSIFICATION MODEL BETWEEN THE BASELINE MODEL 

AND PROPOSED MODEL IN TERMS PRECISION, RECALL AND F-SCORE FOR EACH CLASS ON 68K 

PBMC DATA 

 

   sigGCN  Proposed Model  

Cell Number Precision Recall F-score Precision Recall Fscore 

c1 192 75% 76% 76% 77% 82% 79% 

c2 573 76% 88% 82% 95% 75% 84% 

c3 14 100% 71% 83% 100% 93% 96% 

c4 10 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

c5 628 57% 61% 59% 47% 75% 58% 

c6 182 35% 4% 8% 7% 1% 1% 

c7 272 49% 14% 22% 48% 15% 23% 

c8 833 88% 89% 89% 90% 85% 87% 

c9 2034 84% 72% 78% 79% 79% 79% 

c10 1676 72% 80% 76% 70% 89% 78% 

c11 174 67% 68% 67% 73% 69% 71% 
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 (a) sigGCN (b) Proposed model 

Fig. 6.3. Performance comparison of sigGCN and GAT model. There include 11 cell 

types including c1 (Dendritic), c2 (CD19+B), c3 (CD34+), c4 (CD4+T Helper 2), c5 

(CD4+/CD25T Reg), c6 (CD14+Monocyte), c7 (CD4/CD45RO+Memory), c8 

(CD56+NK), c9 (CD8+Cytotoxic T), c10 (CD8+/CD45RA+Naive) and c11 

(CD4+CD5RA). The majority types include c9, c10, and while the minority types contain 

c3, c4 

6.3.5.2  Zheng sorted 

TABLE 6.5 represents the comparison study in terms of Macro average and 

Weighted average. From this TABLE, it is observed that, although the baseline model 

outperforms, the proposed model can still achieve 89% Macro and Weighted F-score. The 

detailed performance of each cell type has also been studied in TABLE 6.6 and Fig. 6.4. 

From the TABLE, it can be observed that the dataset is more balanced compared to the 

earlier data. Moreover, the model can achieve around 89% accuracy using this dataset. 

However, in this experiment, the proposed model showed similar performance to the 

baseline model. 
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TABLE 6.5 COMPARISON OF CELL CLASSIFICATION MODEL BETWEEN THE BASELINE MODEL 

AND PROPOSED MODEL IN TERMS OF MACRO-AVERAGE AND WEIGHTED AVERAGE VALUES ON 

ZHENG SORTED DATA 

 

Model sigGCN(Baseline model) GAT autoencoder 

Macro Precision 91% 89% 

Macro Recall 91% 89% 

Macro Fscore 91% 89% 

Weighted Precision 90% 89% 

Weighted Recall 90% 89% 

Weighted Fscore 90% 89% 

  

TABLE 6.6 COMPARISON OF CELL CLASSIFICATION MODEL BETWEEN THE BASELINE MODEL 

AND PROPOSED MODEL IN TERMS PRECISION, RECALL AND F-SCORE FOR EACH CLASS ON 

ZHENG SORTED DATA 

   sigGCN  Proposed Model  

Cell Number Precision Recall F-score Precision Recall Fscore 

c1 191 99% 99% 99% 99% 98% 99% 

c2 219 98% 100% 99% 98% 100% 99% 

c3 175 99% 97% 98% 99% 97% 98% 

c4 201 65% 79% 71% 66% 65% 65% 

c5 203 81% 71% 76% 82% 71% 76% 

c6 205 80% 73% 76% 72% 83% 77% 

c7 198 98% 93% 95% 99% 88% 93% 

c8 185 100% 98% 99% 99% 99% 99% 

c9 220 96% 93% 94% 85% 95% 90% 

c10 203 92% 100% 96% 92% 91% 92% 
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                              (a) sigGCN  (b) Proposed model 

Fig. 6.4. Performance comparison of sigGCN and GAT model. There include 10 cell 

types including c1 (CD14+Monocyte), c2 (CD19+B), c3 (CD34+), c4 (CD4+T Helper 

2), c5 (CD4+/CD25T Reg), c6 (CD8+/CD45RA+Naive), 

c7(CD4/CD45RO+Memory), c8 (CD56+NK), c9 (CD8+Cytotoxic T) and c10 

(CD4+CD5RA). 

 

 6.3.5.3 Baron Human 

The evaluation metrices of Macro average and Weighted average are represented 

in TABLE 6.7. From this TABLE, it is observed that the model shows better performance 

in terms of Macro Precision and Macro Fscore. It also shows similar performance to the 

baseline model in terms of Macro Recall, Weighted Precision, Weighted Recall, Weighted 

Fscore. TABLE 6.8 represents the detailed performance of each cell type along with the 

total number of the cell and Fig. 6.5 presents the confusion matrix. From the TABLE, it 

observed that this dataset is also imbalanced data. c8, c10, c11, c13, c14 is the minority 

cell types whereas c3,c4 is the majority cell type.  

 

It can also be found that sometimes the model showed better performance in terms 

of minority cell types and sometimes similar performance like the baseline model. 
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TABLE 6.7 COMPARISON OF CELL CLASSIFICATION MODEL BETWEEN THE BASELINE MODEL 

AND PROPOSED MODEL IN TERMS OF MACRO-AVERAGE AND WEIGHTED AVERAGE VALUES ON 

BARON HUMAN DATA 

Model sigGCN(Baseline model) GAT autoencoder 

Macro Precision 85% 86% 

Macro Recall 82% 82% 

Macro Fscore 80% 81% 

Weighted Precision 98% 97% 

Weighted Recall 97% 97% 

Weighted Fscore 97% 97% 

 

TABLE 6.8 COMPARISON OF CELL CLASSIFICATION MODEL BETWEEN THE BASELINE MODEL 

AND PROPOSED MODEL IN TERMS PRECISION, RECALL AND F-SCORE FOR EACH CLASS ON BARON 

DATA 

   sigGCN  Proposed Model  

Cell Number Precision Recall F-score Precision Recall Fscore 

c1 107 99% 97% 98% 99% 97% 98% 

c2 29 97% 100% 98% 93% 97% 95% 

c3 256 98% 98% 98% 98% 99% 98% 

c4 229 99% 98% 98% 100% 97% 98% 

c5 59 94% 98% 96% 92% 98% 95% 

c6 99 96% 100% 98% 95% 100% 98% 

c7 22 95% 91% 93% 95% 91% 93% 

c8 2 100% 50% 67% 100% 50% 67% 

c9 23 92% 100% 96% 92% 100% 96% 

c10 7 100% 100% 100% 100% 100% 100% 

c11 1 25% 100% 40% 50% 100% 67% 

c12 18 100% 89% 94% 88% 83% 86% 

c13 3 100% 33% 50% 100% 33% 50% 

c14 2 0% 0% 0% 0% 0% 0% 
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 (a) sigGCN (b) Proposed model 

Fig. 6.5. Performance comparison of sigGCN and GAT model. There includes 

10 cell types including c1 (acinar), c2 (activated stellate), c3 (alpha), c4 (beta), c5 (delta), 

c6 (ductal), c7 (endothelial), c8 (epsilon), c9 (gamma), c10 (macrophage), c11 (mast), c12 

(quiescent stellate), c13 (schwann), c14 (tcell). 

 

6.4 Chapter Summary 

In this chapter, Graph Attention based autoencoder model was proposed that uses 

gene expression values and gene-gene interaction networks to classify the cell types. In 

this proposed approach, there were two paths to train the model: one is for to reconstruct 

the gene values where MSE loss is used to train the path and another one is for the 

classification model where cross-entropy loss is used. Then training was performed by 

jointly optimizing two losses which allowed the advantage of capturing global features by 

the GAT autoencoder model. The model performance was evaluated by three large scale 

single-cell sequencing data namely 68k, Zheng sorted, and Baron Human and compared 

the performance with sigGCN model. Experimental results indicated that the proposed 

model showed better performance in terms of 68k compared with sigGCN. 68k data was 

the largest among all the dataset. Therefore, it can be stated that the attention network 

introduced in the approach had the impact to enhance the performance of complex pattern 

data. Moreover, the proposed model showed similar performance to sigGCN in terms of 

Zheng sorted and Baron Human data. However, in this proposed model, multi-head 
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attention network was induced which showed better performance in terms of high 

dimensional imbalance data like 68k data. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

The goal of this dissertation was to present a generalized model for cell type 

classification which can perform well on high dimensional gene expression data in the 

medical domain and at the same time, the proposed model can be a potential solution to 

train the system using deep learning model. Classification of cell types is a very important 

step which was performed manually by most of the researchers. The step is very laborious, 

time consuming, and requires prior knowledge to classify the cell type. Recently, 

automated approaches have been developed to address the limitation. The main objective 

of this research work was to study automated cell type classification as gene expression 

data pose different types of challenges like the curse of dimensionality, sparsity, and lack 

of labeled data. 

This work presented a recurrent neural network-based feature selection model to 

overcome the challenge of the curse of dimensionality. In this study, a subset of features 

was selected by averaging gradients through multiple dropout techniques. Different 

experimental analyses were performed to investigate the model performance. 

Moreover, this dissertation has proposed a novel approach for cell type 

classification via gene embedding to address the challenge of data sparsity. In this 

proposed approach, gene expression values were sorted decreasingly and the top 50, 100, 

and 150 gene values selected were used to generate gene sentences in the gene embedding 

layer. Then this layer was used in the deep learning model to train and predict the cell 

types. The experimental result represents a very promising performance using the gene 

embedding concept for cell type classification. 
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Furthermore, the dissertation work also inspected how the classification model 

performed when a very limited amount labeled data were being used. Therefore, this work 

has proposed a deep semi-supervised RCNN based model that used a limited amount of 

labeled data and a large amount of unlabeled data. The goal of this study was to propose 

an approach that can classify the cell types by using very few limited data to overcome the 

challenge of data sparsity and reduce the manual effort of labeling the dataset. In this 

research work, inter and intra-validation datasets were used to evaluate the model 

performance. Moreover, the model performance was also observed by experimenting on 

1%, 3%, 5%, 10% and 30% labeled data. This model showed very promising performance 

by using a limited number of labeled data. 

In this dissertation work, the Graph Attention network based autoencoder model 

was also studied to observe how the model performed when gene-gene interaction 

information was incorporated with the gene expression values. The aim of this study was 

to propose a robust model that can classify the cell types in complex large scale single cell 

sequencing data and to overcome the challenge of data sparsity and data imbalance. An 

extensive experiment was performed to evaluate the model performance. The 

experimental results showed that the proposed model could identify the cell types 

effectively on complex large scale imbalanced data. 

7.2 Future Work 

This dissertation has a detailed study of different deep learning-based approaches 

to overcome challenges of gene expression data by building an identification model on 

cell types. To overcome the challenge of the curse of dimensionality, RNN based deep 

learning model was introduced in Chapter 3. This approach was limited to overcoming the 

challenge of the high dimensionality and sparsity. To further the research, the study can be 

extended to handle the class imbalance and batch effect. Moreover, the study can also be 

explored on high dimensional more complex datasets to investigate the performance. 
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As quick identification of cell type has become a key priority due to the rapid 

growth of scRNA-seq and also labeling the data is time consuming and tedious work, a 

semi-supervised approach was studied in the dissertation work. Furthermore, gene 

embedding concept was also  introduced to deal with data sparsity. In future, this proposed 

approach can be extended by introducing transferring the label information so that it can 

handle the imbalance ratio of the data. 

One of the key challenges in this field of genomic research is the limitation of study 

on how to integrate prior knowledge with the gene expression profile to build a deep 

learning model. In this dissertation work, GAT based autoencoder model was been studied 

where gene-gene interaction and gene expression values were combined together. In this 

study, an attention mechanism was introduced to capture the complex pattern and 

relationship of genes. In the future, the work can be extended to the identification of 

marker genes by interpreting the learned representation. Moreover, pathway activity 

scores can also be integrated to enhance classification performance for the complex 

dataset. 
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